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Abstract  This work aims to provide a novel multimodal sar-
casm detection model that includes four stages: pre-processing,
feature extraction, feature level fusion, and classification. The
pre-processing uses multimodal data that includes text, video,
and audio. Here, text is pre-processed using tokenization and
stemming, video is pre-processed during the face detection phase,
and audio is pre-processed using the filtering technique. During
the feature extraction stage, such text features as TF-IDF, im-
proved bag of visual words, n-gram, and emojis as well on the
video features using improved SLBT, and constraint local model
(CLM) are extraction. Similarly the audio features like MFCC,
chroma, spectral features, and jitter are extracted. Then, the ex-
tracted features are transferred to the feature level fusion stage,
wherein an improved multilevel canonical correlation analysis
(CCA) fusion technique is performed. The classification is per-
formed using a hybrid classifier (HC), e.g. bidirectional gated
recurrent unit (Bi-GRU) and LSTM. The outcomes of Bi-GRU
and LSTM are averaged to obtain an effective output. To make
the detection results more accurate, the weight of LSTM will
be optimally tuned by the proposed opposition learning-based
aquila optimization (OLAO) model. The MUStARD dataset is
a multimodal video corpus used for automated sarcasm discov-
ery studies. Finally, the effectiveness of the proposed approach
is proved based on various metrics.

Keywords  Bi-GRU, improved CCA, LSTM, multimodal sarcasm
detection

Tab. 1. Nomenclature used.

Abbreviation Description
AAM Active appearance model
ALO Ant lion optimization
AO Aquila optimizer
BiGRU Bi-directional gated recurrent unit
CAT Convolution and attention
CCA Canonical correlation analysis
CDVaN Contextual dual-view attention network
CLM Constraint local model
CMBO Cat mouse-based optimization
CNN Convolutional neural network
DL Deep learning
DT Decision tree
FDR False discovery rate

FNR False negative rate
FPR False positive rate
HC Hybrid classifier
IWAN Incongruity-aware attention network
LBF Local binary feature
LBP Local binary pattern
LSTM Long short term memory
MCC Matthews’s correlation coefficient
MFCC Mel frequency cepstral coefficient
ML Machine learning
NB Naïve Bayes
NLP Natural language processing
NN Neural network
NPV Net predictive value
OLAO Opposition learning based aquila optimization
PCA Principal component analysis
PRO Poor and rich optimization
RF Random forest
RNN Recurrent neural network
SDS Self-deprecating sarcasm
SLBT Shape local binary texture
SSO Social spider optimization
SVM Support vector machine
TF-IDF Term frequency-inverse document frequency

1. Introduction

Sarcasm is described as the use of remarks that imply the
reverse of what one says, either to damage someone’s feel-
ings or to criticize something spectacularly [1]– [3]. It is
a metaphorical language that is frequently used to commu-
nicate on social media, verbally and also with the use of the
written text format. In the sarcasm sentiment, negative emo-
tions are expressed via positive words found in the text, in
order to expose their sarcasm [4], [5]. Tempo and speech
time, variation, pitch level, and acoustic characteristics are
all available in verbal sarcasm [6]. To demonstrate its sar-
castic characteristics, this type of communication relies also
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on tones and gestures, including eye and hand movements.
Since no tune or gestures are available in sarcastic utterances
represented in the text form, an ordinary person cannot recog-
nize them. To detect sarcasm [7], an effective NLP approach
is required for categorizing sarcastic features and properties
within a sentence available in the text format [8]–[10].
Sarcasm was already characterized by NLP methods, where
identification is described as the process of classifying a word
or sentence sequence with sarcastic features and qualities by
using NLP techniques [11]. It is also known as a system that
learns and identifies ordinary and sarcastic sentences at the
semantic level. Sentiment categorization is the basic goal of
processes detecting sarcasm in a sentence. Due to its durabil-
ity and ability to monitor itself based on specific datasets and
requirements, the ML model [12]–[14] is frequently used for
sarcasm detection [15], [16]. Sarcasm detection has proven to
be useful in a variety of situations, as it allows businesses to
analyze customers’ reactions to their items, thus improving
product quality [17]. It also aids in the elimination of incor-
rect categorization of customer views on problems, goods,
and services. In human-computer interactions, sarcasm de-
tection is also effective in conversation, system review rating,
and summarization. For example, ML-based sarcasm identi-
fication [18] is used, relying on higher entropy, SVM, NN,
window class, statistics, semantics, etc. In addition, an in-
depth survey is conducted on automatic sarcasm detection
methods, with a comparison of the scale of a given study,
including the features, classification techniques, as well as
performance parameters used. The survey is beneficial in
identifying the newest trends in sarcasm detection [19]–[22].
The major contribution of this work is:
– BoW is newly defined along with other text-based features,

like TF-IDF, n-gram,
– during the feature-level fusion phase, an improved multi-

level CCA fusion technique is performed,
– OLAO model is implemented for weight optimization in

LSTM.
In this work, a review of multimodal sarcasm detection meth-
ods is presented in Section 2. An overall description of the
adopted multimodal sarcasm detection model is portrayed
in Section 3. Pre-processing, feature extraction and level fu-
sion processes are presented in Section 4. Section 5 describes
a classification methods based on hybrid classifiers. Section 6
depicts the weight optimization of LSTM via an OLAO algo-
rithm. The results are presented and discussed in Section 7.
Section 8 concludes the paper, while Table 1 summarizes the
nomenclature and abbreviations used.

2. Literature Review

Basavaraj et al. [23] suggested a method for detecting sar-
casm in human words. The approach captures three types of
data: voice, text, and temporal facial expressions to exploit
the basic cognitive properties of human utterances. The data
was unstructured because it contained dimensions of feelings
and emotions that were used to produce sarcasm, with fa-

cial expressions being impacted by glottal and facial organs.
The main effort focused on creating natural judgments in
the prediction processes by employing cognitive data lineage
information. It was difficult to identify sarcasm in genuine
human conversations. Utilizing cloud resources, the multi-
class NN model was applied as a soft cognition technique for
detecting sarcasm. Voice cues and eye motions were exam-
ples of cognitive traits identified that might impact sarcasm
detection.

Deepak et al. in [24] utilized DL in code-switch tweets to
identify sarcasm, particularly in an Indian native language
being a mixture of Hindi and English. The suggested sys-
tem combined a softmax attention layer with Bi-LSTM and
CNN for detecting real-time sarcasm. The SentiHindi feature
vector was created employing pre-trained GloVe word embed-
dings and handmade features. The suggested softAttBiLSTM-
feature-rich CNN model was compared and validated us-
ing performance assessment. With a classification accuracy
of ∼ 0.93 as well as an F-measure of ∼ 0.89, the system
from [24] surpasses baseline DL techniques.

Wu et al. [25] created IWAN – an approach which uses a scor-
ing method to identify sarcasm by concentrating on word-level
incongruity among modalities. This scoring process might
give words with incongruent modality a higher weight. The
approach could capture word-level incongruity, resulting in
greater performance and interpretability. The authors have
added word-level characteristics for detecting multimodal
sarcasm. In the MUStARD dataset, they performed compre-
hensive comparison trials with 7 baseline models, but the
model produced traditional outcomes. The benefits of the
suggested IWAN algorithm were presented based on experi-
mental findings that not only offered traditional performance
on the MUStARD dataset but also provided interpretability
benefits.

