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Abstract  In recent years, kernel methods have provided an
important alternative solution, as they offer a simple way of ex-
panding linear algorithms to cover the non-linear mode as well.
In this paper, we propose a novel recursive kernel approach al-
lowing to identify the finite impulse response (FIR) in non-linear
systems, with binary value output observations. This approach
employs a kernel function to perform implicit data mapping. The
transformation is performed by changing the basis of the data in
a high-dimensional feature space in which the relations between
the different variables become linearized. To assess the perfor-
mance of the proposed approach, we have compared it with two
other algorithms, such as proportionate normalized least-mean-
square (PNLMS) and improved PNLMS (IPNLMS). For this
purpose, we used three measurable frequency-selective fading
radio channels, known as the broadband radio access network
(BRAN C, BRAN D, and BRAN E), which are standardized by
the European Telecommunications Standards Institute (ETSI),
and one theoretical frequency selective channel, known as the
Macchi’s channel. Simulation results show that the proposed al-
gorithm offers better results, even in high noise environments,
and generates a lower mean square error (MSE) compared with
PNLMS and IPNLMS.

Keywords  binary measurement, BRAN channel identification,
kernel methods, PNLMS, phase estimation

1. Introduction

Numerous measurement-related challenges faced in digital
communication systems have been effectively resolved with
the help of adaptive filtering algorithms dealing with signal
enhancement, acoustic noise cancellation, echo cancellation,
channel estimation, blind channel equalization, and system
identification [1]–[4]. System identification is of crucial inter-
est in the field of automatic control [5], used to determine the
most adequate mathematical model based on the inputs, out-
puts, and perturbations of a simulated real system. The least
mean squares (LMS) algorithm [6] and its variants – nor-
malized LMS (NLMS) [7] and recursive least squares (RLS)
– [8] are the most popular methods employed for identifica-
tion of linear systems due to the statistical conceptual clarity
of the mean square error cost function, simple mathematical

operations required, stability, and easy implementation [1].
Unfortunately, this algorithm is not valid for sparse system
identification.

An attempt was made to overcome this limitation by proposing
a novel adaptive technique for model system identification
with sparse impulse response using an adaptive delay filter [9].
After that, Duttweiler introduced the concept of updating the
proportional NLMS (PNLMS) [10] algorithm for network
echo cancellation applications. Unfortunately, its convergence
rate begins to slow down considerably after the fast initial
period, finally becoming even slower than in the case of
NLMS. To resolve this drawback, several versions of the
PNLMS algorithm were developed. The examples include the
well-known improved PNLMS (IPNLMS) algorithm [11],
which uses a controlled mixture of PNLMS and NLMS
algorithms, the µ-law PNLMS (MPNLMS) algorithm [12],
an improved IPNLMS algorithm [13], an improved µ-law
proportionate NLMS algorithm [14], l0-LMS [15] , and the
evaluation of block-sparse systems with an improved µ-law
PNLMS algorithm (BS-MPNLMS) [16].

In addition, to exploit the sparsity characteristics of the esti-
mated systems, certain subtypes of these techniques operating
based on core idea presented above have also been intro-
duced [17]–[19] with zero-attractors. In the field of system
identification, the requirement for a high degree of precision
in large complex systems has driven the need for good mod-
els that are capable of representing the non-linear structure of
numerous real systems [20], [21]. For example, the Hammer-
stein model has been employed in diverse non-linear system
applications and many related research works exist – see, for
instance, [22]–[30].

