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Abstract  Generalized Singular Value Decomposition (GSVD)
is the enabling linear precoding scheme for multiple-input
multiple-output (MIMO) non-orthogonal multiple access (NO-
MA) systems. In this paper, we extend research concerning
downlink MIMO-NOMA systems with GSVD to cover bit error
rate (BER) performance and to derive an approximate evalua-
tion of the average BER performance. Specifically, we deploy, at
the base station, the well-known technique of joint-modulation to
generate NOMA symbols and joint maximum-likelihood (ML) to
recover the transmitted data at end user locations. Consequent-
ly, the joint ML detector offers almost the same performance, in
terms of average BER as ideal successive interference cancella-
tion. Next, we also investigate BER performance of other pre-
coding schemes, such as zero-forcing, block diagonalization, and
simultaneous triangularization, comparing them with GSVD.
Furthermore, BER performance is verified in different configu-
rations in relation to the number of antennas. In cases where the
number of transmit antennas is greater than twice the number
of receive antennas, average BER performance is superior.

Keywords  generalized singular value decomposition (GSVD),
joint maximum-likelihood, joint modulation, MIMO, non-
orthogonal multiple access (NOMA)

1. Introduction

Non-orthogonal multiple access (NOMA) has emerged as
a promising technology for the next generation of wireless
networks (5G and beyond). This is due to the fact that NO-
MA is capable of improving spectrum efficiency, providing
better fairness, as well as reducing latency in serving users all
those factors are necessary for intelligent and dynamic next
generation wireless networks [1], [2]. In conventional orthog-
onal multiple access (OMA), multiple users are assigned to
different radio resources, such as frequency and time, mean-
ing that the number of users severed is limited. However,
NOMA can provide massive connections by simultaneously
serving multiple users using the same spectrum resources [3],
but this is done at the expense of increased intra-cell inter-
ference. To mitigate intra-cell interference, NOMA exploits
successive interference cancellation (SIC) at receivers to the
detect desired signals [4]. Therefore, the key principle of NO-

MA is based on superposition coding (SC) at the transmitter
and SIC at the receiver.

Recently, the combination of multiple-input multiple-output
with NOMA (MIMO-NOMA) has received a lot of attention
in wireless communication due to its high spectral efficien-
cy. In [5], ergodic capacity maximization was studied for the
Rayleigh fading channel in MIMO-NOMA with statistical
channel state information at the transmitter. The authors of [6]
have investigated problems affecting the downlink MIMO-
NOMA system with regards to clustering, beamforming, and
power allocation. Many works have shown that the perfor-
mance of MIMO-NOMA is superior to that of MIMO-OMA.
However, MIMO-NOMA with a precoder scheme was real-
ized and offered potential performance gains [7]. The authors
of [7] have proposed a signal alignment based framework with
precoding that is not only general and applicable to both up-
link and downlink MIMO-NOMA systems, but also achieves
a significant performance gain compared to MIMO-NOMA
without precoding.

Precoding schemes are usually classified into two categories:
nonlinear precoding and linear precoding. Nonlinear precod-
ing is commonly known as dirty paper precoding (DPC) [8],
[9], which can reach the maximum capacity region of MI-
MO channels if the transmitters perfectly estimate channel
state information. However, DPC is difficult to implement
due to computational complexity of the detection process. In
order to reduce decoding complexity on the user side, linear
precoding is necessary. The key principle of precoding con-
sist in transforming channel matrices into diagonal matrices
in the process of zero-forcing (ZF)-based precoding, block
diagonalization (BD)-based precoding [10], and generalized
singular value decomposition (GSVD) [11]. All of the above
methods are referred to as simultaneous diagonalization (SD).
In addition, the channel matrices, after being detected at the
users’, may have the form of triangular matrices when si-
multaneous triangularization (ST)-based precoding [12] is
applied by relying on QR decomposition. The authors of [12]
have revealed that the performance of ST precoding is close
to that of the upper bounds of DPC and outperforms SD pre-
coding as GSVD in terms of total system capacity. As far as
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antenna configurations are concerned, ZF precoding and BD
precoding are valid only when the total number of receive
antennas of all users is lower than that of transmit antennas
at the base station. Furthermore, ST precoding is capable of
achieving better total system capacity if the number of trans-
mit antennas is greater than that of receive antennas of each
user. GSVD precoding, meanwhile, may apply to all antenna
configurations.
As mentioned above, GSVD is a simple tool for linear precod-
ing schemes for MIMO-NOMA implementations. In essence,
GSVD can be extended to a point-to-point MIMO channel,
where singular value decomposition (SVD) is applied dur-
ing the conversion process. In [13], the authors proposed a
transmission protocol combining GSVD and NOMA and
evaluated the system’s performance based on the expected
data rates. Here, the scheme was considered in the asymptot-
ic regime and the number of transmit antennas and receive
antennas approached the infinite value. Moreover, the authors
came up with limiting the distribution of the squared gen-
eralized singular value of the two users’ channel matrices.
The authors of [13] continued to make important contribu-
tions regarding GSVD-NOMA by achieving some new results
on the distribution of the squared generalized singular val-
ue, as shown in [14]. In this paper, we take advantage of the
joint density probability function of GSVD singular values
in [14] to derive the average BER performance. In [15], the
GSVD-NOMA scheme has been considered with a channel
estimation error. This research has proposed three models of
uncertainty and realized power allocation to balance signal-
to-interference-plus-noise ratio (SINR).
Distribution of the squared generalized singular value func-
tion presented in [14] is only applicable for average results
computations. However, in some research schemes concerned
with secure transmission analysis and channel power allo-
cation, the marginal probability density function (PDF) is
necessary. Hence, the authors of [16] have obtained the distri-
bution characteristics of the ordered GSVD singular values.
The theoretical analysis of GSVD-based security transmis-
sion has first been presented in [14], where performance of
a GSVD-based MIMO-OMA system was investigated for
secrecy outage probability. Focusing on security of trans-
mission in GSVD-based MIMO-NOMA schemes, the au-
thors of [17], [18] analyzed theoretical secrecy outage proba-
bility. The results they obtained revealed the superiority of
GSVD-NOMA in terms of efficiency and security, compared
to GSVD-OMA.
As far as BER performance of NOMA is concerned, a relative-
ly small number of studies has been carried out. In [19], the
exact closed-form BER expression of the QPSK constellation
for an uplink NOMA system was expressed over an addi-
tive white Gaussian noise (AWGN) channel. In [20], an exact
closed-form BER expression under SIC error for downlink
NOMA over Rayleigh fading channels was derived. Besides,
the authors have also derived one-degree integral form exact
expression and closed-form approximate BER expression for
uplink NOMA. Moreover, over the Nakagami-m flat fading
channel, the exact BER of downlink NOMA systems with

SIC was derived for two and three user systems [21]. Howev-
er, the performance of MIMO-NOMA, has been only studied
in terms of overall system capacity and outage probabili-
ty [5], [6]. The BER performance of the system has not been
studied extensively. Recently, in [22], BER performance of
an uplink NOMA was investigated with the use of the joint
maximum-likelihood detector, where the base station was as-
sumed to be equipped with N antennas. Apart from the SIC
technique at the receivers, the authors in [23] came up with
a technique to detect desired signals at the receivers, known
as log-likelihood ratios (LLRs). For a downlink NOMA, the
LLRs are characterized by almost the same error probability
performance as ideal SIC probability.
In this paper, we consider a MIMO-NOMA system with
GSVD, consisting of two users communicating with a base
station (BS). The BS modulates the data of the two users using
quadrature phase shift keying (QPSK) and superposes the said
data by joint-modulation or multi-user superposition trans-
mission case 2 (MUST-2) [24] to generate their respective
NOMA symbols. For each user, we use the joint maximum-
likelihood to recover data on each parallel GSVD-MIMO
channel. The main contribution of this paper is that we derive
the approximate expression of the average BER performance
for the near user and the far user in downlink MIMO-NOMA
systems with GSVD, as well as verify the correctness of the
approximate expression obtained in the course of the Monte
Carlo simulation. By relying on the approximate expression
and simulation results, precoding schemes are compared with
each other in order to choose the suitable precoding method
for each antenna configuration. Moreover, by evaluating BER
performance of GSVD, applicable antenna configurations are
determined that may by designed.
The paper is organized as follows. Section 2 presents the
system’s model, the fundamental theory of GSVD, signal pro-
cessing (MUST-2) at BS, and the joint maximum-likelihood
(ML) detector to decode signals at the end users. In Section 3,
we analyze numerical average BER performance, as well as
derive its approximate closed-form expressions. In Section 4,
works related to other precoding schemes, such as ZF, BD,
and ST, are presented. In Section 5, numerical results are ob-
tained to verify the precision of the analysis performed, the
approximate expressions, and the simulation results. This sec-
tion also shows the comparison with detection techniques and
different precoding schemes. Finally, conclusion are present-
ed in Section 6. Lemma and Theorem proofs are given in the
Appendix.