Kamal et al. [26] demonstrated a DL strategy for identifying
SDS on Twitter. They suggested a new CAT-BiGRU frame-
work that comprises input, embedding, convolutional, two
attention layers, and BiGRU. The SDS-based semantic and
syntactic features in the embedding layers are extracted by
the convolutional layer. Amazon word embedding as well as
affective space and two SenticNet-based computing resources
were determined to test the effectiveness of the suggested
system. The authors concluded that DL-based techniques
can reliably detect SDS in social media content based on the
experimental results.

Eke et al. [27] conducted an analysis of sarcasm identifi-
cation and classification strategies based on performance
standards, datasets, classification models, feature engineer-
ing, and pre-processing. Text articles were studied during the
research, with an emphasis placed on context and content-
based language elements. Accuracy and precision metrics of
such classification techniques as SVM, NB, RF, maximum
entropy, and DT algorithm were measured and evaluated.

Kumar et al. [28] analyzed an empirical investigation of
DL and shallow methods for detecting sarcasm used in text
datasets. Using three predictive learning models, over 20,000
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postings from Reddit and Twitter from the benchmark Se-
mEval 2015 Task 11 were identified as sarcastic or non-
sarcastic in this study. To generate the output, the first frame-
work was developed based on TF-IDF weighted, which was
trained through three classifiers, including gradient boosting,
multinomial NB, and RF, as well as ensemble voting. The
investigation compared the three learning approaches to clas-
sifying sarcasm into two datasets. It was discovered that the
Bi-LSTM scheme achieved the maximum score for Reddit
and Twitter datasets.

Ren et al. [29] suggested a CDVaN sarcasm identification
model based on the sarcasm creation process. They used
CDVaN for capturing contextual semantic information as well
as for making the distinction between positive and negative
situations in sarcasm. In contrast to the sarcasm-generating
process, a multi-hop attention network was used to acquire
contextual semantic information. Investigations on IAC-V2
as well as IAC-V1 datasets have shown that the suggested
CDVaN system was capable of efficiently discriminating
sarcasm. The model achieved state-of-the-art or equivalent
performance, as per the findings.

Zheng et al. [30] identified sarcasm and irony on Twitter us-
ing several NLP and ML approaches. They discussed several
research projects concentrating on irony and sarcasm to eval-
uate and clarify the meanings of such terms. The experiment
was carried out by comparing several types of classification
algorithms relying on some well-known text classification
classifiers. The findings of this experiment suggest that ML
approaches, particularly DL methods, were on the rise as the
most promising for classification-related tasks. The F-score
of the result was 0.89 and is comparable to the F-score of the
sarcastic dataset.

Table 2 summarizes research projects focusing on multimodal
sarcasm detection. The NN model determined in [23] offers
a lower mean error rate, a high accuracy level and higher sen-
sitivity. However, experiments involving benchmark datasets
were not conducted in this work. SoftArt BiLSTM-feature-
rich CNN model from [24] offers a higher classification
accuracy level, a better recall rate, higher precision, and
higher F-scores, but this model could not overfit based on
dropout regularization. Moreover, the IWAN model deployed
in [25] offers better precision, a higher recall rate, the best

Tab. 2. Review of multimodal sarcasm detection systems.

Paper Adopted
scheme Features Limitations Dataset used Effectiveness

values
[23] NN model Better accuracy,

lower mean error,
higher sensitivity

Experiments on benchmark
datasets were not conducted

Multi-modal sarcasm detection
dataset

Overall accuracy
is 78.57%

[24] SoftArt
BiLSTM-
feature-rich
CNN method

Superior classification
accuracy,
higher recall,
better precision,
higher F-score

This model could not overfit
based on dropout
regularization

The randomly sampled dataset
contains 3000 sarcastic and 3000
non-sarcastic bilingual Hinglish
(Hindi English) tweets

Classification
accuracy is
92.71%

[25] IWAN model Better precision,
higher recall,
best F1-score,
improved interpretability

Context incongruity was not
investigated

Multi-modal sarcasm detection
dataset

Overall accuracy
is 93%

[26] CAT-BiGRU
model

Higher precision,
better recall,
improved F-score,
higher accuracy

Multilingual data operation
was not performed on
multimodal platforms

Six benchmark datasets including
Twitter dataset

Overall accuracy
is 90%

[27] ML algorithm Best classifier accuracy,
increased precision,
higher recall,
maximum F-score

Lack of a standard dataset
was an issue in sarcasm
identification

Sarcasm identification dataset F-score is 73.5%

[28] Multinomial
NB model

Highest accuracy,
higher recall,
better precision,
increased F1-score

Crowd-sourced or
self-tagging datasets provide
novel limitations for detecting
the sarcastic tone

SemEval 2015 Task 11 and
Kaggle’s Reddit dataset

Overall accuracy
is 86.32%

[29] CDVaN
model

Good effectiveness,
better performance,
lower error rate

Sarcasm related work was not
continued owing to
multi-modal data

IAC-V1 dataset and
IAC-V2 dataset

Precision level is
76.32%

[30] CNN model Higher F-score,
higher accuracy,
larger correct rate

Different pre-processing
approaches were not explored
based on irony as well as
sarcasm recognition

Semantic evaluation 2018 task 3:
irony detection in English tweets

F1-score is
0.99%
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F1-score, and improved interpretability. However, it failed
to investigate context incongruity. Likewise, the CAT-
BiGRU model from [26] offers higher precision, a bet-
ter recall rate, an improved F-score, and higher accura-
cy. However, no multilingual data operations were per-
formed on multimodal platforms. The ML algorithm was
exploited in [27] and it has been determined that it of-
fers the best classifier accuracy, an increased precision lev-
el, a higher recall rate and a maximum F-score. Howev-
er, the lack of a standard dataset was an issue in sarcasm
identification. The multinomial NB model from [28] of-
fers the highest accuracy level. However, crowd-sourced
or self-tagging datasets provide novel limitations relat-
ed to detecting the sarcastic tone. The CDVaN model
proposed in [29] is characterized by a lower error rate
and ensures better performance and effectiveness. How-
ever, the sarcasm work was not continued due to multi-
modal data. Finally, the CNN model presented in [30]
ensures better results, but different pre-processing ap-
proaches were needed to assure the quality of input
data.

3. Multimodal Sarcasm Detection Model
Adopted

This work introduces a new multimodal sarcasm detection
model that comprises pre-processing, feature extraction, fea-
ture level fusion, and classification stages. First, the input
text, video, and audio are subjected to the pre-processing
stage. Next, the text content is pre-processed using tok-
enization and stemming. Video is pre-processed via face
detection (Viola-Jones), and audio is pre-processed using
the filtering technique (Butterworth filtering). Subse-
quently, the pre-processed text, video, and audio inputs
are transferred to the feature extraction stage, where text
features are extracted using TF-IDF, improved bag of
words, n-gram, and emojis. Video features are extracted
via improved SLBT and CLM. Audio features are ex-
tracted using MFCC, chroma, spectral features, and jitter.
The extracted features are transferred to the feature lev-
el fusion phase, wherein an improved fusion technique is
adopted. Classification is performed using a hybrid classifier

Fig. 1. Overall framework of the adopted model.
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that combines LSTM and Bi-GRU by averaging the output of
LSTM and Bi-GRU. To make the detection more precise and
accurate, the weights of LSTM are tuned by a self-improved
AO algorithm. The results show the presence of sarcasm in
the given input.
Figure 1 illustrates the overall architecture of the adopted
multimodal sarcasm detection model.