Non-linear system identification continues to be a hot topic
in the scientific community [31]. Volterra filters [32]–[34]
and neural networks [35] are two of the most well-known
techniques gaining a lot of attention. Each technique has its
own set of benefits and drawbacks. For example, in the case
of Volterra filters, the number of parameters to be estimated
is determined by the filter order and its complexity. This
allows to incorporate a high degree of complexity as far as the
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range of parameters is concerned. The weak point of neural
networks lies in the choice of the parametric form, as this
can often only be performed in a more or less arbitrary way.
A false decision may degrade performance.
The development of Kernel methods [36]– [38] has been
speeding up in recent years, as they serve as an important
tool for the advancement of new technologies, especially
in terms of the reduction of computational time required to
handle difficult tasks [39]. These techniques greatly increase
the accuracy of processing thanks to their ability to detect
any existing commonalities in the treated information. They
depend on a key principle known as the kernel trick, which
was first applied to the support vector machine (SVM) [40],
[41], and was soon after used to recast many classical linear
methods in high dimensional the reproducing kernel Hilbert
space (RKHS) [42]–[44], and was then reformulated as an
inner product to yield more powerful non-linear extensions
[38]. The kernel trick makes it possible to attribute the non-
linear nature to many previously classical linear techniques
and, with no restraint, it can only be represented in the scalar
products form of data measurement.
Up to date, a number of kernel adaptive-filtering (KAF) al-
gorithms have been suggested in the research literature. The
examples include, inter alia, kernel least mean square (KLMS)
[45], kernel recursive least square (KRLS) [46] and kernel
affine projection algorithm (KAPA) [47] used in the field of
non-linear signal processing [48]. In order to achieve the high-
est level of performance of fundamental kernel algorithm va-
rieties, different subtypes of these categories were identified,
including quantized kernel least mean square (QKLMS) [49],
quantized kernel recursive least square (QKRLS) [50], regu-
larized kernel least mean square based on multiple time delay
feedback (RKLMS-MDF) [51], kernel least mean square
with adaptive kernel size (KLMS-AKS) [52], extended kernel
recursive least square (Ex-KRLS) [53] and reduced kernel re-
cursive least square (RKRLS) [54] that are used for channel
identification [24]–[29], [55] and equalization in non-linear
systems.
In this paper, we propose a novel recursive algorithm that
is based on the positive definite kernel function, with our pri-
mary focus being on the improved proportionate normalized
least mean square (IPNLMS) variety developed in [11]. As
far as we are aware, the application of kernel-based adaptive
nonlinear system identification methods with binary-valued
output observations of the IPNLMS has not been studied
yet. For validity and test purposes, the proposed algorithm
is compared with the proportional normalized least mean
square (PNLMS) algorithm and with its improved version
(IPNLMS), where the goal is to identify impulse response pa-
rameters of Macchi and ETSI BRAN channels. The relation
of the proposed algorithm with other algorithms described
in the literature will be demonstrated based on two exam-
ples. First, an example using the Hammerstein system, in
which the input sequence is randomly generated with a uni-
form distribution, will highlight how the proposed algorithm
is capable of estimating, with good accuracy, the impulse
response parameters of the practical frequency selective fad-

ing channel (BRAN) and the theoretical frequency selective
channel (Macchi). Second, it will be shown how the pro-
posed algorithm is capable of converging faster and yielding
a smaller estimation error than both PNLMS and IPNLMS.
This paper is arranged as follows. In Section 2 we intro-
duce the architecture of a non-linear system (Hammerstein
model) identification problem with binary-valued output ob-
servations and noise. In Section 3, we give an overview of
some fundamental notations of the kernel methods, with that
overview followed by a description of PNLMS, IPNLMS,
and kernel extended IPNLMS algorithms. The effectiveness
of the proposed recursive kernel algorithm is discussed based
on some simulation results in Section 4. Finally, Section 5
concludes this paper.

2. Problem Statement and Assumptions

Let us consider the single-input single-output (SISO) Ham-
merstein model presented in Fig. 1. It is made up of a non-
linear static function followed by a known-order finite impulse
response (FIR).

Fig. 1. Block diagram of a Hammerstein model with binary outputs
and noises.

From Fig. 1, the output of the desired system is given by:v(n) =
L−1∑
i=0

h(i)f(x(n− i)),

d(n) = v(n) + b(n), n = 0, 1, 2, . . . , N

, (1)

where x(n) represents the input signal, d(n) the output,
h(i)(i=0,1,...,L−1), L the coefficients of the finite impulse
response filter, f(.) is the nonlinearity, and b(n) is the mea-
surement noise.
A binary-valued sensor I[.] with a fixed threshold C ∈ R
can be used to measure the system’s output d(n). The output
with a binary value s(n) can be represented by the following
formula:

s(k) = I[d(n)­C] =

{
1 if d(n) ­ C
−1 otherwise

. (2)

The following are the main assumptions that were made for
the system model:
– input sequence {x(n)}, is i.i.d. (independent and identical-

ly distributed) bounded random process with zero mean,
– additive noise {b(n)} is suggested, Gaussian and indepen-

dent of {x(n)} (bounded) and {d(n)} (bounded),
– let f(.) be invertible and continuous for any finite x,
– the system model does not include any delays, i.e.
h(0) ̸= 0,

– C value is available (known).
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The above-mentioned assumptions are made in order to facil-
itate the analysis of the system and to obtain the best results
in terms of the mean square error and the channel identi-
fication framework considered. The main purpose of this
paper is to construct a recursive identification algorithm for
finite impulse response (FIR) systems based on positive defi-
nite kernels and binary-valued observations s(n), in order to
recursively estimate the channel’s parameters.