2. System Model and Signal Processing

2.1. System Model

In this paper, we consider a MIMO-NOMA downlink system
with one BS and two users: near user (NU) and far user (FU).
The BS is equipped withN antennas andM antennas for each
user (Fig. 1): Hn and Hf areM ×N channel matrices from
BS to NU and FU, respectively. Each element of the channel
matrices is a mutually independent and identically distributed
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Fig. 1. A two-users MIMO downlink system model.

(i.i.d.) complex Gaussian random variable with zero mean
and unit variance CN (0, 1). The user channel is assumed
to be constant in terms of the transmission duration of one
codeword and changes independently from one codeword
to the next. As such, it is viewed as a quasi-static channel.
Moreover, to apply GSVD to the linear precoding scheme, we
assume that channel state information (CSI) is known fully at
both the base station and the users. dn and df denote distances
between the base station and NU and FU, respectively. α is
the path loss exponent.

Let S ∈ CL×1 be the transmit signal vector with the length L.
The transmit signal is precoded with the linear precoder matrix
V ∈ CN×L. The precoded signal vector is used to transmit
the result as:

Sp =
1
t

VS, (1)

where t denotes the power normalization factor. Assuming
that the average transmit power at BS is P , the value of t is
chosen that need, to satisfy the following condition:

P =
1
t2
E
[
trace

(
VSSHVH)] . (2)

At the near user and the far user, the received signal is pre-
sented, respectively, as:

Ỹn =
d
−α2
n

t
HnVS+ Nn,

Ỹf =
d
−α2
f

t
HfVS+ Nf ,

(3)

where Nj ∼ CN (0, N0 · IM ), j ∈ {n, f} is the additive
white Gaussian noise (AWGN) vector and IM denotes the
identity matrix of sizeM . Moreover, at each user signals Ỹj
are detected with the linear matrices UH

j ∈ CK×M , leading
to:

Yn =
d
−α2
n

t
UH
nHnVS+ Ñn,

Yf =
d
−α2
f

t
UH
fHfVS+ Ñf ,

(4)

where Ñj denotes AWGN after the detection process. The
choice of UH

j and V needs to satisfy diagonalization or tri-
angularization conditions. In this paper, we apply GSVD to
diagonalization. Then the product of three matrices UH

j , Hj
and V is the diagonal matrix Dj .

2.2. GSVD and the Joint PDF of Squared Generalized
Singular Values

GSVD is found in [25] under the assumption of the same
number of columns in two channel matrices and is presented
in more detail in [13], [16]. By applying GSVD, Hn, Hf are
decomposed as follows:

Hn = UnDnV−1 and Hf = UfDfV−1, (5)

where Un, Uf ∈ CM×M are two unitary matrices, V ∈
CN×N is an invertible matrix. Dn, Df ∈ CM×N are two
non-negative diagonal matrices whose structure depends on
the choices ofM and N .
a) The case whenM  N .

Dn, Df are given by:

Dn =

[
S1

O(M−N)×N

]
and Df =

[
O(M−N)×N

S2

]
, (6)

where O(M−N)×N denotes the zero matrix of size
(M − N) × N , S1 = diag (α1, . . . , αN ), S2 =
diag (β1, . . . , βN ) satisfying 1  α1  . . .  αN  0,
1  βN  . . .  β1  0 and α2i + β2i = 1,
i = 1, . . . , N . The generalized singular values are defined
as αi. Based on proposition 1.2 from [26], the unordered
generalized singular values, squared, of the pair Hn, Hf
(Xi = α2i ) follow the law of the beta-Jacobi ensem-
ble. Moreover, by combining them with the introduction
from [27], we achieve the following joint probability den-
sity function of Xi ∈ [0, 1]:

fX1,...,XN (x1, . . . , xN ) = cJ1
∏

1¬i<j¬N

(xi − xj)2

×
N∏
i=1

xM−Ni (1− xi)M−N , (7)

where cJ1 =
∏N
j=1

Γ(2M−N+j)
Γ(1+j)[Γ(M−N+j)]2 . Let Yi = β2i ,

due to β2i = 1 − α2i , so the joint probability density
function of Yi ∈ [0, 1] can be:

fY1,...,YN (y1, . . . , yN ) = cJ1
∏

1¬i<j¬N

(yi − yj)2

×
N∏
i=1

yM−Ni (1− yi)M−N . (8)

b) The case whenM < N < 2M .
Put q = 2M − N and r = N − M , Dn and Df are
written as follows:

Dn =

[
Ir Or×q Or×r

Oq×r S1 Oq×r

]
,

Df =

[
Oq×r S2 Oq×r
Or×r Or×q Ir

]
,

(9)

where S1 = diag (α1, . . . , αq), and S2 =
diag (β1, . . . , βq), satisfying 1  α1  . . .  αq  0,
1  βq  . . .  β1  0 and α2i + β2i = 1, i = 1, . . . , q.
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Lemma 1. WhenM < N < 2M , the joint probability
density function of the unordered generalized singular
values, squared, of the pair Hn, Hf ∈ CM×N

(
Xi = α2i

)
is given by:

fX1,...,Xq (x1, . . . , xq) = cJ2
∏

1¬i<j¬q

(xi − xj)2

×
q∏
i=1

xri (1− xi)r, (10)

with cJ2 = 1
q!

∏q
i=1

Γ(2M−i+1)
Γ(q−i+1)[Γ(M−i+1)]2 .

Proof : see Appendix A.
The joint probability density function of Yi ∈ [0, 1] can
be easily concluded as:

fY1,...,Yq (y1, . . . , yq) = cJ2
∏

1¬i<j¬q

(yi − yj)2

×
q∏
i=1

yri (1− yi)r, (11)

c) The case when N  2M .
Dn and Df are expressed as follows:

Dn =
[
IM OM×(N−M)

]
,

Df =
[
OM×(N−M) IM

]
.

(12)

The structure of Dn and Df in Eq. (12) is completely
independent of small-scale fading properties.