4. Model Details

4.1. Pre-processing Stage

Pre-processing is the initial and crucial process for successful
learning. The input data is the multimodal data that includes
text, audio, and video. Text is pre-processed using tokeniza-
tion and stemming. Video is pre-processed via the face detec-
tion (Viola-Jones) model, and audio is pre-processed using
the filtering technique (Butterworth filtering).
Tokenization [31] is the method of transforming text into
tokens prior to vectorization. Undesirable tokens may be
easily filtered off. For instance, a document may be divided
into paragraphs or phrases broken down into words. This
method consists in dividing large amounts of text into smaller
chunks. Raw texts are broken down into words and phrases
during the tokenization process as well. As a consequence,
the tokens might aid in determining the NLP framework or
understanding the context. By analyzing the word sequence,
tokenization aids in determining the meaning of the text.
Tokenization may be accomplished using a variety of libraries
and approaches. This task is carried out using such libraries
as Keras, NLTK, and Gensim.
Stemming [31] is one of the normalizing strategies that reduce
the number of calculations. It is a strategy for removing suf-
fixes and retrieving the original words. During the stemming
procedure, libraries such as Snowball Stemmer, Porter Stem-
ming, and others are employed. Furthermore, stemming is
mostly used to reduce data dimensionality. Stemming-related
errors include under- and over-stemming.
Under stemming is characterized as false negatives which
occur if 2 words are stemmed from the same stems and their
roots are similar. Over stemming is viewed as a false-positive
case that occurs when two words are stemmed from the same
root but have different stems. Stemming is relied upon up
information retrieval systems (i.e. Internet search engines)
and other applications. It is also used in domain analysis to
identify the existing domain vocabularies.
Face detection is difficult due to the numerous differences
in the appearance of individual images, including facial ex-
pressions, pose variations, image orientation, occlusion, as
well as lighting conditions. The Viola-Jones face detection
method [32] is employed in this study.
It is an object detection approach capable of operating in real-
time. Full view frontal upright faces are required for Viola-
Jones. The approach, at its most basic level, reads an input
image via a window, seeking human facial characteristics.
When more characteristics are detected, the window in an

image is classified as a face. Further, the window should
be resized and the process should be repeated to produce
different size faces. For each window scale, the procedure is
applied separately from other scales. To reduce the number
of features, each window must be checked using a series
of levels. Earlier levels have fewer features to verify and
are thus simpler to pass, whereas later levels have more
features and therefore are more difficult. The examination
of features is performed at each level, and if the collected
value does not meet the threshold, the level is considered
failed and the specific window is not recognized as a face.
The Viola-Jones face detection approach is divided into three
key stages (integral image, classifier learning with AdaBoost,
and attentional cascade structure) that allow for successful
face detection in real-time applications.
The Butterworth filter [33] has a frequency response in the
pass band that would be as flat as feasible. A maximally flat
magnitude filter is another name of this particular filter. The
Butterworth family of filters is very simple and useful. The
cutoff frequency and filter order are the two key parameters
used. Frequency response is monotonic and filter order af-
fects the sharpness of the transition from the pass band to
the stop band.
The poles linked with the squares of the frequency response
magnitude are uniformly distributed in angle on concentric
with the origin circle in the s-plane and containing a radius
equal to the cut-off frequency for continuous time Butter-
worth filter. The poles that characterize the system function
are easily acquired once the cutoff frequency and the filter
order are established. One may easily design a differential
equation that characterizes the filter after the poles have been
determined. The squared magnitude function for an m-th
order Butterworth low pass filter is:

|C(jω)|2 = C(jω)× C∗(jω) = 1

1 +
( jω

jωc

)2m . (1)

The first 2m− 1 derivatives of C(jω)2 at ω = 0 are equal to
0 and the Butterworth response is maximally flat at ω = 0.
The derivative of the magnitude response is always negative
for +ω and the magnitude response is minimized with ω. For
ω >> ωc the magnitude response is determined by:

|C(jω)|2 = 1( jω
jωc

)2 . (2)

4.2. Feature Extraction

The pre-processed text, video, and audio obtained are sub-
jected to the feature extraction phase. From the text, such
features as TF-IDF, n-grams, improved BoW, and emojis are
extracted. TF-IDF [34] is a significant text demonstration for-
mat and includes a longer history when compared with the 3
well-known depiction techniques. It depends upon the BOW
method, where a text is characterized by a compilation of
words deployed in the document. The TFpq constraint de-
scribes how many times word p appears in the document q.
The better the value, the more noteworthy the word. The DFp
constraint signifies the count of documents where p appears
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once. If p is significant for q, it must comprise a higher TFpq
and lower DFp. Hence, TF-IDF is determined as:

TD-IDFpq = TFpq log
M

DFp + 1
. (3)

The extracted TF-IDF features are denoted as TF-IDF.
Any sequence of n tokens or words is called an n-gram.
Moreover, an n-gram model [44] is defined as “a method of
including sequences of words or characters that permits us to
maintain richer pattern discovery in text, i.e. it attempts to
captivate patterns of sequences (words or characters subse-
quent to one another) while being responsive to appropriate
relations (words or characters subsequent to one another)”.
The extracted n-gram-based features are denoted as Ngram.
BoW is the simplest technique used to transform the text
into features. It separates words in the reviewed text into
word count data and calculates the number of times a phrase
appears in the corpus of a given text. It only cares about the
order in which words appear in the text, not the sequence in
which they appear frequently. The existing BoW evaluation
does not consider the semantics of visual words, which is
considered in the improved evaluation.
In the improved BoW, histograms of the visual words are
used as a feature vector, such as:

K (P,Q) =
L∑
l=1

k(Pl, Ql), (4)

Where P and Q are images and l is visual word number.
Then:

K(Pl, QL) = J
I
l +

I−1∑
i=0

1
2I−l

(
J il − ji+1l

)
S, (5)

where I denotes the count and i indicates the current levels.
Each level is weighted using 1

2I−l , J
i
l indicates the histogram

intersection function, and S is the scaling factor.

J
(
HiPl , H

i
QL

)
=
4i∑
k=1

min
(
HiPl(k), H

i
Ql(k)

)
, (6)

where the HiPl(k) denotes l-th count of visual words in the
k-th subregion of image P at level i. The improved BoW
characteristics are denoted by the IBoW symbol.
Similarly, for texts with emojis a sentiment score based on
unicode is extracted together with the text features, with regard
to the emoji’s lexicon.
The position of an emoji is determined by its sentiment score
as well as neutrality. The emotion score is between −1 and
+1. Positive emojis are on the right-hand side of the map,
while negative emojis are on the left-hand side. The most
prevalent negative emoji is a sad face. The most common
positive emojis include trophies, celebration symbols, hearts
and a wrapped present – in addition to joyful smiles. Neutral
emojis are classified using the neutrality range of 0 to 1 and
all emojis have a sentiment score of 0. The extracted text with
emoji features is denoted as EMO.
The overall extracted text features are denoted as TF =
TF-IDF+ Ngram+ IBoW+ EMO.