3. Proposed Adaptive Filtering Algorithm

In this section, we start by presenting the general idea behind
kernel methods. We will define what a kernel is, specifying its
properties and those of the kernel spaces. Next, we describe
the adaptive algorithms used to identify channel impulse
responses, i.e. the proportional normalized LMS algorithm
(PNLMS) and the improved PNLMS algorithm (IPNLMS).
This derivation order is equally the historical arrangement
of the algorithms that were previously extended according
to [10], [11]. Then, the kernel methods are incorporated
into the IPNLMS algorithm strategy in order to produce
a kernelized version of the improved proportionate normalized
LMS algorithm based on binary measurements.

Kernel methods can be used to solve non-linear adaptive
filtering problems in high dimensional spaces. The problem
of dimensionality, referring to the number of parameters to
be estimated, is then reduced to the amount of learning data
available. A fundamental characteristic of kernel methods
is that the resulting model is a linear combination of kernel
functions whose order is identical to the size of the learning
data, where all sources of input information {x(i)}Ni=1 ∈ X
were mapped (implicit) into a high dimensional spaceH (an
inner product space) by taking advantage of the idea that the
Mercer kernel function could be used to express an inner
product in Hilbert spaces. Based on Mercer’s theorem, the
mapping Ψ(.) that was introduced by means of κ(x(i), x(j))
will be expressed by the following relationship [36], [63]:

κ(x(i), x(j)) = ⟨Ψ(x(i)),Ψ(x(j))⟩H , ∀x(i), x(j) ∈ X , (3)

where κ(., .) is a kernel function and Ψ(.) mapped X to
a spaceH with an inner product ⟨., .⟩. Commonly, dimension
of (X ) is much smaller than the dimension of (H).

The block diagram shown in Fig. 2 illustrates an adaptive
kernel-based channel estimation using the proposed algo-
rithm, where e(n) represents the estimation error and y(n)
is the estimated desired response. The learning procedure is
conducted in two distinct phases at each time n (Fig. 2):
1) Initially, using the Hammerstein system (HS) with binary-

-valued output observations and noise, we obtain the
binary output s(n).

2) During the next phase, based on the transformation of the
measured data into non-linear spaces (RKHSs) employing
a Mercer kernel κ, channel coefficients θ(n) are adjusted
according to the functional cost minimization principle.

Fig. 2. Block schematic of kernel adaptive filter.

Let us start with some necessary preliminaries that need to be
employed in the proposed algorithm in order to successfully
determine the existing functional spaceH.

Definition 1 positive definite kernel. A kernel is said to be
positive definite, if it satisfies the following condition for each
input data point {x(i)}Ni=1 ∈ X :

N∑
i,j=1

αiαjκ(x(i), x(j)) ­ 0, (4)

for all N ∈ N, {x(1), . . . , x(N)} ⊆ X and {α1, . . . ,
αN} ⊆ R.

In particular, if κ : X × X 7−→ R is positive definite, then it
can be expressed as an inner product in the feature spaceH,
where the data are projected. On the other hand, if we define
a correspondence between the input data and a vector space,
then the inner product in this vector space will be a positive
definite kernel.
According to the Mercer theorem [36], [63], any kernel
κ(x(i), x(j)) can be redefined as follows:

κ(x(i), x(j)) =
∞∑
i=1

ζiΨi(x(i))Ψi(x(j)), (5)

where ζi and Ψi, i = 1, 2 . . ., denote the non-negative eigen-
values and the eigenfunctions, respectively.
Mapping Ψi in the reproducing kernel Hilbert space can be
created as:

Ψ(x) =
[√
ζ1Ψ1(x),

√
ζ2Ψ2(x), . . .

]⊤
. (6)

Definition 2 reproducing kernel Hilbert spaces. LetH denote
a Hilbert space of real functions defined on an indexed set X :

H =

{
n∑
j=1

αjκ(x(j), .) : n ∈ N, x(j) ∈ X , (7)

αj ∈ R, j = 1, . . . , n

}
.