2.3. Modulation MUST-2 at BS

Clearly, from the GSVD diagonalization for two channel
matrices, we get the length of the transmit signal vector
S ∈ CN×1. The precoding matrix and detection matrices,
respectively, are V ∈ CN×N and UH

j ∈ CM×M . The received
vectors Yn and Yf at NU and FU are expressed as:

NU: Yn =
d
−α2
n

t
DnS+ Ñn,

FU: Yf =
d
−α2
f

t
DfS+ Ñf ,

(13)

where Ñj = UH
j Nj . Due to the fact that Uj is a unitary

matrix, Ñj ∼ CN (0, N0 · IM ).
At the BS, we consider three types of symbols. The first
type is the QPSK symbol of NU’s signal denoted as sni ,
E
(
|sni |
2
)
= 1. Next, sfi is the QPSK symbol of FU’s signal,

E

(∣∣∣sfi ∣∣∣2) = 1. Finally, the NOMA symbol for the two users

is denoted as si. The NOMA symbol has a generic form of:

si =
√
φPsni +

√
θPsfi , (14)

where φ, θ are the power allocation coefficients satisfying
φ+ θ = 1, φ < θ, for efficient SIC at NU. The modulation in
Eq. (14) is referred to as multi-user superposition transmission
case 1 (MUST-1) [24]. Due to independent modulation in
conventional NOMA, the constellation of si does not follow
the Gray mapping rule. Therefore, we modulate NOMA

symbols using MUST-2 or joint-modulation, which means
that bits from different users are mapped to one symbol taking
into account the allocated power and the number of bits of
each user. In this paper, we use a 16-QAM Gray-mapped
constellation for joint mapping since 2 bits are assigned for
NU and 2 bits are assigned for FU. The allocated power for
NU and FU are respectively φP and θP , we have (Fig. 2):

d1 =

√
θP −

√
φP√

2
and d2 =

√
θP +

√
φP√

2
,

It turns out that the constellation of MUST-2 is generated
by permuting the position of points in the MUST-1 constel-
lation satisfying the Gray mapping rule. Therefore, if users
have different modulation orders according to their constel-
lation’s IQ, MUST-2 is valid for modulation at BS. Consider,
for instance, a joint symbol at BS that has a single bit for
FU and two bits for NU. Then, their constellation IQ will be
the 8-QAM mapped Gray rule, with the positions of points
arranged based on the power allocated to each user.

Fig. 2. Constellation of MUST-2 with 2 bits for NU and 2 bits for
FU.

Based on the structure of Dn, Df and the received vector in
Eq. (13), we formulate the forms of the transmitted vector S
at BS as:
a) The case whenM  N .

The structure of S is expressed as:

S = (s1, s2, . . . , sN )T , (15)

where S comprisesN NOMA symbols si, i = 1, . . . , N .
The received symbol decomposed into parallel channels
is written as:

yni =
d
−α2
n

t1
αisi + ñ

n
i ,

yfi =
d
−α2
f

t1
βisi + ñ

f
i .

(16)

The power normalization factor is given by:
t = t1 =

√
N

2M−N [13] and ñni , ñ
f
i ∼ CN (0, N0).

b) The case whenM < N < 2M .
Assume that BS transmits the symbols vector S with N
NOMA symbols. At the receiver, FU receives only the first
M symbols, whereas, FU only gets the lastM symbols.
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So, we formulate a structure of symbols S transmitted at
BS as:

S =

√Psn1 , . . . ,√Psnr︸ ︷︷ ︸
r NU’s symbols

, (17)

s1, . . . , sq︸ ︷︷ ︸
q NOMA symbols

√
Psf1 , . . . ,

√
Psfr︸ ︷︷ ︸

r FU’s symbols


T

.

The signals received at NU and FU are represented as:

yni =
d
−α2
n

t2

√
Psni + ñ

n
i , i = 1, . . . , r,

yni =
d
−α2
n

t2
αisi + ñ

n
i , i = r + 1, . . . ,M,

yfi =
d
−α2
f

t2
βisi + ñ

f
i , i = 1, . . . , q,

yfi =
d
−α2
f

t2

√
Psfi + ñ

f
i , i = q + 1, . . . ,M,

(18)

where: t2 = t1 [13],
αi|i=r+1,...,M = αi|i=1,...,q ,
si|i=r+1,...,M = si|i=1,...,q ,
sfi|i=q+1,...,M = s

f
i|i=1,...,r.

c) The case when N > 2M .
The form of the symbol’s vector at transmitted at BS is
represented by:

S =

√Psn1 , . . . ,√PsnM︸ ︷︷ ︸
M NU’s symbols

, (19)

0, . . . , 0︸ ︷︷ ︸
N−2M symbols 0

√
Psf1 , . . . ,

√
PsfM︸ ︷︷ ︸

M FU’s symbols


T

.

NU and FU obtain the received symbols as:

yni =
d
−α2
n

t3

√
Psni + ñ

n
i ,

yfi =
d
−α2
f

t3

√
Psfi + ñ

f
i , i = 1, . . . ,M,

(20)

where t3 =
√

2M
N−2M [13].

2.4. Joint Maximum-likelihood Detector at NU and FU

As far as the QPSK symbols are concerned, users demod-
ulate them easily by means of the maximum likelihood de-
cision [28] on the parallel channels forM < N < 2M and
2M < N scenarios. However, with NOMA symbols, we
apply the joint maximum-likelihood (ML) detector to the
estimation of NU signals and FU signals. This approach is
mentioned in [22] to analyze BER performance of the up-
link NOMA system with multiple receive antennas over the
Rayleigh fading channel. This means that each user estimates
firstly the joint symbols (NOMA symbols) on the 16-QAM

constellation and, after that, based on their correct-order bits,
obtains their own symbols. The detection of joint symbols is:

r∗i = arg
ri∈X

min
∣∣zji − ri∣∣2 , (21)

where:
zni =

t1

αid
−α2
n

yni , z
f
i =

t1

βid
−α2
f

yfi

and j ∈ {n, f} on the NOMA symbol channels. X is a set
of the constellation point coordinates. The users use r∗i for
bit mapping and obtain decoded bits for NU and FU. Here,
the first two bits of a joint symbol correspond to FU, and the
remaining two bits are represented as two bits of NU.

3. BER Performance Analysis

In this section, we derive the approximate expression of the
average BER performance of NU and FU.
Let us define the generic form of the constellation point as
b1b2b3b4, where b1, b2 are two bits of FU corresponding to
the blue bits in Fig. 2 and b3, b4 represent two red bits shown
in this figure, being the two bits of NU. First, we investigate
BER performance in one codeword. After that, the average
BER performance is calculated for the overall fading domain.

3.1. BER of NU

a) The case whenM  N .
NU receives signals on N parallel NOMA symbol chan-
nels, so the average BER is:

Pn1 =
1
N

N∑
i=1

Pn1i , (22)

where Pn1i is the average BER in the i-th parallel channel.
Pn1i is represented by the error probability for bit b3 as
Pb3 and the error probability for bit b4 as Pb4 in the form
of b1b2b3b4 as follows:

Pn1i =
1
2
(Pb3 + Pb4) . (23)

Bit b3 = 1 when the real part of the transmitted symbol
siI equals either −d2 or d2 and b3 = 0 implies that
siI = −d1 or siI = d1. Then, Pb3 is:

Pb3 =
1
4

(
Pb3|siI=−d2 + Pb3|siI=−d1 + Pb3|siI=d1

+ Pb3|siI=d2
)
, (24)

where Pb3|siI=x is the error probability for bit b3 when
the real part of the transmitted symbol assumes the value
of x. From Eq. (21), zni is written as: zni = si + wni and
wni =

t1

αid
−α2
n

ñni . By investigating the constellation in

Fig. 2, Pb3|siI=−d2 can be defined by:

Pb3|siI=−d2 = Pr
(
−d1 + d2

2
< −d2 + wniI <

d1 + d2
2

)
= Pr

(
−d1 − d2

2
< wniI <

d1 + 3d2
2

)
, (25)

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2022 29



Ngo Thanh Hai and Dang Le Khoa

where wniI is the real part of wni and wniI ∼
N
(
0, t

2
1N0

2α2
i
d−αn

)
. Putting ρ = P

N0
, a1 = d−αn φ, a2 =

d−αn

(
2
√
θ −
√
φ
)2

and a3 = d−αn
(
2
√
θ +
√
φ
)2

. By
integrating the probability density function of wniI over
the value domain in Eq. (25), we obtain Pb3|siI=−d2 as:

Pb3|siI=−d2 = Q

(√
a1ρ

t21
α2i

)
−Q

(√
a3ρ

t21
α2i

)
. (26)

Similarly as in Pb3|siI=−d2 , Pb3|siI=−d1 is:

Pb3|siI=−d1 = Pr
(
wniI <

d1 − d2
2

)
+ Pr

(
wniI >

3d1 + d2
2

)
(27)

= Q

(√
a1ρ

t21
α2i

)
+Q

(√
a2ρ

t21
α2i

)
.