4.2.1. Video-based Features

From video content, features like improved SLBT and CLM
are extracted. SLBT [10] is a feature that merges texture and
shape characteristics. SLBT is identical to AAM, because it
analyzes texture modeling using LBP texture features rather
than intensity values. Consider IM = [IM1, IM2, . . . , IMNO]
symbolizing a training set of pictures NO with XP =
[XP1,XP2, . . . ,XPNO] as shape landmark points. By match-
ing these landmark points and then performing PCA on those
points, shape variants may be achieved. Equation (7) deter-
mines any shape vector XP in the training set:

XP ≈ XP+ RSlsBDls,

BDls = RST̂ls
(

XP− XP
)
,

(7)

where XP denotes the mean shape, RSls includes the eigen-
vectors of the largest eigenvalues Ωls and BDls denotes
weights or shape model parameters (e.g. ls denotes the shape
in BDls). Such an approach may capture shape model param-
eters matching a given image by modifying Eq. (7).
To generate a shape-free patch, each training set image is
warped into a mean shape for texture modeling. Compu-
tational complexity, efficiency, as well as processing time
are mostly influenced by the size of the shape-free patch.
For texture modeling in AAM, direct intensity values from
a shape-free patch are required. To acquire illumination and
noise invariant features, SLBT conducts LBP on a shape-free
patch. Feature extraction using LBP is easier and faster than
with Gabor wavelets.
Moreover, the shape vector and LBP vectors are used in
SLBT. Unlike the LBP evaluation used in the conventional
technique, improved LBP (geometric mean-LBP) is based on
the comparison with neighboring pixels after comparison of
the regional average RM of the image with the center pixel.
Here, Gg indicates the neighboring pixel, s indicates the
number of neighbors. The operation logic of ILBP is:

ILBP =
δ∑
g=1

t 2g−1. (8)

In improved LBP, function t is determined by:

t =


1, if GM ­ Gb and RM ¬ Gg
0, else if RM ­ Gb and RM > Gg

1, else if RM < Gb and Gb ¬ Gg
0, otherwise

, (9)

GM =

(
s∏
g=1

Gg

) 1
s

, (10)

where Gb indicates the center pixel and Gg denotes the
neighboring pixel. The improved SLBT characteristics are
denoted by the ISLBT symbol.
Consider LI = [LI1,LI2, . . . ,LINO] as the LBP feature his-
togram of all training sample images. Texture modeling (same
as shape modeling) is accomplished with PCA given in
Eq. (11). Here, BDt̆ denotes the weights or texture mod-
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eling parameter (t̆ refers to texture in BDt̆), RSt̆ indicates the
eigenvectors and LI refers to the mean vector.

BDt = RSTt
(

LI− LI
)
. (11)

Using Eq. (12), a mixed shape and texture parameter vector
are generated. Because shape (distance) and texture (intensity
values) are measured using separate units, a diagonal matrix
of weights WEls is computed for each shape parameter. By
using PCA on the combined parameter vector as in Eq. (13),
the shape texture parameter determining the texture, and local
shape may be achieved.

BDlst =

(
WEls BDls

BDt

)
, (12)

CZ = RSTlst
(

BDlst − BDlst
)
. (13)

In Eqs. (12), (13) RSlst denotes the eigenvectors, BDlst spec-
ifies the mean vector and CZ refers to the shape texture param-
eter. The LBF feature histogram is derived from a shapeless
patch with five divisions along each row or column (e.g. 25
blocks).
If an annotated test image XPtest is provided as input, Eq. (7)
is used to convert it into the shape model parameter BDtest
which is then multiplied by WEls. The test image is distorted
into a shapeless patch, by which LBP features are extracted as
LItest and the texture model parameter BDtest is computed by
Eq. (11). From Eq. (13) CZtest is employed for classification
purposes and is generated by combining BDls test and BDt test
results in BDlst test as well as the shape texture parameter
CZtest.
CLM [36] is a group of approaches for identifying collections
of points on a target picture that are bound by a statistical
shape model. The main procedure aims to:
– sample a section of the image surrounding the current

estimate and project it into a reference frame,
– create a “response image” for each point that shows the

cost of having the point at each pixel,
– use the shape model parameters to identify a combination

of points that minimizes the cost.
The optimum fit is discovered by minimizing the shape and
pose parameters:

B(a, d) =
r=e∑
r=1

Rr
[
T̂d(Xr + Yra)

]
. (14)

The term CLM is mainly referred to as a model used for
creating response images using normalized correlation with
a local patch, with the model patches being updated to match
the current face while simultaneously being constrained by
a global texture model. The CLM features are denoted by
CLM.
The overall extracted video features are denoted as VF =
ISLBT+ CLM.

4.2.2. Audio-based Features

Features such as MFCC, chroma, spectral features, and jitter
are extracted from audio content.

MFCCs [37] are frequently employed in speech recognition
systems that can automatically recognize digits spoken into
a phone. MFCCs are rapidly being used in music-related in-
formation retrieval applications, such as genre categorization
apps and audio similarity measurements. The way you use the
oral anatomy to produce each sound determines how it sounds.
As a consequence, creating a description that encapsulates
the physical mechanics of spoken language is one technique
capable of uniquely identifying sounds. The method of en-
coding this data is to use MFCC features. The basic MFCC
properties of the signal are provided by cepstral coefficients.
On the other hand, additional characteristics, such as delta,
acceleration, and energy can typically increase the accura-
cy. MFCC-based audio features are denoted by the MFCC
symbol.
The 12 various pitch classes are referred to as chroma [38]
features or chromagrams. Chroma-based characteristics, re-
ferred to as “pitch class profiles”, are useful for evaluating
music with usefully classified pitches (typically in 12 groups)
and for tuning which approximates the equal-tempered scale.
Chromatic and melodic features of music are captured by
chroma features which are responsive to changes in timbre
as well as accompaniment. Chroma audio-based features are
denoted by the CHR symbol.
Frequency and power characteristics of the signal are extracted
using the spectral features block [39]. Filters may be used to
remove undesirable frequencies. Such an approach is ideal
for analyzing repeating signal patterns, including motions or
vibrations from an accelerometer. Spectral characteristics are
denoted by the SP symbol.
Jitter defines time distortions of phase and amplitude of
the signal caused by clock deviation introduced during the
analog-to-digital conversion. The effect of jitter increases
with transmission distance and with the number of signal
conversion stages. Jitter features are represented as Jitter.
The extracted audio features are denoted as AF = MFCC+
CHR + SRP + Jitter. All extracted features combined are
denoted by the FE symbol:

FE = TF+ VF+ AF. (15)

4.3. Feature Level Fusion

The extracted text, video, and audio features are subjected
to the feature-level fusion process. First, the audio and video
features are transferred to CCA1 that produces an output
and then the text features are transferred to CCA2. Next, the
combined outcome of CCA1 and CCA2 is handed over to
CCA3 to produce the final feature level fusion output. Figure 2
illustrates the feature-level fusion process.
Multilevel CCA [40] is a technique used for performing mul-
tivariate statistical analysis. The goal of CCA is to project
two groups of multivariate data into an ordinary space with
the highest possible correlation among them. The purpose
of CCA in this situation is to discover a couple of col-
umn projection vectors uV ∈ ℜd̂ and uZ ∈ ℜd̂ in which
the correlation among uTV V and uTZZ is maximized, given
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Fig. 2. Feature-level fusion process using multilevel CCA.

by two data matrices V = {Vv ∈ ℜd̂, v = 1, 2, . . . , K̂},
Z = {Zv ∈ ℜd̂, v = 1, 2, . . . , K̂}, and K̂ pairings of data
from two modalities. The objective function defined as the
maximization function in this case is:

arg max
u
L̂
,u
Ŝ

uTV ĈZZuz√
uTV ĈVVuV

√
uTZĈZZuZ

. (16)

The data covariance matrices are ĈVV = E[VV]T , ĈZZ =
E[ZZ]T , and ĈVZ = E[VZ]T .

maximize uTV ĈVZuZ

Subject to uTV ĈVVuV = 1

uTZĈZZuZ = 1

. (17)