H is considered to be a reproducing kernel Hilbert space
with an inner product noted ⟨., .⟩H and the norm ∥f∥H =√
⟨f, f⟩H if there exists a function κ : X × X −→ R that

has the following two properties:
1) for any element x ∈ X , κ(x, .) belongs toH,

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2022 49



Rachid Fateh, Anouar Darif, and Said Safi

2) function κ is a reproducing kernel function, i.e. for
any function f ∈ H, we have: ⟨f, κ(x, .)⟩H =∑n
j=1 αjκ(x(j), x) = f(x).

3.1. Derivation of the PNLMS Algorithm

The PNLMS algorithm was first proposed by assigning a step
parameter to each coefficient using a diagonal step control
matrix G(n) ∈ R(L)×(L) [10]. This algorithm is capable of
exploiting low impulse response density to achieve a bet-
ter adaptation than that observed in the case of the classical
NLMS algorithm. The PNLMS algorithm needs more op-
erations than the NLMS algorithm but has the benefit of
converging faster than the latter. The PNLMS algorithm’s
practical update equations are given by:

e(n) = s(n)− θ⊤(n− 1)x(n), (8)

D(n− 1) = diag(d0(n− 1),
d1(n− 1), . . . , dL−1(n− 1)), (9)

θ(n) = θ(n− 1) + µD(n− 1)x(n)e(n)
δPNLMS + x⊤(n)D(n− 1)x(n) , (10)

where x(n) = [x(n), x(n−1), . . . , x(n−L+1)]⊤ represents
the input signal, where the superscript (.)⊤ is the transpose
operator, e(n) is the estimation error,µ ∈ R∗+ is the fixed step-
size, dl(n) ∈ R∗+, and δPNLMS is a regularization parameter:

δPNLMS =
δNLMS

L
.

The original definition of the diagonal matrix element D(n)
is:

dl(n) =
kl(n)

1
L

∑L−1
i=0 ki(n)

, l = 0, 1, . . . , L− 1, (11)

with

kl(n) = max{{|θl(n)|},
ρmax{δp, |θ0(n)|, . . . , |θL−1(n)|}}. (12)

Parameters δp and ρ are used to protect θl(n) from stalling
during the initialization step. The typical value of δp is equal
to 0.01 and ρ ranges from 1

L to 5L .

3.2. Derivation of the IPNLMS Algorithm

Convergence speed of the PNLMS algorithm degrades sig-
nificantly when dealing with non-sparse impulse responses.
Improved PNLMS (IPNLMS) is proposed to avoid degra-
dation in a scenario in which the impulse underlying the
response is non-sparse. In the improved PNLMS algorithm,
the diagonal element of D(n) is:

dl(n) =
1− α
2L
+

|θl(n)|(1 + α)
2
∑L−1
i=0 |θi(n)|+ δIPNLMS

, (13)

where α ∈ [−1, 1] and δIPNLMS =
1− α
2L
δNLMS is a one of

the small positive numbers in order to prevent dividing by
zero. We will utilize the kernel-based method to extend the
improved PNLMS algorithm in the manner described in the
next subsection.

3.3. Projection Over Kernel Methods

The proposed algorithm is presented in this section. The main
idea is to operate the improved proportionate NLMS algo-
rithm in the Gaussian kernel feature space that is linked to
a reproducing kernel κ (continuous, normalized and symmet-
ric), using the feature map Ψ(.) that enables us to transform
the sample sequence as:

Ψ : X −→ H
x(i) −→ κ(x(i), .), 0 ¬ i ¬ N. (14)

In order to generate the infinite-dimensional space model
of the reproducing kernel, there exist various types of ker-
nels such as sigmoid and radial Gaussian kernels defined,
respectively, by:

κsiga,c(x(i), x(j)) = than (a⟨x(i), x(j)⟩+ c) , ∀a, c ∈ R, (15)

κGσ (x(i), x(j)) = e
−
∥x(i)− x(j)∥2

2σ2 , (16)

∀(x(i), x(j)) ∈ X 2,

where σ > 0 is the bandwidth of the kernel used to specify
the form of the kernel function, a is the sigmoid scale, and c
is the bias.
Throughout the remainder of the paper, we will use the Gaus-
sian radial basis function (RBF) kernel, which the favorite
option mostly thanks to its perfect approximation character
and its numerical stability. In [57], one can find a more com-
prehensive list of Mercer kernels. Ψ(.) mapping generated by
this type of kernel is a bit special. In fact, a data item will be
mapped onto a Gaussian function that represents the data’s
similarity to all data in X . Fig. 3 represents the application of
the Gaussian radial-basis function kernel to the two pieces of
data x(i) and x(j).