Additionally, we also show that Pb3|siI=d1 =
Pb3|siI=−d1 and Pb3|siI=d2 = Pb3|siI=−d2 . Due to the
symmetrical property of the constellation in Fig. 2, we
obtain Pb3 = Pb4. Therefore, the average BER for one
codeword on the i-th parallel channel is:

Pn1i =
1
2

[
2Q

(√
a1ρ

t21
α2i

)
+Q

(√
a2ρ

t21
α2i

)

−Q
(√
a3ρ

t21
α2i

)]
. (28)

Next, in the overall fading domain we evaluate the average
BER of NU:

Pn1 =

∫ 1
0

. . .

∫ 1
0

1
N

N∑
i=1

Pn1i (xi)

× fX1,...,XN (x1, . . . , xN )dx1 . . . dxN . (29)

Theorem 1. The average BER of NU in the overall fading
domain can be approximated as:

Pn1 ≃
cJ1
2N

[
1
2

∑
σ∈SN

N∑
j=1

B(pj1 + 1, q1 + 1)G(t1, pj1, q1)

×
N∏
i=1
i ̸=j

B(pi1 + 1, q1 + 1) +
∑

σ1,σ2∈SN

sgn(σ1)sgn(σ2)

×
N∑
j=1

B(pj2 + 1, q1 + 1)G(t1, pj2, q1)

×
N∏
i=1
i ̸=j

B(pi2 + 1, q1 + 1)

]
, (30)

where SN is the set of the permutations of {1, 2, . . . , N}
and sgn (σ) denotes the sign of the permutations σ, q1 =
M − N , pk1 = M − N + 2σ(k) − 2, pk2 = M −
N + σ1(k) + σ2(k)− 2, k ∈ {i, j}. B(x, y) is the Beta

function defined in [29]. G(t, x, y) is:

G(t, x, y) =
1
3
F
(a1
2

)
+
1
6
F
(a2
2

)
− 1
6
F
(a3
2

)
+ F

(
2a1
3

)
+
1
2
F

(
2a2
3

)
− 1
2
F

(
2a3
3

)
,

where F (u) = 1F1(x + 1;x + y + 2;−uρt2 ) and
1F1(a; b; z) is the generalized hypergeometric func-
tion [30].
Proof : See Appendix B.

b) The case whenM < N < 2M .
NU receives symbols onN −M QPSK symbol channels
and 2M −N NOMA symbol channels, so the average
BER is:

Pn2 =
1
M

(
rPQPSK
n +

q∑
i=1

Pn2i

)
, (31)

where PQPSK
n is the average BER performance on the

QPSK symbol channel [28]:

PQPSK
n ≈ Q

(√
Pd−αn
t22N0

)
. (32)

Considering the NOMA symbol channels, only the num-
ber of channels differs betweenM  N andM < N <
2M cases, so Pn2i can be expressed similarly as Pn1i :

Pn2i =
1
2

[
2Q

(√
a1ρ

t21
α2i

)
+Q

(√
a2ρ

t21
α2i

)

−Q
(√
a3ρ

t21
α2i

)]
. (33)

The average BER of NU is evaluated in the overall fading
domain:

Pn2 =
1
M

(
rPQPSK
n +

q∑
i=1

P
n2
i

)
. (34)

By applying Lemma 1 and the same argument as in
Theorem 1, we obtain the approximate expression of
Tn =

∑q
i=1 P

n2
i as:

Tn ≃
cJ2
2

[
1
2

∑
σ∈Sq

q∑
j=1

B(p′j1 + 1, q2 + 1)G(t2, p
′
j1, q2)

×
q∏
i=1
i̸=j

B(p′i1 + 1, q2 + 1) +
∑

σ1,σ2∈Sq

sgn(σ1)sgn(σ2)

×
q∑
j=1

B(p′j2 + 1, q2 + 1)G(t2, p
′
j2, q2)

×
q∏
i=1
i̸=j

B(p′i2 + 1, q2 + 1)

]
, (35)

where Sq is the set of the permutations of {1, 2, . . . , q}
and p′k1 = N − M + 2σ(k) − 2, p′k2 = N − M +
σ1(k) + σ2(k) − 2, k ∈ {i, j} and q2 = N − M .
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Substituting Eqs. (32) and (35) into Eq. (34), we achieve
the approximate average BER for NU.

c) The case when N > 2M .
The user’s channel is decomposed intoM complex Gaus-
sian channels. From Eq. (20), the average BER for NU
is:

Pn3 ≈ Q

(√
Pd−αn
t23N0

)
. (36)

3.2. BER of FU

a) The case whenM  N .
In this case, FU also receives signals onN parallel NOMA
symbol channels, so the average BER is expressed as:

Pf1 =
1
N

N∑
i=1

P f1i , (37)

whereP f1i is the average BER on the i-th parallel channel.
FU’s signals can be identified by the first two bits b1, b2
of the transmitted symbol. This generates the result of
P f1i =

1
2 (Pb1 + Pb2). Pbj is the error probability of j-th

bit j = 1, 2. Along similar lines, in the NU case, we also
get Pb1 = Pb2 and:

P f1i =
1
2

[
Q

(√
c1ρ

t21
β2i

)
+Q

(√
c2ρ

t21
β2i

)]
, (38)

where:

c1 = d−αf
(√
θ −

√
φ
)2
, c2 = d−αf

(√
θ +

√
φ
)2
.

Due to the similarity of Joint-PDF ofXi and Yi in Eqs. (7)
and (8), it can be shown that:

P f1 ≃
cJ1
4N

[
1
2

∑
σ∈SN

N∑
j=1

B(pj1 + 1, q1 + 1)H(t1, pj1, q1)

×
N∏
i=1
i ̸=j

B(pi1 + 1, q1 + 1) +
∑

σ1,σ2∈SN

sgn(σ1)sgn(σ2)

×
N∑
j=1

B(pj2 + 1, q1 + 1)H(t1, pj2, q1)

×
N∏
i=1
i ̸=j

B(pi2 + 1, q1 + 1)

]
, (39)

where pi1, pi2, pj1, pj2 and q1 are defined in Theorem 1.
H(t, x, y) is expressed through F(u) as:

H(t, x, y) =
1
3

F
(c1
2

)
+
1
3

F
(c2
2

)
+F
(
2c1
3

)
+F
(
2c2
3

)
.

b) The case whenM < N < 2M .
By the same argument as in the NU case, we get the
average BER of FU on the overall fading domain:

P f2 =
1
M

(
rPQPSK
f +

q∑
i=1

P
f2
i

)
. (40)

Similarly as Tn, let Tf =
∑q
i=1 P

f2
i . We can prove that

Tf ≃
cJ2
4

[
1
2

∑
σ∈Sq

q∑
j=1

B(p′j1 + 1, q2 + 1)H(t2, p
′
j1, q2)

×
q∏
i=1
i ̸=j

B(p′i1 + 1, q2 + 1) +
∑

σ1,σ2∈Sq

sgn(σ1)sgn(σ2)

×
q∑
j=1

B(p′j2 + 1, q2 + 1)H(t2, p
′
j2, q2)

×
q∏
i=1
i ̸=j

B(p′i2 + 1, q2 + 1)

]
, (41)

where p′i1, p′i2, p′j1, p′j2 and q2 are defined in Eq. (35).
PQPSK
f is the average BER in the QPSK symbol channel

given by:

PQPSK
f ≈ Q

√Pd−αf
t22N0

 . (42)

By substituting Eqs. (41) and (42) into (40), we derive
the approximate expression for the average BER of FU.

c) The case when N > 2M .
The average BER for FU is evaluated as:

P f3 ≈ Q

√Pd−αf
t23N0

 . (43)

The summary theoretical analysis BER performance is shown
in Table 1.

4. Works Relating to ZF, BD, and ST

In this section, we briefly mention the precoding techniques
as ZF, BD, and ST. This serves as a basis for comparing them
with GSVD in terms of the BER performance.