Equation (17) is solved via generalized eigenvalue issues:[
0 ĈVZ

ĈZV 0

][
uV

uZ

]
= λ

[
ĈVV 0

0 ĈZZ

][
uV

uZ

]
, (18)

where uV denotes an eigenvector of Ĉ−1VV ĈVZĈ
−1
ZZ ĈZV and

uZ indicates an eigenvector of Ĉ−1ZZ ĈZV Ĉ
−1
VV ĈVZ. The pro-

jection matrices UV and UZ are attained via stacking uV
and uZ as column vectors, respectively to various eigenvalue
issues.
An improved correlation is determined in multi-level CCA
as:

Icorr = 1−


Q̄∑̄
c=1

(
P̃c̄ − P̄

) (
R̃c̄ − R̄

)
√
Q̄∑̄
c=1

(
P̃c̄ − P̄

)2√ Q̄∑̄
c=1

(
R̃c̄ − R̄

)2

2

. (19)

5. Classification via Hybrid Classifiers

After the feature-level fusion, the classification process is
performed using an optimized hybrid classifier (Bi-GRU and
LSTM). Then, the outputs of both classifiers are averaged to
determine the final outcome.
Through the use of a linear connection and a gate control unit,
the LSTM network offers an efficient way to solve gradient
desertion-related difficulties. As a consequence, the LSTM
network caught the time-series data’s significant dependence.
The sequences of persistent LSTM cells are included in
LSTM [41] development. The input, output, and forget gates
were all represented by three units in the LSTM cells. This
feature enables the LSTM memory cells to suggest and store
information for long periods of time.

Consider H̃ and C̃ as the hidden and cell state. Then H̃t̂, C̃t̂
and Ft̂, C̃t̂−1, H̃t̂−1 represent the output and input layers,
respectively. At time t̂ the output, input and forget gates are
denoted asOt̂, Ît̂, Ĝt̂ respectively. The LSTM cell is primarily
used Ĝt̂ to filter the data. The modeling of Ĝt̂ is:

Ĝt = κ
(
WL̂Ft̂ + hL̂ +WĴH̃t̂−1 + hĴ

)
, (20)

where WĴ , hĴ and WL̂, hL̂ specify the bias parameters and
the weight matrix, respectively. The bias parameter and the
weight factor are chosen randomly, while the weight factor is
tuned optimally by he proposed OLAO model. The activation
function of gate κ is elected as a sigmoid operation. Next,
the LSTM cell makes use of the input gate to combine the
proper data, as determined in Eqs. (21)–(23). WX̂ , hX̂ and
WŶ , hŶ denote the weight matrices and the bias parameters
which map the input and the hidden layers to the cell gate.
Wx, hx and Wy, hy represent the weight and bias parameters
that map the hidden and input layers to ILt̂:

Ũt̂ = tanh
(
WŶ Ft̂ + hŶ +WX̂H̃t̂−1 + hX̂

)
, (21)

ILt̂ = κ
(
WyFt̂ + hy +WxH̃t̂−1 + hx

)
, (22)

C̃t̂ = Ĝt̂C̃t̂−1 + ILt̂f̂t̂, (23)

Finally, the LSTM obtains a hidden layer (output) from the
output gate as:

ot̂ = κ
(
WêFt̂ + hê +Wr̂H̃t̂−1 + hr̂

)
, (24)

H̃t̂ = ot̂ tanh
(
C̃t̂
)
, (25)

where Wê, hê and Wr̂, hr̂ indicate the weight and bias pa-
rameters used for mapping the input and hidden layers to ot̂
respectively. The output of LSTM is denoted as CLLSTM.

For organizing the sequential data stream, learning a continu-
ous representation might be beneficial. An RNN is dedicated
to encoding sequential data. Here, a Bi-GRU for learning the
features from a sentence sequence, with GCN appending the
outputs for DDI extraction afterward, is used. Bi-GRU [42] is
broken down into two sections for calculation: forward and
reverse sequence information transfers. The forward GRU for
a given sentence Z̃ = (z1, z2, . . . , zn), z ∈ ℑk̃, z signifies
the current word concatenating vector. The forward GRU is:

î = σ
(
wỹîỹg̃ + wĥîĥg̃−1 + ãî

)
, (26)

l̃ = σ
(
wỹl̃ỹg̃ + wĥl̂ĥg̃−1 + ãl̃

)
, (27)

s̃ = tanh
(
wỹs̃ỹg̃ + wĥs̃

(̂
iΘ
)
ĥg̃−1 + ãs̃

)
, (28)

ĥ =
(
1− l̃

)
Θĥg̃−1 + l̃Θs̃, (29)

where w∗ and ã∗ are the weight matrix and the bias vector,
respectively, σ denotes the sigmoid function, ĥg̃ is the hidden
state of the current time step g̃, Θ is element-wise multiplica-
tion, and ỹg̃ is the input word vector at time step g̃, h⃗î and
indicate the forward GRU and backward GRU output, respec-
tively. The Bi-GRU output is indicated as ĥBi-GRU

î
=
[
h⃗î;

]
.

The final classification output is:

Out =
CLLSTM + ĥBi-GRU

î

2
. (30)

104
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2022



Multimodal Sarcasm Detection via Hybrid Classifier with Optimistic Logic

6. LSTM Weight Optimization via OLAO

The weights of LSTM are tuned to optimal levels via the
OLAO method adopted. Figure 3 illustrates the input solution
to the adopted OLAO model. The total count of weights in
LSTM is indicated as N . The final outputs of both Bi-GRU
and LSTM are averaged to obtain the overall outcome. The
error function is determined as error = (1− accuracy). The
objective function Obj of the implemented scheme is:

Obj = min(error). (31)

Fig. 3. Solution encoding.

6.1. Proposed OLAO Algorithm

Despite AO [43] offering better exploration capabilities,
a good chance of reaching the optimal solution, and good
exploitation-related abilities, it suffers from insufficient lo-
cal exploitation ability. To overcome this problem, the OLAO
model is proposed as an enhancement of the existing optimiza-
tion models [44], [45]–[48]. AO is inspired by the behavior
of hunting Aquila birds. The proposed OLAO concept de-
ploys an OBL solution [49] that is modeled for generating
opposite solutions. Specific points and their opposites are cal-
culated simultaneously to select the best solution. OBL-based
initialization guarantees an improved convergence rate, thus
quickly reaching enhanced solutions.

6.2. Initialization of Solutions

The optimization rule relied upon in AO is a population-based
method that starts with a population of candidate solutions
D, as shown in Eq. (32). The said population is created
stochastically between the lower LB and upper UB bounds of
the specific issue. In each iteration, the best answer obtained
is selected as the roughly optimal solution.

D =



q̃1,1 . . . q̃1,j q̃1,Dim−1 q̃1,Dim

q̃2,1 . . . q̃2,̃ȷ . . . q̃2,Dim

. . . . . . . . . . . . . . .

...
...

...
...

...

q̃A−1,1 . . . q̃A−1,̃ȷ . . . q̃A−1,Dim

q̃A . . . q̃A,̃ȷ q̃A,Dim−1 q̃A,Dim


, (32)

where D indicates the group of current candidate solutions
that are created randomly in Eq. (33), Dı̃ represents the
position of the ı̃-th solution, A denotes the entire count of
candidate solutions, and Dim refers to the dimension of the
issue.

Dı̃̃ȷ = rand× (UBȷ̃ − LBȷ̃) + LBȷ̃,

ı̃ = 1, 2, . . . , A, ȷ̃ = 1, 2, . . . ,Dim,
(33)

where rand denotes a random number, LBȷ̃ indicates the ȷ̃-th
lower bound, and UBȷ̃ refers to the ȷ̃-th upper bound of the
issue.