Fig. 3. Definition of characteristic map.

The four steps that make up the proposed identification algo-
rithm are:
1) In the initial step, a transformation of the measured data

inputs from the space X into a high dimensional space
(feature space H) is realized to produce the following
input data:

{(Ψ(x(1)), s(1)), (Ψ(x(2)), s(2)), . . . , (17)

(Ψ(x(n)), s(n)), . . .}.

2) In the second step, by applying the methodology of the
improved proportionate NLMS algorithm to the input data
sequence described in Eq. (17), we can minimize the cost
function by:

E[|s(k)− ⟨(Ψ(x(k))), θ⟩H|2],
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where θ denotes the weight vector in the feature spaceH.
3) Next, we are proceeding directly in the feature space
H, under the assumption that our data has already been
successfully modeled in the RKHS by means of the Ψ
mapping function, i.e.:

X ∋ x −→ Ψ(x(n)) := κ(x, .) ∈ H. (18)

4) The estimate of θ(n) is produced and is noted θ̂(n):

θ̂(n) = θ̂(n− 1) (19)

+
µD(n− 1)κ(x(n), .)e(n)

δKE-IPNLMS + κ(x(n), .)⊤D(n− 1)κ(x(n), .) ,

D(n− 1) = diag(d0(n− 1), d1(n− 1), . . . , (20)

dL−1(n− 1)),

where:

dl(n) =
1− α
2L
+

|θ̂l(n)|(1 + α)
2
∑L−1
i=0 |θ̂i(n)|+ δKEIPNLMS

, (21)

where α is the adjusting parameter, and δKE-IPNLMS is a small
value used to avoid a denominator equaling zero.
The proposed identification algorithm update equations in
kernel Hilbert space is summarized as Algorithm 1.

Algorithm 1. Kernel extended IPNLMS algorithm for channel
identification.

Input: samples {x(n), s(n)}, n = 1, 2, . . . , N
Initialization: channel parameter θ(0) with zeros, adjusting
parameter α, kernel bandwidth σ, and threshold C
Computation:
while {x(n), s(n)}Nn=1 available do

1. compute y(n) as: y(n) = κ(x(n), .)⊤θ̂(n− 1)
2. compute the prediction error as: e(n) = s(n)− y(n)
3. update weight vector using Eq. (19)
4. compute the diagonal matrix D using Eq. (20)

end while

4. Results of Numerical Simulations

The main aim of this section was to investigate the effective-
ness of the proposed kernel extended IPNLMS algorithm
in terms of channel impulse response identification and to
compare it with that of PNLMS and IPNLMS algorithms.
Performance was measured using mean squares error (MSE)
in decibels, expressed as:

MSE = 10 log

[
1
N

N∑
n=1

(s(n)− y(n))2
]
, (22)

where N represents the data length, s(n) is the binary output
and y(n) is the estimated desired response. The procedure
involved 50 runs of Monte Carlo experiments to reduce mea-
surement uncertainty. We used two models for the linear part:
the Macchi channel and the ETSI BRAN channel to simulate
the Hammerstein model. A typical non-linear part function is
the hyperbolic function tanh(x), defined by:

f(x) =
ex − e−x

ex + e−x
. (23)

The parameter settings selected for the simulations are: thresh-
old is C = 0.5, step-size parameter for all the algorithms is
µ = 0.05, regularization parameter δNLMS = 0.01, adjust-
ing parameter α = −0.75, kernel width σ = 0.2, data length
N = 210, and SNR = 16 dB. Note that when we modify one
of these simulation parameters, the others remain constant.
The simulations are performed using Matlab software and
are conducted for various SNRs defined as follows:

SNR = 10 log
[
E(v2(n))
E(b2(n))

]
, (24)

where E[.] is the mathematical expectation.