4.1. ZF Based Precoding

Zero-forcing based precoding [10] is valid only when 2M ¬
N . In this case, the detection matrices at the users are Un =
IM , and Uf = IM . The precoding matrix is:

V = HH (HHH)−1 , (44)

where H ∈ C2M×N is denoted as H =
[
HH
n HH

f

]H. The
precoding and detection processes are presented through the
following equations:

UH
nHnV =

[
IM O

]
,

UH
fHfV =

[
O IM

]
.

(45)

Using E
(
SSH) = IN , from Eq. (2), we easily obtain the

power normalization factor given by:

tZF =

√
2M
N − 2M . (46)
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Tab. 1. Analysis of BER performance of NU and FU for GSVD based precoding.

BER
Antenna configurations

M  N M < N < 2M N > 2M

NU

Pn1 = EX1,...,XN
(
1
N

∑N

i=1 P
n1
i

)
Pn2 = 1

M

[
rQ

(√
Pd−αn
t22N0

)
+ EX1,...,Xq

(∑q

i=1 P
n2
i

)]
Pn3 ≈ Q

(√
Pd−αn
t23N0

)
Pn1 ≃ Eq. (30) Pn2 ≃ 1

M

[
rQ

(√
Pd−αn
t22N0

)
+ Tn

]
, Tn ≃ Eq. (35)

FU

P f1 = EY1,...,YN
(
1
N

∑N

i=1 P
f1
i

)
P f2 = 1

M

[
rQ

(√
Pd−α
f

t22N0

)
+ EY1,...,Yq

(∑q

i=1 P
f2
i

)]
P f3 ≈ Q

(√
Pd−α
f

t23N0

)
P f1 ≃ Eq. (39) P f2 ≃ 1

M

[
rQ

(√
Pd−α
f

t22N0

)
+ Tf

]
, Tf ≃ Eq. (41)

4.2. BD Based Precoding

Similarly to ZF based precoding [10], BD based precoding
is valid only when 2M ¬ N . Carrying out SVD of Hn and
Hf , can be obtained as:

Hn = Ũn
[
D̃(1)n O

] [
Ṽ(1)n Ṽ(0)n

]H
,

Hf = Ũf
[
O D̃(1)f

] [
Ṽ(0)f Ṽ(1)f

]H
,

(47)

where D̃(1)n , D̃(1)f ∈ CM×M and Ṽ(0)n , Ṽ(0)f ∈ CN×(N−M).
Next, using SVD to HnṼ

(0)
f and Hf Ṽ

(0)
n , the results of the

analyses are presented as:

HnṼ(0)f = Un
[
D(1)n O

] [
V(1)n V(0)n

]H
,

Hf Ṽ
(0)
n = Uf

[
O D(1)f

] [
V(0)f V(1)f

]H
,

(48)

with D(1)n , D(1)f ∈ CM×M and V(1)n , V(1)f ∈ C(N−M)×M .
The precoding matrix V can be obtained by concatenation of
the precoding matrices as:

V =
[
Ṽ(0)f V(1)n Ṽ(0)n V(1)f

]
. (49)

The strategies of precoding and detection at BS and the users
respectively can be performed by:

UH
nHnV =

[
D(1)n O

]
,

UH
fHfV =

[
O D(1)f

]
.

(50)

By using E
(
SSH) = IN , from Eq. (2) the power normaliza-

tion factor can be:
tBD =

√
2M. (51)

4.3. ST Based Precoding

ST based precoding is mentioned in [12] and is valid when
M ¬ N .
a) The case whenM ¬ N < 2M .

From (47), we concatenate Ṽ(0)n and Ṽ(0)f , the matrix H
is:

H =
[
Ṽ(0)n Ṽ(0)f

]H
. (52)

Next, realizing SVD decomposition H, we obtain:

H = ŨD̃
[
Ṽ(1) Ṽ(0)

]H
, (53)

where Ṽ(0) ∈ CN×(2M−N). Let, QR decomposition be:

QnRn = Hn
[
Ṽ(0) Ṽ(0)f

]
,

QfRf = Hf
[
Ṽ(0) Ṽ(0)n

]
,

(54)

where Qn, Qf ∈ CM×M . By setting the precoding matrix

V =
[
Ṽ(0) Ṽ(0)f Ṽ(0)n

]
and choosing Un = Qn, Uf =

Qf , the simultaneous triangularization of Hn and Hf is:

UH
nHnV = [Rn O] ,

UH
fHfV =

[
R′f O R′′f

]
,

(55)

where Rn ∈ CM×M , R′f ∈ CM×(2M−N) and R′′f ∈
CM×(N−M). Moreover, Rn and Rf =

[
R′f R′′f

]
are

upper-triangular matrices with real-valued entries on their
main diagonals.
From Eq. (2), the power normalization factor in ST based
precoding case is given as:

tST =
√
N. (56)

b) The case when N  2M .
From Eq. (47), we get the precoding matrix such as:

V =
[
Ṽ(0)f Ṽ(0)n

]
. (57)

Realizing triangularization HnṼ
(0)
f and Hf Ṽ

(0)
n by QR

decomposition:

QnRn = HnṼ(0)f ,

QfRf = Hf Ṽ
(0)
n ,

(58)

with Rn, Rf ∈ CM×(N−M). Letting Un = Qn and Uf =
Qf the simultaneous triangularization of Hn and Hf is:

UH
nHnV =

[
R(1)n R(0)n O

]
;

UH
fHfV =

[
O R(1)f R(0)f

]
,

(59)
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with R(0)n , R(0)f ∈ CM×(N−2M). The two upper-
triangular matrices are R(1)n , R(1)f ∈ CM×M with real-
valued entries on their main diagonals.
From Eq. (2), we can easily obtain the power normaliza-
tion factor as:

tST =
√
2(N −M). (60)

5. Numerical Results

For numerical simulations, we carry out the Monte Carlo sim-
ulation over 105 independent trials to verify the correctness
of derived theoretical and approximate expressions of BER
performance for NU and FU in GSVD-NOMA.
Suppose that the path-loss factor α = 2, the distances dn = 1,
df = 3, the range of the power allocation ratio θ = 0.55 :
0.05 : 0.95, and SNR = P

N0
= 0 : 2.5 : 35 dB. The

simulation parameters are given in Table 2. We analyze
the BER performance as a function of the transmission’s
SNR and θ using precoding schemes and different antenna
configurations scenarios.

Tab. 2. Simulation parameters.

Path-loss factor α = 2

Distances dn = 1, df = 3
Power allocation ratio θ = 0.55 : 0.05 : 0.95

Number of transmit antennas N = 2, 3, 5, 7, 9

Number of receive antennas N = 2, 4, 7

Signal-to-noise ratio [dB] SNR = 0 : 2.5 : 35
Number of trials 105

Fig. 3. BER performance of the near user and the far user, system
performance curves are shown for two scenarios:M  N (4× 3)
and 2M > N > M (4× 5).

In Fig. 3, we calculate numerically the average BER perfor-
mance of NU and FU, using Eqs. (30), (34), (39), and (40).
Then, we validate the derived results by means of simulations
under scenarios with the transmit and receive antenna config-
urations of 4×3 and 4×5. The examples under consideration
correspond with the N < 2M scenario. As a result, the rel-
atively high number of trials makes the simulation results
more precise and closer to the theoretical results. Moreover,
the approximate derivations agree quite well with the actual
analysis.
Figure 4 shows the comparison of ST and GSVD precoding
forM = 4 and N = 5, in theM < N < 2M scenario. One
may clearly observe that BER performance of ST is superior
to that of GSVD for NU and FU. For example, the loss in BER
performance of two users for GSVD, when compared to ST
precoding, equals approx. 5 dB for BER of 0.016. This is due
to the fact that the values of fading channel coefficients α and
β in the decomposition process performed by GSVD are lower
than or equal to 1, as mentioned in Section 2.2, whereas the
entries of ST diagonal matrices do not apply to all conditions.
Therefore, if an antenna configuration is chosen that belongs
to theM < N < 2M case, ST precoding should be taken
into consideration. Furthermore, this choice is completely
relevant due to the outperformance of ST precoding in terms
of the ergodic rate region compared to GSVD [12].