6.3. AO mathematical Model

The proposed AO method imitates the behavior of Aquila’s
during each stage of the hunting at process. If l̃ ¬ 23 L̃ the
exploration phases are exciting, it could move from explo-
ration to exploitation steps using different behaviors, else, the
exploitation phases are done.
The behavior of Aquilas is represented as a mathematical
optimization framework whose goal is to find the optimum
solution taking into consideration a given set of constraints.
The mathematical model of the AO algorithm is determined
as follows.
Step 1. Expanded exploration D1. In the first model D1,
the Aquila identifies the its and chooses the optimal hunting
location by soaring high in a vertical stoop. The AO requires
high explorers to determine the area of the search space in
which the prey is located. This behavior is represented as:

D1(l̃ + 1) = Dbest(l̃) ·
(
1− l̃

L̃

)
+
[
DM̃ (l̃)−Dbest(l̃) · rand

]
, (34)

whereD1(l̃+1) denotes the next iteration of the t solution that
is produced by the initial search technique D1. This indicates
the approximate location of the prey and Dbest(l̃) is the best
solution obtain until the l̃-th iteration. Expression 1−l̃

L̃
is often

used to regulate the number of iterations in the extended
search (exploration). DM̃ (l̃) indicates the mean value of the
current solutions linked at the time of iteration l̃-th, as given
by Eq. (35). l̃ and L̃ represent the current iteration as well as
the higher number of iterations, respectively.

DM̃ (l) =
1
A

A∑
ı̃=1

Dı̃(l̃) ∀̃ȷ = 1, 2, . . . ,Dim, (35)

where Dim denotes the dimension of the issue andA indicates
the count of candidate solutions (population size).
Step 2. Narrowed exploration D2. Whenever the prey loca-
tion is determined by a higher soar, the Aquila circles around
the target, surveys the land and attacks using the second
method D2. In anticipation of the attack, AO carefully inves-
tigates the specific region of the targeted prey. This behavior
is formulated as:

D2(l̃ + 1) = Dbest(l̃)× Levy(β)

+DR̃(l̃) + (u⃗− v⃗) · rand, (36)

where D2(l̃ + 1) denotes the next iteration of l̃ solution, as
determined by the second search procedure D2. β indicates
the dimension space, the Levy flight distribution Levy(β)
functions given by Eq. (37), while DR̃(l̃) denotes a random
solution from the 1, . . . , A at l̃-th iteration.

Levy(β) = s̄ · h̄× ϑ
|ḡ|
1
ρ

, (37)
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where s̄ denotes a constant value of 0.01, ĥ and ḡ denote
random numbers between 0 and 1, ϑ is determined as:

ϑ =
Γ (1 + ρ) · sin e

πρ
2

Γ 1+ρ2 · ρ · 2
ρ−1
2

, (38)

where ρ denotes a constant value of 1.5. In Eq. (36), ū and
v̄ present the spiral shape in the search, as determined in
Eqs. (39), (40).

ū = d̄ cos(θ), (39)

v̄ = d̄ sin(θ), (40)

where:
d̄ = d̄1 + Z̄β1, (41)

θ = −ψβ1 + θ1, (42)

θ1 =
3π
2
. (43)

Z̄ indicates a low value fixed at 0.00565, β1 denotes a minor
integer of 0.005 and ψ refers to an integer number from 1 to
the length of the search area (Dim). d̄ and d̄1 assume a value
between 1 and 20 for fixing the range of the search cycles.
However, as per the proposed OLAO method, d̄ and d̄1 are
randomly generated with τ = 2, 414 as:

x̄n̄+1 = 2τ |x̄n̄| (1− 2 |x̄n̄|) , 0 < x̄n̄ < 1. (44)

Step 3. Expanded exploitation (D3). Whenever the prey
area is identified and the Aquila is ready to land and attack,
the third method is used D3. This behavior is represented as:

D3(l̃ + 1) =
[
Dbest(l̃)−DM̃ (l̃)

]
· α− rand

+ [(UB− LB) · rand+ LB]× µ. (45)

Here D3(l̃ + 1) denotes the solution of the next iteration l̃,
Dbest(l̃) indicates the prey’s approximate location until the
ı̃-th iteration (the greatest solution), and DM̃ (l̃) signifies the
mean value of the current solution at the t-th iteration.α and µ
are the exploitation modification parameters set to a minimum
value of 0.1. LB indicates the problem’s lower bound, and
UB signifies the problem’s upper bound.

Step 4. Narrowed exploitation D4. While the Aquila model
prey in the 4-th method D4, it strikes over land depending on
their stochastic motions. Such an approach is referred to as
“walk and grab prey”. AO attacks the prey at the last location.
This behavior is described as:

D4(l̃ + 1) = QF ·Dbest(l̃)−
[
G̃1 ·D(l̃) · rand

]
− G̃2 · Levy(β) + rand · G̃1. (46)

D4(l̃ + 1) denotes the solution of the fourth search method’s
iteration l̃, and QF represents a quality function from Eq. (47),
used to equalize the search techniques. G̃1 represents different
AO movements that are utilized to track the prey during the
flight and is derived using Eq. (48). G̃2 provides decreasing
numbers from 2 to 0, reflecting the AO’s flight slope used
to follow the prey during its elope from the 1-st to the last
(l̃) location, as created by Eq. (49). D(l̃) denotes the present

iteration’s l̃-th solution.

QF(l̃) = l̃
2·rand−1
(1−L̃)2 , (47)

G̃1 = 2 · rand− 1, (48)

G̃2 = 2 ·
(
1− l̃

L̃

)
. (49)

QF(l̃) is the l̃-th iteration’s quality function value, l̃ and L̃
show the current iteration as well as the higher count of
iterations. Algorithm 1 illustrates the pseudo-code of the
proposed OLAO model.

Algorithm 1. OLAO scheme adopted
Initialization phase
Population initialization D in AO
Initialize the AO parameters
As per the proposed OLAO model the OBL concept is
deployed
while (the end condition is not met) do

Compute the fitness function values:
Dbest(l̃)

for ı̃ = 1, 2, . . . , A do

Mean value update DM̃ (l̃).
Update v̄, ū, G̃1, G̃2, Levy(β), etc.
if l̃ ¬ 23 · L̃ then
if rand ¬ 0.5 then

Step 1. Expanded exploration (D1)
Current solution update in Eq. (34)
if Fitness[D1(l̃ + 1)] < Fitness[D(l̃)] then
D(l̃) = D1(l̃ + 1)

if Fitness[D1(l̃ + 1)] < Fitness[Dbest(l̃)] then

Dbest l̃) = (D1(l̃ + 1)

end if

end if

else

Step 2. Narrowed exploration (D2)
Current solution update in Eq. (36)
if Fitness[D2(l̃ + 1)] < Fitness[D(l̃)] then
D(l̃) = D2(l̃ + 1)

if Fitness[D2(l̃ + 1)] < Fitness[Dbest(l̃)] then

Dbest(l̃) = D2(l̃ + 1)

d̄ and d̄1
are randomly generated as in Eq. (44)
end if

end if

end if

else

if rand ¬ 0.5 then
Step 3. Expanded exploitation (D3)
Current solution update in Eq. (45)
if Fitness[D3(l̃ + 1)] < Fitness[D(l̃)] then
D(l̃) = (D3 l̃ + 1)
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if Fitness[D3(l̃ + 1)] < Fitness[Dbest(l̃)] then

Dbest(l̃) = (D3 l̃ + 1)

end if

end if

else

Step 4. Narrowed exploitation (D4)
Current solution update in Eq. (46)
if Fitness(D4[l̃ + 1)] < Fitness[D(l)] then
D(l̃) = (D4 l̃ + 1)

if Fitness[D4(l̃ + 1)] < Fitness[Dbest(l̃)] then

Dbest(l̃) = (D4 l̃ + 1)

end if

end if

end if

end if

end for

end while

Return (Dbest)

7. Results and Discussions

The adopted multimodal sarcasm detection with HC+OLAO
scheme was implemented in Python. The outcomes were
computed for the extant schemes such as HC + PRO [50],
HC+AO [43], HC+SSO [51], HC+CMBO [52], HC+ALO
[53], CNN [54], RNN [55], RF [56], NB [57], Bi-GRU [26],
and NN [23]. Furthermore, its performance was evaluated by
varying the learning percentage metrics, such as precision,
sensitivity, accuracy, specificity, FNR, FDR, F-score, MCC,
FPR, rand index, and NPV, correspondingly.