4.1. Macchi Channel

To investigate the theoretical performance of the presented
approach, we have relied on the Macchi channel. The im-
pulse response of this channel is defined by vector H =
[h(0), . . . , h(L− 1)]⊤ of coefficients h(i) [64]:

H = [0.8264,−0.1653, 0.8512, 0.1636, 0.81]⊤ .

Figure 4 shows the characteristics of this channel. It has
four zeros, two of them are outside of the unit circle, which
implies that the channel is of the non-minimum phase. This
channel’s amplitude response is quite deep fading, and its
phase response is far from linear.

Fig. 4. Macchi channel.

Figure 5 shows the estimation of the magnitude and phase
of the Macchi channel impulse response parameters, using
the three algorithms for a data length of N = 210 and
SNR = 16 dB.

We observe that the magnitude and phase estimated with the
use of the proposed KE-IPNLMS algorithm follow the true
model in perfect agreement with the measured data. But for
both other algorithms (PNLMS and IPNLMS), we can see
a significant difference between the measured and estimated
parameters.
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Fig. 5. Macchi channel magnitude and phase estimation forN = 210

and SNR = 16 dB.

4.2. ETSI BRAN Channel

The robustness of identification algorithms cannot be fully
evaluated by simulating them on theoretical channels. As a re-
sult, we looked into mobile radio channel models. We focused
on three models (ETSI BRAN C, BRAN D, and BRAN E)
that represent fading radio channels. The associated mod-
el data are measured for 4G systems [65], [66]. The impulse
response parameters of the ETSI BRAN radio channel are
described by:

h(n) =
L−1∑
i=0

Miδ(n− τi), p = 18, (25)

where L is the number of paths present,Mi ∈ N(0, 1) is the
magnitude of path i, τi is its delay time and δ(n) is the Dirac
function. The magnitudes and time delays of 18 targets of the
BRAN C, D and E channels are represented in Tables 1, 2
and 3, respectively.

Tab. 1. Delay and magnitudes of 18 targets of BRAN C radio
channel.

Delay
τi [ns]

Magnitude
Mi [dB]

Delay
τi [ns]

Magnitude
Mi [dB]

0 −3.3 230 −3.0
10 −3.6 280 −4.4
20 −3.9 330 −5.9
30 −4.2 400 −5.3
50 0 490 −7.9
80 −0.9 600 −9.7
110 −1.7 730 −13.2
140 −2.6 880 −16.3
180 −1.5 1050 −21.2

Tab. 2. Delay and magnitudes of 18 targets of BRAN D radio
channel.

Delay
τi [ns]

Magnitude
Mi [dB]

Delay
τi [ns]

Magnitude
Mi [dB]

0 0 230 −9.4
10 −10 280 −10.8
20 −10.3 330 −12.3
30 −10.6 400 −11.7
50 −6.4 490 −14.3
80 −7.2 600 −15.8

110 −8.1 730 −19.6
140 −9.0 880 −22.7
180 −7.9 1050 −27.6

Tab. 3. Delay and magnitudes of 18 targets of BRAN E radio
channel.

Delay
τi [ns]

Magnitude
Mi [dB]

Delay
τi [ns]

Magnitude
Mi [dB]

0 −4.9 320 0

10 −5.1 430 −1.9
20 −5.2 560 −2.8
40 −0.8 710 −5.4
70 −1.3 880 −7.3

100 −1.9 1070 −10.6
140 −0.3 1280 −13.4
190 −1.2 1510 −17.4
240 −2.1 1760 −20.9

Figures 6, 7 and 8 illustrate BRAN C, D and E channel zeros,
respectively.

Fig. 6. Zeros of the BRAN C model.

To assess the accuracy of the proposed KE-IPNLMS algo-
rithm, we looked at four different BRAN models with defined
properties (i.e. known parameters), then we tried to recuperate
these parameters under an additive noise.
Gaussian for an SNR = 16 dB and data length N = 210, and
we compared them with the two other algorithms proposed
in the literature during 50Monte Carlo runs. Figure 9 illus-
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Fig. 7. Zeros of the BRAN D model.

Fig. 8. Zeros of the BRAN E model.

trates the estimated magnitude and phase parameters of the
BRAN C radio channel impulse response, using the algo-
rithms presented previously, for a data length ofN = 210 and
an SNR = 16 dB. When the proposed KE-IPNLMS algorithm
is used, the magnitude and phase response is estimated with
reasonable precision, but several fluctuations are observed
when PNLMS and IPNLMS algorithms are used.