Fig. 4. Comparison of BER performance for ST based precoding
and GSVD based precoding in the case of 2M > N > M for the
(4× 5) antenna configuration.

BER performance gain continues to be investigated in the case
N  2M for ZF, BD, ST, and GSVD based precoding. Specif-
ically, the number of transmit antennas isN = 9 and the users
are equipped withM = 4 antennas, as shown in Fig. 5. We
observed that BER performance of ST is dropped significantly
compared to ZF, BD, and GSVD. This problem can be inter-
preted in such a way that based on triangular channel matrices
in ST, the detection at the users’ is undertaken in reverse order
of the transmit signal vector. Moreover, for each subsequent
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symbol, self-interference caused by the previously detected
symbols needs to be eliminated. The self-interference cancel-
lation process is usually imperfect, meaning that the system’s
performance is negatively impacted. As the above analysis
shows, the power normalization factor is equal for GSVD and
ZF. Moreover, after decomposition, the channel matrices have
diagonal entries equal to 1. As a result, we can observe that
BER performance gain of ZF is the same as in GSVD.

Fig. 5. BER performance comparison of ZF, BD, ST and GSVD
based precoding schemes in the case of N  2M for antenna
configurations.

In the low SNR regime, BD precoding performs better than
ZF and GSVD. However, when transmit SNR is in the high-
er regime, ZF and GSVD precoding dramatically outperform
BD precoding in terms of BER. In this antenna configuration,
the parallel SISO channel in BD is dependent on small-scale
fading elements, whereas in the case of ZF and GSVD the
MIMO-NOMA channel is decomposed completely into the
parallel AWGN channel. Therefore, when the average trans-
mit power increases at the transmitters, BER performance
of ZF and GSVD is considerably more superior. In scenar-
ios in which the number of transmit antennas is greater than
twice the number of receive antennas, GSVD and ZF based
precoding schemes are chosen to improve the system’s BER
performance.
Figure 6 shows the result of a comparison of two detection
techniques applied to NU, namely joint ML and symbol-level
SIC (SL-SIC) with the ideal SIC. SL-SIC is the technique
studied in [23]. In SL-SIC, NU demodulates the FU’s signals
and a hard decision is made, with channel coding not being
performed. After that, NU regenerates the signals of FU and
uses SIC to cancel them. With the ideal SIC, we assume
that signals from FU are completely cancelled by NU. It is
observed that joint ML significantly outperforms SL-SIC
and offers almost the same performance as ideal SIC in
terms of average BER. Performance of SL-SIC depends on
power allocation coefficients θ and significantly degrades

Fig. 6. BER performance comparison of the detector schemes: joint
maximum-likelihood (ML), symbol-level SIC (SL-SIC) and ideal
SIC under effect of power allocation coefficient θ.

BER for NU at small θ. A decrease in power allocated to FU
symbols causes FU symbols to be detected erroneously by
implementing SIC at NU. When θ is high, interference from
NU may exert a weak impact on FU performance. However,
at high θ, detection at NU is problematic due to low power
allocation to NU. If the SL-SIC detector is applied to NU,
power allocation should be considered.
In Fig. 7, we plot the average BER performance achieved by
the joint ML detector versus transmit SNR when the num-
ber of transmit antennas changes, i.e. N = 2, 3, 5, 7, 9 and
M = 4 for receive antennas. Based on the results shown, an
increase in N decays BER performance of NU and FU be-

Fig. 7. BER performance of NU and FU for a varying number of
transmit antennas N .
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cause of the trade-off between diversity gain and multiplexing
gain. More specifically, in the 4× 2 and 4× 3 scenarios, due
to an increased number of parallel channels in the structure
of GSVD, a decrease in performance is observed. Addition-
ally, with an increase in the number of BS antennas in the
2M > N > M scenario, the number of parallel channels
is constant (M ), meaning that BER performance remains
almost unchanged for NU and FU. Considering N  2M ,
GSVD-MIMO channels decomposed into a numberM of
parallel Gaussian channels. It is shown in Eqs. (36) and (43),
that the number of antennas does not affect the system’s per-
formance. In this case, BER outperforms other scenarios in
the high SNR regime. Therefore, allowing a fixed number
of receive antennas and an adjustable number of transmit
antennas, in the low SNR regime, the transmitter should be
equipped with a small number of aerials. However, assuming
that the transmitted power at BS can be allocated at high lev-
els permissively, BER performance is better when the number
of transmit antennas satisfies the N = 2M + 1 condition.
Figure 8 shows the average BER performance of NU and FU
when the number of receive antennasM increases. Here, the
number of transmit antennas is modeled as N = 5. With an
increase in the number of users’ antennasM , it delivers better
results in terms of BER performance. However, in the special
case ofN  2M(2×5), the performance achieved is superior
to all other solutions. So, if the number of transmit antennas
is fixed, the number of receive antennas should satisfy the
N  2M condition.

Fig. 8. BER performance of NU and FU for a varying number of
receive antennasM .

6. Conclusions

In this paper, we consider the downlink MIMO-NOMA sys-
tem with one base station and two users: near user and far user.
The generalized singular value decomposition (GSVD) is ap-
plied to linear precoding and detection schemes at the BS and

the end users respectively. Through mathematical analyses,
we obtain the approximate expression BER performance for
NU and FU with the joint-modulation at BS and the joint
maximum-likelihood detector at each user. It was shown that
the exact results, approximate expressions, and simulation re-
sults are completely consistent with each other. Furthermore,
the joint maximum-likelihood detector is almost similar to the
ideal SIC and significantly outperforms symbol-level SIC in
terms of average BER performance. In comparison with oth-
er precoding schemes, GSVD offers the same performance as
zero-forcing precoding, outperforming block diagonalization
and simultaneous triangularization in terms of BER perfor-
mance when the antenna configuration satisfies the N  2M
condition. In M ¬ N < 2M scenarios, simultaneous tri-
angularization precoding should be considered due to its
superior performance not only in terms of BER, but also in
terms of the ergodic achievable rate region [12]. However, fact
that it may be applied to all antenna configurations in a sig-
nificant advantage of GSVD. We also investigated average
BER performance of GSVD with a varying number of an-
tennas. It has been observed that the system’s performance is
superior when the number of antennas satisfies the N  2M
condition. The analysis performed may be extended to down-
link and uplink MIMO-NOMA with more than two users,
where each user uses higher-order modulation level (M -ary
modulation), to conduct further studies. Moreover, it is better
to consider multiple performance metrics to arise a trade-off.
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Appendix A: proof of Lemma 1

The joint probability density function of unordered
Wi =

α2i
β2
i

in [14] is represented as:

fW1,...,Wq (w1, . . . , wq) = cJ2

q∏
i=1

wM−qi

(1 + wi)N+q

×
q∏
i<j

(wi − wj)2 , (61)

where cJ2 is defined in Lemma 1. We can rewrite
Wi = Xi

1−Xi , and the joint probability distribution of Xi will
be expressed as:

FX1,...,Xq (x1, . . . , xq) = Pr (X1 ¬ x1, . . . , Xq ¬ xq)

= Pr
(
W1 ¬

x1
1− x1

, . . . ,Wq ¬
xq
1− xq

)
(62)

=

∫ x1
1−x1

0

. . .

∫ xq
1−xq

0

fW1,...,Wq (w1, . . . wq) dw1 . . . dwq.
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Using the Leibniz integral rule, we obtain the joint probability
density function of unordered Xi:

fX1,...,Xq (x1, . . . , xq) =
∂FX1,...,Xq (x1, . . . , xq)

∂x1 . . . ∂xq
(63)

= cJ2

q∏
i<j

(
xi
1− xi

− xj
1− xj

)2 q∏
i=1

xM−qi (1− xi)N−M+2q−2

= cJ2

q∏
i<j

(xi − xj)2
q∏
i=1

xri (1− xi)r .