Next, the authors extracted a representative sample from the
collection of 6,365 annotated videos. The dataset obtained
contained 690 movies with an equal amount of sarcastic and
non-sarcastic classifications. The sample images are shown
in Fig. 4.

7.1. Dataset Description

The dataset is taken from [58]. The MUStARD dataset is
a multimodal video corpus used for automated sarcasm dis-
covery studies. The Big Bang Theory, The Golden Girls,
Friends, and Sarcasmaholics Anonymous are just a few of
the well-known TV programs that are included in the dataset.
MUStARD is a collection of sarcastic label-annotated au-
diovisual utterances accompanied by their context, which
offers more details about the situation in which the utter-
ance is made. A novel dataset (MUStARD) comprises short
videos that have been carefully annotated for their sarcastic
feature, allowing researchers to investigate the topic. They
chose to work with a balanced sample of sardonic as well
as non-sarcastic clips to enable us to conduct our tests that
expressly focus on the multimodal components of sarcasm.

7.2. Performance Analysis

The performance analysis of the presented HC+OLAO model
is illustrated in Figs. 5–7. The adopted HC+ OLAO scheme
attains higher accuracy (0.86) for the learning rate of 60
percent (compared to the learning rate of 80 percent) than
other existing schemes, as shown in Fig. 5a. This demonstrates
the impact of the improved features on the text and video data,
and the contribution of the optimization strategy to tuning
the weights for better training results.
The HC + OLAO scheme attains higher sensitivity (0.98)
(for a learning rate of 80 percent) than other extant schemes
– see Fig. 5b. The proposed HC+ OLAO scheme has shown
a maximum precision value, ensuring better performance than
other conventional models at the learning rate of 80 percent,
as shown in Fig. 5c. This proves the impact of HC which gets
trained with the suitable features. As the weights of LSTM
are tuned optimally, the proposed HC + OLAO technique
paves the way for better detection of the presence of sarcasm
from multimodal inputs.
The metrics of the developed HC+ OLAO scheme that are
worse than those of the traditional approaches, including
FPR, FNR, and FDR, are represented in Fig. 6. Similarly,
the adopted HC+ OLAO model attains the minimum FDR
value for a learning rate of 80 percent, when compared with
the learning rate of 80 percent, as shown in Fig. 6c. The
HC+ OLAO model proves that the lower FPR value offers
better performance for the learning rate of 60 percent than
the conventional models, as shown in Fig. 6b. The lower FNR
(0.2) value of the proposed model means it is less prone to
outcome errors at the learning rate of 70 percent, as depicted
in Fig. 6a. The performance analysis has proven that the HC+
OLAO scheme has converged with the objective (lower error).
Figure 7 represents other metrics analyzed, such as MCC,
NPV, rand index, and F-score. The graph clearly illustrates that
MCC of the HC+OLAO model attains a higher value (0.71)
for learning the learning rate of 70 percent. However, existing
models attain lower values, as shown in Fig. 7c. Similarly, the
proposed model achieves the maximum NPV value (0.8) for
a learning rate of 60 percent, compared to the learning rate
of 80 percent, as shown in Fig. 7a. Likewise, the F-score for
the learning rate of 70 percent is superior to other traditional
schemes (Fig. 7b). The rand index for the learning rate of 60
percent achieves a higher value (0.99). Consequently, it has
been proven that the presented HC+OLAO model surpasses
other solutions in terms of performance.

7.3. Overall Performance Analysis

The overall performance analysis of the developed HC +
OLAO scheme, comparing it with other models, is summa-
rized in Tables 3–5 for learning rates of 60, 70 and 80 percent,
respectively. The learning rate is a tuning parameter in an
optimization algorithm that determines the step size at each
iteration. The proposed scheme achieves maximum accuracy
values (0.86) to the extant approaches at the learning rate of
60 percent, and superior F-measure outcomes for the learn-
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Fig. 4. Representation of: (a) audio preprocessing and (b) image preprocessing.
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Tab. 3. Overall performance analysis for the learning rate of 60 percent.

Metric
Method

HC+
PRO
[50]

HC+
AO
[43]

HC+
SSO
[51]

HC+
CMBO

[52]

HC+
ALO
[53]

CNN
[54]

RNN
[55] RF [56] NB

[54]

Bi-
GRU
[26]

NN
[23]

HC+
OLAO

FDR 0.40 0.41 0.30 0.45 0.47 0.15 0.21 0.45 0.21 0.33 0.49 0.11
Sensitivity 0.74 0.83 0.75 0.75 0.95 0.56 0.38 0.78 0.76 0.80 0.77 0.79
MCC 0.26 0.29 0.43 0.17 0.23 0.57 0.42 0.19 0.68 0.43 0.09 0.70
Precision 0.62 0.62 0.72 0.57 0.56 0.96 0.92 0.58 0.89 0.70 0.55 0.92
FPR 0.48 0.55 0.32 0.59 0.78 0.13 0.13 0.59 0.27 0.37 0.69 0.09
F-measure 0.68 0.71 0.74 0.65 0.71 0.71 0.54 0.66 0.82 0.75 0.64 0.85
Specificity 0.55 0.48 0.71 0.44 0.25 0.99 0.99 0.44 0.91 0.66 0.34 0.94
FNR 0.29 0.40 0.28 0.28 0.25 0.47 0.65 0.25 0.24 0.23 0.26 0.24
NPV 0.68 0.73 0.75 0.63 0.78 0.70 0.63 0.66 0.80 0.77 0.59 0.82
Accuracy 0.61 0.60 0.73 0.59 0.60 0.77 0.69 0.61 0.84 0.73 0.56 0.86
Rand index 0.82 0.82 0.87 0.78 0.78 0.89 0.84 0.79 0.92 0.87 0.76 0.94

Tab. 4. Overall performance analysis for the learning rate of 70 percent.