Figure 10 demonstrates the magnitude and phase estimation
of the BRAN D radio channel impulse response obtained
using the proposed KE-IPNLMS algorithm, compared with
PNLMS and IPNLMS algorithms for a data length of N =
210 and for SNR = 16 dB. The estimated magnitude and
phase curves, obtained using the proposed algorithm (KE-
IPNLMS), follow the real model with only a slight deviation.
When BRAN D radio channel impulse response Parameters
are estimated using the IPNLMS algorithm, some minor
differences exist between the estimated magnitude and the
real model (measured values), and an obvious difference is
evident if the PNLMS algorithm is employed. In practical
channels when multipath fading is severe for the learning
sequence duration, the estimates could yield poor quality
results.

Fig. 9. BRAN C channel magnitude and phase estimation for N =
210 and SNR = 16 dB.

Fig. 10. BRAN D channel magnitude and phase estimation for
N = 210 and SNR = 16 dB.

Figure 11 shows the estimated magnitude and phase of the
BRAN E radio channel impulse response parameters, for
a data length of N = 210 and for SNR = 16 dB. It should be
observed that with the proposed KE-IPNLMS algorithm, the
estimated magnitude and phase have the same forms as those
measured. When compared with the PNLMS and IPNLMS
algorithm, we note that the estimated magnitude follows the
variations of the real model’s parameters. Performance of
the PNLMS algorithm degrades during phase estimation
and a large difference between the estimated BRAN E radio
channel impulse response and the measured phase is observed.
To summarize, Gaussian noise exerts a significant impact on
the phase, but only a minor impact on the amplitude estimates.
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Fig. 11. BRAN E channel magnitude and phase estimation for
N = 210 and SNR = 16 dB.

4.3. Performance in Noisy Environment

Here, we test the performance of the algorithms in a Gaussian
noise environment, where SNR varies from 0 to 30 dB and for
a fixed data length of N = 210. The results are summarized
in Tables 4–7 for 50Monte Carlo runs. With all these differ-
ent results taken into consideration, we have several more
important points to make.
The proposed KE-IPNLMS algorithm has offers excellent
convergence performance in comparison to its PNLMS and
IPNLMS counterparts, for all signal-to-noise ratio values,
even in a high noise environment (SNR = 0 dB), since the
MSE values of the proposed KE-IPNLMS algorithm are very
low, contrary to those obtained by means of PNLMS and
IPNLMS algorithms.
When SNR is adjusted from 0 to 30, even if the MSE crite-
rion decreases for the three algorithms, the influence of the
Gaussian noise disappears and the proposed KE-IPNLMS
algorithm demonstrates its superiority over the remaining
varieties.
As shown in Tables 4–7, performance of the proposed KE-
IPNLMS solution is substantially better than that of other
algorithms. For example, in the case of Macchi channel, with
SNR = 30 dB, MSE values obtained using the proposed
KE-IPNLMS algorithm are seven and four times lower than
MSE values obtained by means of PNLMS and IPNLMS
algorithms, respectively.
Based on Tables 6 and 7, we have observed that when
SNR = 10 dB, the MSE value achieved by the proposed
KE-IPNLMS algorithm equals only 21% and 37% of the
MSE value obtained using PNLMS and IPNLMS algorithms,
respectively, in the case of the BRAN D impulse response
channel, as well as 38% and 56% of the MSE value using
PNLMS and IPNLMS algorithms, respectively, in the cases
of the BRAN E impulse response channel. These results give

Tab. 4. MSE values of all algorithms for different SNR and a data
length N = 210 in the case of the Macchi channel.

SNR [dB] Algorithm MSE [dB]
PNLMS −01.39

0 IPNLMS −04.25
Proposed −09.88
PNLMS −02.53

10 IPNLMS −04.75
Proposed −18.41
PNLMS −02.59

20 IPNLMS −04.87
Proposed −22.12
PNLMS −02.81

30 IPNLMS −05.16
Proposed −22.47

Tab. 5. MSE values of all algorithms for different SNR and a data
length N = 210 in the case of the BRAN C channel.