The proof is completed.

Appendix B: proof of Theorem 1

Using exponential bound for Q-function in [31]:

Q (x) ≃ 1
12

e−
1
2x
2
+
1
4

e−
2
3x
2
. (64)

Then, the error probability on the i-th parallel channel in
Eq. (28) is:

Pn1i ≃
1
4

[
1
3

e
−
a1ρα

2
i

2t2
1 +

1
6

e
−
a2ρα

2
i

2t2
1 − 1

6
e
−
a3ρα

2
i

2t2
1 (65)

+ e
−
2a1ρα

2
i

3t2
1 +

1
2

e
−
2a2ρα

2
i

3t2
1 − 1

2
e
−
2a3ρα

2
i

3t2
1

]
=
1
4
g(α2i ).

From joint-PDF function in Eq. (7), conducting the average
BER in fading channel:

Pn1 ≃
cJ1
4N

∫ 1
0

. . .

∫ 1
0

[
N∑
i=1

g(xi)

][
N∏
i=1

xM−Ni (1− xi)M−N

×
N∏
i<j

(xi − xj)2
]

dx1 . . . dxN . (66)

Consider term:

N∏
i<j

(xj − xi) = det



1 1 . . . 1

x1 x2 . . . xN

x21 x22 . . . x
2
N

...
...

. . .
...

xN−11 xN−12 . . . xN−1N


= det V, (67)

where V is the Vandermonde matrix. Applying the Leibniz
formula for the determinant of V:

N∏
i<j

(xj − xi) =
∑
σ∈SN

sgn(σ)
N∏
i=1

x
σ(i)−1
i , (68)

SN is the set of the permutations of {1, 2, . . . , N}. Carrying
out algebraic manipulation, we get:

N∏
i<j

(xj − xi)2 =
∑
σ∈SN

N∏
i=1

x
2σ(i)−2
i + 2

∑
σ1,σ2∈SN

sgn(σ1)

× sgn(σ2)
N∏
i=1

x
σ1(i)+σ2(i)−2
i . (69)

Substituting Eq. (69) into Eq. (66):

Pn1 ≃
cJ1
4N

∫
[0,1]N

[
N∑
i=1

g(xi)

][
N∏
i=1

xM−Ni (1− xi)M−N
]

×

[ ∑
σ∈SN

N∏
i=1

x
2σ(i)−2
i

]
dx1 . . . dxN (70)

+
cJ1
2N

∫
[0,1]N

[
N∑
i=1

g(xi)

][
N∏
i=1

xM−Ni (1− xi)M−N
]

×

[ ∑
σ1,σ2∈SN

sgn(σ1)sgn(σ2)×
N∏
i=1

x
σ1(i)+σ2(i)−2
i

]
dx1 . . . dxN ,

where
∫
[0,1]N =

∫ 1
0 . . .

∫ 1
0 for brevity. By performing alge-

braic operations, we obtain the approximate expression of
Pn1 as:

Pn1 ≃
cJ1
4N

∑
σ∈SN

N∑
j=1

∫ 1
0

g(xj)x
pj1
j (1− xj)

q1 dxj

×
N∏
i=1
i ̸=j

∫ 1
0

xpi1i (1− xi)
q1 dxi +

cJ1
2N

∑
σ1,σ2∈SN

sgn(σ1)

× sgn(σ2)
N∑
j=1

∫ 1
0

g(xj)x
pj2
j (1− xj)

q1 dxj

×
N∏
i=1
i ̸=j

∫ 1
0

xpi2i (1− xi)
q1 dxi. (71)

Considering the following integral, I1 =
∫ 1
0 t
p (1− t)q dt

and I2 =
∫ 1
0 e−attp (1− t)q dt and applying two equations

Eqs. (8.380) and (8.384) from [29], we can rewrite I1 as:

I1 = B(p+ 1, q + 1), (72)

B(x, y) is the beta function. Using Eq. (3.383) from [29]
I2 is:

I2 = B(p+ 1, q + 1)1F1(p+ 1; p+ q + 2;−a), (73)

where 1F1(a; b; z) is the generalized hypergeometric func-
tion. Applying Eqs. (72) and (73) to (71), the proof is
completed.

References
[1] L. Dai, et al., “Non-orthogonal multiple access for 5G: solutions,

challenges, opportunities, and future research trends”, IEEE Com-
munications Magazine, vol. 53, no. 9, pp. 74–81, 2015 (DOI:
10.1109/MCOM.2015.7263349).

[2] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Han-
zo, “Nonorthogonal Multiple Access for 5G and Beyond”, Pro-
ceedings of the IEEE, vol. 105, no. 12, pp. 2347–2381, 2017 (DOI:
10.1109/JPROC.2017.2768666).

[3] Y. Saito, et al., “Non-Orthogonal Multiple Access (NOMA) for
Cellular Future Radio Access”, in 2013 IEEE 77th Vehicular Technol-
ogy Conference (VTC Spring), pp. 1–5, 2013 (DOI: 10.1109/VTC-
Spring.2013.6692652).

[4] K. Higuchi and A. Benjebbour, “Non-orthogonal Multiple Access
(NOMA) with Successive Interference Cancellation for Future Ra-
dio Access”, IEICE Transactions on Communications, vol. E98.B,
pp. 403–414, 2015 (DOI: 10.1587/transcom.E98.B.403).

36
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2022



An Approximate Evaluation of BER Performance for Downlink GSVD-NOMA with Joint Maximum-likelihood Detector

[5] Q. Sun, S. Han, I. C-L, and Z. Pan, “On the Ergodic Capacity of
MIMO NOMA Systems”, IEEE Wireless Communications Letters,
vol. 4, no. 4, pp. 405–408, 2015 (DOI: 10.1109/LWC.2015.2426709).

[6] S. Ali, E. Hossain, and D.I. Kim, “Non-Orthogonal Multiple Access
(NOMA) for Downlink Multiuser MIMO Systems: User Clustering,
Beamforming, and Power Allocation”, IEEE Access, vol. 5, pp. 565–
577, 2017 (DOI: 10.1109/ACCESS.2016.2646183).

[7] Z. Ding, R. Schober, and H.V. Poor, “A General MIMO Framework
for NOMA Downlink and Uplink Transmission Based on Signal
Alignment”, IEEE Transactions on Wireless Communications, vol. 15,
no. 6, pp. 4438–4454, 2016 (DOI: 10.1109/TWC.2016.2542066).

[8] H. Weingarten, Y. Steinberg, and S.S. Shamai, “The Capacity Region
of the Gaussian Multiple-Input Multiple-Output Broadcast Channel”,
IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 3936–
3964, 2006 (DOI: 10.1109/TIT.2006.880064).

[9] Z. Chen and X. Dai, “MED Precoding for Multiuser MIMO-
NOMA Downlink Transmission”, IEEE Transactions on Vehic-
ular Technology, vol. 66, no. 6, pp. 5501–5505, 2017 (DOI:
10.1109/TVT.2016.2627218).

[10] A. Krishnamoorthy, Z. Ding, and R. Schober, “Precoder De-
sign and Statistical Power Allocation for MIMO-NOMA via
User-Assisted Simultaneous Diagonalization”, IEEE Transactions
on Communications, vol. 69, no. 2, pp. 929–945, 2021 (DOI:
10.1109/TCOMM.2020.3036453).

[11] D. Senaratne and C. Tellambura, “GSVD Beamforming for Two-
User MIMO Downlink Channel”, IEEE Transactions on Vehic-
ular Technology, vol. 62, no. 6, pp. 2596–2606, 2013 (DOI:
10.1109/TVT.2013.2241091).

[12] A. Krishnamoorthy, M. Huang, and R. Schober, “Precoder Design
and Power Allocation for Downlink MIMO-NOMA via Simultane-
ous Triangularization”, in 2021 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–6, 2021 (DOI: 10.1109/WC-
NC49053.2021.9417424).