Metric
Method

HC+
PRO
[50]

HC+
AO
[43]

HC+
SSO
[51]

HC+
CMBO

[52]

HC+
ALO
[53]

CNN
[54]

RNN
[55] RF [56] NB

[54]

Bi-
GRU
[26]

NN
[23]

HC+
OLAO

FDR 0.16 0.19 0.17 0.19 0.13 0.19 0.36 0.22 0.30 0.25 0.54 0.13
Sensitivity 0.96 0.95 0.92 0.27 0.69 0.36 0.72 0.23 0.81 0.86 0.67 0.83
MCC 0.26 0.24 0.23 0.37 0.61 0.49 0.64 0.33 0.70 0.66 0.02 0.72
Precision 0.57 0.56 0.57 0.97 0.90 1.03 0.91 0.96 0.88 0.83 0.49 0.91
FPR 0.77 0.77 0.74 0.15 0.29 0.14 0.28 0.15 0.33 0.21 0.65 0.11
F-measure 0.71 0.71 0.70 0.42 0.78 0.54 0.80 0.37 0.84 0.85 0.57 0.87
Specificity 0.26 0.26 0.29 1.01 0.94 1.03 0.94 1.01 0.89 0.83 0.38 0.92
FNR 0.21 0.25 0.34 0.76 0.34 0.67 0.31 0.80 0.39 0.34 0.36 0.20
NPV 0.81 0.78 0.74 0.59 0.76 0.65 0.78 0.58 0.82 0.86 0.56 0.85
Accuracy 0.61 0.60 0.60 0.64 0.81 0.72 0.83 0.63 0.85 0.84 0.52 0.87
Rand index 0.79 0.79 0.79 0.81 0.92 0.86 0.92 0.80 0.92 0.93 0.73 0.95

Tab. 5. Overall performance analysis for the learning rate of 80 percent.

Metrics
Methods

HC+
PRO
[50]

HC+
AO
[43]

HC+
SSO
[51]

HC+
CMBO

[52]

HC+
ALO
[53]

CNN
[54]

RNN
[55] RF [56] NB

[54]

Bi-
GRU
[26]

NN
[23]

HC+
OLAO

FDR 0.42 0.40 0.22 0.38 0.22 0.33 0.20 0.20 0.36 0.38 0.48 0.19
Sensitivity 0.88 0.91 0.17 0.89 0.17 0.16 0.32 0.26 0.70 0.92 0.56 0.72
MCC 0.30 0.36 0.26 0.38 0.26 0.29 0.40 0.35 0.55 0.42 0.47 0.57
Precision 0.61 0.63 0.92 0.65 0.92 1.03 0.95 0.95 0.82 0.65 0.56 0.84
FPR 0.61 0.59 0.17 0.53 0.17 0.25 0.21 0.17 0.62 0.53 0.56 0.16
F-measure 0.72 0.74 0.29 0.75 0.29 0.28 0.48 0.40 0.76 0.76 0.56 0.78
Specificity 0.42 0.44 1.01 0.50 1.01 1.03 1.00 1.01 0.84 0.50 0.47 0.87
FNR 0.35 0.36 0.86 0.32 0.86 0.87 0.71 0.77 0.67 0.33 0.48 0.31
NPV 0.75 0.80 0.56 0.80 0.56 0.52 0.60 0.58 0.74 0.84 0.47 0.76
Accuracy 0.65 0.68 0.59 0.69 0.59 0.56 0.66 0.63 0.77 0.71 0.52 0.80
Rand index 0.82 0.83 0.78 0.85 0.78 0.76 0.83 0.81 0.88 0.85 0.73 0.91
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Fig. 5. Performance analysis of the adopted scheme to the extant
approaches for: (a) accuracy, (b) sensitivity, (c) precision, and (d)
specificity.

Fig. 6. Performance analysis of the adopted scheme to the traditional
approaches for: (a) FNR, (b) FPR, and (c) FDR.

Tab. 6. Statistical analysis with respect to accuracy.

Metric Std Dev. Mean Median Best Worst

HC+ PRO [50] 0 1.21 1.21 1.21 1.21

HC+ AO [43] 0.01 1.17 1.17 1.19 1.16

HC+ SSO [51] 0.03 1.20 1.19 1.31 1.19

HC+ CMBO [52] 0 1.32 1.32 1.32 1.32

HC+ ALO [53] 0.04 1.18 1.16 1.26 1.16

HC+ OLAO 0.01 1.16 1.15 1.21 1.15
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Fig. 7. Performance analysis of the adopted scheme to the traditional
approaches for: (a) NPV, (b) F-measure, (c) MCC, and (d) rand
index.

ing rate of 70 percent. However, the existing models show the
worst performance, as they suffer from lower convergence
speed for error minimization purposes.

7.4. Statistical Analysis

The statistical analysis of the proposed approach versus the
existing scheme, based on the accuracy metric, is presented in
Table 5. The best-case scenario proves an enhancement of the
accuracy of results achieved by the proposed HC+ OLAO
model (1.21), with the said results surpassing the values ob-
tained with the use of other models. Mean performance shows
better outcomes for accuracy-related metrics. Therefore, the
proposed model has proved to be more effective in multimodal
sarcasm detection, almost in all scenarios.

7.5. Features Analysis

The feature-based analysis of the proposed model, with an
without relevant comparisons, is illustrated in Table 7.
Also in this case the proposed HC+OLAO model offers better
accuracy than the with conventional BoW, without optimiza-
tion, model with conventional SLBT, and without feature level
fusion, respectively. Further, the proposed HC+OLAO model
holds lower FNR (0.24) with better performance. This im-

Tab. 7. Analysis based on features type of proposed model.

Metric
Without

opti-
mization

With
conven-
tional
BoW

With
conven-
tional
SLBT

Without
feature

level
fusion

HC+
OLAO

Accuracy 0.62 0.85 0.75 0.70 0.86
Sensitivity 0.80 0.77 0.82 0.97 0.79
Specificity 0.45 0.92 0.68 0.43 0.94
Precision 0.60 0.90 0.72 0.69 0.92
FNR 0.26 0.24 0.24 0.32 0.24
F-measure 0.68 0.83 0.77 0.81 0.85
MCC 0.20 0.69 0.45 0.12 0.70
FPR 0.61 0.09 0.38 0.87 0.09
NPV 0.67 0.80 0.79 0.74 0.82
FDR 0.46 0.10 0.34 0.61 0.11
Rand 0.81 0.92 0.89 0.96 0.94

Fig. 8. Convergence analysis of the proposed and other approaches.
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plies that the combination proposed in the system is suitable
for multimodal sarcasm detection.

7.6. Convergence Analysis

The convergence of the adopted OLAO model is examined and
compared with that of the traditional schemes by varying the
iteration count between 0, 5, 10, 1, 20, and 25, respectively.
Figure 8 illustrates the convergence analysis of the presented
method, compared with the traditional schemes. The cost
function of the OLAO model is minimized as the count of
iterations increases. In addition, the cost function began to
decrease from 10–12 iterations. The cost function provides
a lower constant value (1.15) for 12–25 iterations than other
existing models, such as PRO, AO, SSO, CMBO, and ALO.
The proposed OLAO approach achieves the minimum cost
function as per the objectives defined in Eq. (27).
Therefore, it is proven that the adopted OLAO approach
returns a lower cost function with superior outcomes.

8. Conclusion

This work has identified a new multimodal sarcasm detec-
tion method that includes four stages: pre-processing, feature
extraction, feature level fusion, and classification. The ex-
tracted features were subjected to feature level fusion. In this
phase, an improved multilevel CCA fusion technique was
applied. The classification was performed using HC solu-
tions, such as LSTM and Bi-GRU. Finally, the outputs of
LSTM and Bi-GRU were averaged to obtain an effective out-
put. In order to render the detection method more accurate
and precise, the weight of LSTM was tuned using the pro-
posed OLAO model. The final result showed whether any
sarcasm was present or not in the analyzed sample. Final-
ly, the results of the adopted technique were compared with
the extant methods, with various metrics, including F-score,
FDR, specificity, FPR, accuracy, FNR, sensitivity, precision,
NPV, rand index, and MCC, taken into consideration. The
mean performance of the adopted HC + OLAO approach
is better in terms of accuracy-related metrics, when com-
pared with traditional schemes, such as HC+PRO, HC+AO,
HC+ SSO, HC+ CMBO, and HC+ ALO.
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