SNR [dB] Algorithm MSE [dB]
PNLMS −03.80

0 IPNLMS −04.90
Proposed −05.17
PNLMS −07.64

10 IPNLMS −09.44
Proposed −12.06
PNLMS −07.79

20 IPNLMS −10.15
Proposed −13.87
PNLMS −08.19

30 IPNLMS −10.26
Proposed −14.42

Tab. 6. MSE values of all algorithms for different SNR and a data
length N = 210 in the case of the BRAN D channel.

SNR [dB] Algorithm MSE [dB]
PNLMS −03.49

0 IPNLMS −05.26
Proposed −07.54
PNLMS −04.32

10 IPNLMS −06.73
Proposed −11.04
PNLMS −04.25

20 IPNLMS −06.95
Proposed −11.18
PNLMS −04.64

30 IPNLMS −07.09
Proposed −11.49

a clear indication regarding the high accuracy of the proposed
KE-IPNLMS algorithm.
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Tab. 7. MSE values of all algorithms for different SNR and a data
length N = 210 in the case of the BRAN E channel.

SNR [dB] Algorithm MSE [dB]
PNLMS −02.00

0 IPNLMS −04.14
Proposed −04.79
PNLMS −07.52

10 IPNLMS −09.16
Proposed −11.61
PNLMS −8.00

20 IPNLMS −10.51
Proposed −14.28
PNLMS −08.21

30 IPNLMS −10.68
Proposed −14.79

4.4. Performance Using Different Data Lengths

Now, we shall focus on the impact that parameter factor N
exerts on the performance of the proposed KE-IPNLMS algo-
rithm. Note that N is a data length that impacts the estimated
channel parameters and the level of the mean square error.
The results are averaged by means of 50Monte Carlo trials.

The MSE evolution curves of these three algorithms are plot-
ted in Figs. 12–15 for different channel impulse responses.
From these results, we may observe that the impact ofN is ev-
ident, which is linked to the regularity of the evaluated mean
square error. It is clearly seen that the proposed algorithm
offers the best performance and is also statistically impor-
tant. For example, in Fig. 12, ifN is 8000, MSE is lower than
−30 dB in the case of the proposed KE-IPNLMS algorithm.
However, we get an MSE that is close to −15 dB and just be-

Fig. 12. Comparison of algorithms in terms of MSE for various data
lengths N and for a fixed SNR = 16 dB, Macchi channel.

Fig. 13. Comparison of algorithms in terms of MSE for various data
lengths N and for a fixed SNR = 16 dB, BRAN C channel.

low −10 dB when we use IPNLMS and PNLMS algorithms,
respectively.

Fig. 14. Comparison of algorithms in terms of MSE for various data
lengths N and for a fixed SNR = 16 dB, BRAN D channel.

From Figs. 13–15 it is evident that the data length is low
(N ¬ 2000), a very slow convergence is observed. Each time
we increase the data length, we notice an improvement in the
convergence speed. This shows that the speed of convergence
of the three algorithms is proportional to data length. We
can evidently see that the proposed KE-IPNLMS algorithm
converges most quickly and has the lowest mean square error.
During this time, the mean square error values of the IPNLMS
algorithm are inferior to those of the PNLMS algorithm, but
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Fig. 15. Comparison of algorithms in terms of MSE for various data
lengths N and for a fixed SNR = 16 dB, BRAN E channel.

it converges at a slow rate, which implies that the parameters
estimated using the proposed KE-IPNLMS algorithm are very
close to the exact values when compared to those given by
the PNLMS and IPNLMS algorithms. It is very important to
select an appropriate value of N and SNR in order to achieve
a successful result.
Based on our study of the performance and convergence
speed of these algorithms, we remarked that this proposed
algorithmic version yields good experimental results in terms
of channel identification from output binary measurements.

5. Conclusion and Future Scope

Numerical simulations for the Hammerstein system identi-
fication problem with binary measurements on the output
have confirmed that the proposed KE-IPNLMS algorithm
outperforms PNLMS and IPNLMS in terms of identification
of magnitude and phase of channel impulse response param-
eters (BRAN (C, D and E) and Macchi channels), while only
requiring linear computational complexity. In all simulations,
we obtained good results in terms of channel identification
even more in highest noise power (i.e low SNR) by using the
proposed KE-IPNLMS algorithm.
The future work will focus on the development of an exten-
sion of this algorithm to MIMO systems and on comparing it
with the existing methods, including quantized kernel recur-
sive least squares (QKRLS), quantized kernel Lleast lncosh
(QKLL) and cumulant-based methods.
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