[13] Z. Chen, Z. Ding, X. Dai, and R. Schober, “Asymptotic Performance
Analysis of GSVD-NOMA Systems with a Large-Scale Antenna
Array”, IEEE Transactions on Wireless Communications, vol. 18,
no. 1, pp. 575–590, 2019 (DOI: 10.1109/TWC.2018.2883102).

[14] Z. Chen, Z. Ding, and X. Dai, “On the Distribution of the Squared
Generalized Singular Values and Its Applications”, IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 1030–1034, 2019 (DOI:
10.1109/TVT.2018.2885122).

[15] M.F. Hanif and Z. Ding, “Robust Power Allocation in MIMO-NOMA
Systems”, IEEE Wireless Communications Letters, vol. 8, no. 6,
pp. 1541–1545, 2019 (DOI: 10.1109/LWC.2019.2926277).

[16] C. Rao, Z. Ding, and X. Dai, “The Distribution Characteristics of
Ordered GSVD Singular Values and its Applications in MIMO-
NOMA”, IEEE Communications Letters, vol. 24, no. 12, pp. 2719–
2722, 2020 (DOI: 10.1109/LCOMM.2020.3017796).

[17] C. Rao, Z. Ding, and X. Dai, “GSVD-Based MIMO-NOMA Security
Transmission”, IEEE Wireless Communications Letters, vol. 10, no. 7,
pp. 1484–1487, 2021 (DOI: 10.1109/LWC.2021.3071365).

[18] Y. Qi and M. Vaezi, “Secure Transmission in MIMO-NOMA Net-
works”, IEEE Communications Letters, vol. 24, no. 12, pp. 2696–
2700, 2020 (DOI: 10.1109/LCOMM.2020.3016999).

[19] X. Wang, F. Labeau, and L. Mei, “Closed-Form BER Expressions of
QPSK Constellation for Uplink Non-Orthogonal Multiple Access”,
IEEE Communications Letters, vol. 21, no. 10, pp. 2242–2245, 2017
(DOI: 10.1109/LCOMM.2017.2720583).

[20] F. Kara and H. Kaya, “BER Performances of Downlink and Up-
link NOMA in the Presence of SIC Errors over Fading Channels”,
IET Communications, vol. 12, no. 15, pp. 1834–1844, 2018 (DOI:
10.1049/iet-com.2018.5278).

[21] T. Assaf, A. Al-Dweik, M.E. Moursi, and H. Zeineldin, “Exact BER
Performance Analysis for Downlink NOMA Systems Over Nakagami-
m Fading Channels”, IEEE Access, vol. 7, pp. 134539–134555, 2019
(DOI: 10.1109/ACCESS.2019.2942113).

[22] J.S. Yeom, H.S. Jang, K.S. Ko, and B.C. Jung, “BER Performance of
Uplink NOMA With Joint Maximum-Likelihood Detector”, IEEE
Transactions on Vehicular Technology, vol. 68, no. 10, pp. 10295–
10300, 2019 (DOI: 10.1109/TVT.2019.2933253).

[23] C. Yan, et al., “Receiver Design for Downlink Non-Orthogonal Mul-
tiple Access (NOMA)”, in 2015 IEEE 81st Vehicular Technolo-

gy Conference (VTC Spring), pp. 1–6, 2015 (DOI: 10.1109/VTC-
Spring.2015.7146043).

[24] , “Wireless Technology Evolution Towards 5G: 3GPP release 13 to
release 15 and beyond”, 2017, (https://www.5gamericas.org/
wireless-technology-evolution-towards-5g-3gpp-rele
ase-13-to-release-15-and-beyond/).

[25] C.F. Van Loan, “A General Matrix Eigenvalue Algorithm”, SIAM
Journal on Numerical Analysis, vol. 12, no. 6, pp. 819–834, 1975
(https://www.jstor.org/stable/2156413).

[26] A. Edelman and B.D. Sutton, “The Beta-Jacobi Matrix Model, the CS
Decomposition, and Generalized Singular Value Problems”, Foun-
dations of Computational Mathematics, vol. 8, no. 2, pp. 259–285,
2008 (DOI: 10.1007/s10208-006-0215-9).

[27] J. Tiefeng, “Limit theorems for beta-Jacobi ensembles”, Bernoul-
li, vol. 19, no. 3, pp. 1028–1046, 2013 (DOI: 10.3150/12-
BEJ495, https://projecteuclid.org/journalArticle/Do
wnload?urlId=10.3150%2F12-BEJ495).

[28] A. Goldsmith, “Wireless Communications”, Cambridge University
Press, 2005 (DOI: 10.1017/CBO9780511841224).

[29] D. Zwillinger and A. Jeffrey, Table of integrals, series, and products,
7th ed. Elsevier, 2007 (ISBN 978-0-12-373637-6).

[30] F.W.L. Oliver, D.W. Lozier, R.F. Boisvert, and C.W Clark, NIST
Handbook of Mathematical Functions, 2010 (https://assets
.cambridge.org/97805211/92255/copyright/9780521192
255_copyright_info.pdf).

[31] M. Chiani, D. Dardari, and M.K. Simon, “New exponential bounds
and approximations for the computation of error probability in fading
channels”, IEEE Transactions on Wireless Communications, vol. 2,
no. 4, pp. 840–845, 2003 (DOI: 10.1109/TWC.2003.814350).

Ngo Thanh Hai received his B.Sc.
from the University of Science, Viet-
nam National University, Ho Chi
Minh City (VNU-HCM) and M.Sc.
in Electronics and Telecommunica-
tions from Posts and Telecommuni-
cations Institute of Technology. Since
2019, he has been working as a re-
searcher at the Faculty of Electronics
and Telecommunications, University

of Science, VNU-HCM. His research activities focus on non-
orthogonal multiple access (NOMA), multiple-input multiple-
output (MIMO) and covert wireless communications.
E-mail: ngohai@hcmus.edu.vn
Department of Telecommunications and Networks, Univer-
sity of Science, VNU-HCM, District 5, Ho Chi Minh City,
Vietnam

Dang Le Khoa received his B.E. and
Ph.D. degrees in Radio Physics and
Electronics from the University of
Science, Vietnam National Universi-
ty, Ho Chi Minh City (VNU-HCM).
He is the head of the Telecommu-
nications and Networks Department,
University of Science, VNU-HCM.
His current research interests are in
the areas of wireless communications

and digital signal processing for telecommunication.
E-mail: dlkhoa@hcmus.edu.vn
Department of Telecommunications and Networks, Univer-
sity of Science, VNU-HCM, District 5, Ho Chi Minh City,
Vietnam

https://www.5gamericas.org/wireless-technology-evolution-towards-5g-3gpp-release-13-to-release-15-and-beyond/
https://www.5gamericas.org/wireless-technology-evolution-towards-5g-3gpp-release-13-to-release-15-and-beyond/
https://www.5gamericas.org/wireless-technology-evolution-towards-5g-3gpp-release-13-to-release-15-and-beyond/
https://www.jstor.org/stable/2156413
https://projecteuclid.org/journalArticle/Download?urlId=10.3150%2F12-BEJ495
https://projecteuclid.org/journalArticle/Download?urlId=10.3150%2F12-BEJ495
https://assets.cambridge.org/97805211/92255/copyright/9780521192255_copyright_info.pdf
https://assets.cambridge.org/97805211/92255/copyright/9780521192255_copyright_info.pdf
https://assets.cambridge.org/97805211/92255/copyright/9780521192255_copyright_info.pdf

	Introduction
	System Model and Signal Processing
	System Model
	GSVD and the Joint PDF of Squared Generalized Singular Values
	Modulation MUST-2 at BS
	Joint Maximum-likelihood Detector at NU and FU

	BER Performance Analysis
	BER of NU
	BER of FU

	Works Relating to ZF, BD, and ST
	ZF Based Precoding
	BD Based Precoding
	ST Based Precoding

	Numerical Results
	Conclusions

