
Efficient Iterative Detection Based on
Conjugate Gradient and Successive

Over-Relaxation Methods for Uplink
Massive MIMO Systems

Smail Labed1 and Naceur Aounallah2

1Electrical Engineering Laboratory (LAGE), Faculty of New Information Technologies and Communication,
Kasdi Merbah Ouargla University, Ouargla, Algeria,

2Department of Electronic and Telecommunications, Faculty of New Information Technologies and Communication,
Kasdi Merbah Ouargla University, Ouargla, Algeria

https://doi.org/10.26636/jtit.2023.169023

Abstract  Being a crucial aspect of fifth-generation (5G) mo-
bile communications systems, massively multiple-input multiple-
output (mMIMO) architectures are expected to help achieve the
highest key performance indicators. However, the huge numbers
of antennas used in such systems make it difficult to determine
the inversion of the signal channel matrix relied upon by several
detection methods, hence posing a problem with accurate esti-
mation of the symbols sent. In this paper, conjugate gradient
(CG) and successive over-relaxation (SOR) methods are select-
ed to construct a new iterative approach that avoids the matrix
inversion computation issue. This suggested approach for up-
link mMIMO detection is based on a joint cascade structure of
both iterative methods. The CG method is first applied and ad-
justed for the initial solution, followed by the SOR method in
the final iterations for terminal computations, resulting in an
algorithm with robust performance and low computational com-
plexity. Furthermore, the new hybrid scheme operates based on
the relaxation parameter, whose value has a great impact on
error performance and, whose optimal determination is neces-
sary. Numerical simulations reveal that the proposed scheme
is capable of significantly improving signal detection accura-
cy with minimum complexity. The simulation results indicated
that the proposed detector outperforms CG and SOR detectors,
achieves close to optimal performance, requires fewer iterations,
and reduces complexity.

Keywords  computational complexity, conjugate gradient, massive
MIMO, relaxation parameter, signal detection.

1. Introduction
5G wireless communication networks are one of the most
significant developments in contemporary technology, as they
have contributed to the realization of Intelligent Internet of
Everything (IIoE), bringing profound changes to people’s
lives by increasing network traffic, creating numerous indus-
try verticals, facilitating the functioning of the entire society
and making the digital world more connected. This, in turn,
has led to the development of several mMIMO system-based
uplink (UL) and downlink (DL) schemes that serve as one
of the key features of all advanced cellular wireless systems,
with a particular emphasis on 5G [1]. The 3rd Generation

Partnership Project (3GPP) will continue creating roadmaps
in order to study and add functionalities to the new releases
of the new radio (NR) air interface, with the ultimate purpose
of improving 5G performance in terms of network coverage,
mobility, MIMO evolution, and positioning [2]. The role of
high-resolution channel state information (CSI) will be in-
creasing as well to facilitate operation of systems that rely
on artificial intelligence (AI) and machine learning technolo-
gies to provide data-driven, intelligent network solutions [3]
anticipated to achieve the target key performance indicators
(KPIs) [4], [5].

The mMIMO technology is capable of utilizing hundreds to
thousands of antennas operating in the millimeter-wave band
of the spectrum (between 30 GHz and 300 GHz) to improve
network throughput and capacity by offering a wider band-
width, reduce end-to-end latency, increase reliability, enhance
spectral and energy efficiencies, improve spatial diversity, etc.
Furthermore, such a system aims to overcome the challenges
posed by constraining factors, such as hardware cost, pow-
er consumption, and signal detection-related complexities,
especially as the number of antennas used increases [6]. Sig-
nal detection is an important process used in mMIMO UL.
The base station (BS) needs instant and accurate information
about the CSI to perform precoding in DL and detection in
UL [7]. For networks with numerous users and channels that
are spatially correlated, more advanced detection algorithms
are needed in order to increase spectral efficiency. The com-
plexity of these UL mMIMO detection algorithms is affected
by the number of antennas at both the receiving and transmit-
ting ends. This impacts the efficiency with which they can
complete the multiplication and inversion of large dimension
matrices. Hence, a good balance should be found between
performance and complexity [8].

In the literature, signal detection algorithms for UL mMIMO
systems can be classified into two categories: linear detection
algorithms and their non-linear counterparts. Both approach-
es differ in terms of the methods applied to compute the
solutions. Linear algorithms are usually less complex than
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non-linear ones, but they may be the most difficult solution,
as they involve inversion of higher-rank matrices formed from
a very large-scale system [6].
The optimum restoration, at the receiver, of the sent symbols
that are distorted by flat fading channels, interference, and
noise is a difficult issue for mMIMO systems, as it required
advanced signal processing techniques to perform their equal-
ization. In conventional methods, the maximum likelihood
(ML) is the optimal detector, providing the best performance,
but as the number of antennas increases exponentially, its
computational complexity rises as well [9], [10]. Therefore,
sub-optimal detectors with reduced complexity are neces-
sary to cope with the excessive complexity of optimal ML
detection [11]. Linear detection algorithms offering close-to-
optimal performance, such as zero-forcing (ZF) and minimum
mean squared error (MMSE), can be used as an alternative
strategy. Still, they require the matrix inversion to be comput-
ed, which adds to computational complexity. Linear detectors
are significantly outperforming the matched filter (MF) detec-
tor in a mMIMO system with a finite number of BS antennas
and a comparatively small number of users [12]. Bit error rate
(BER) performance is considerably inferior when compared
with that of ML, particularly with high signal-to-noise ratio
(SNR) values. Many iterative methods for approximating or
avoiding matrix inversion are proposed as a solution, such as
the Neumann series (NS) method [13], the Newton iteration
(NI) method [14], the Gauss-Seidel (GS) method [8], the Ja-
cobi (JA) method [15], the Richardson (RI) method [16], the
CG method [17], and the SOR method [18]. The complexity
of iterative procedures is highly influenced by a greater num-
ber of iterations. However, CG and SOR methods with high
loading factors of the mMIMO system maintain satisfying
performance and retain a low level of complexity in the size
of the quadrature amplitude modulation (QAM) constellation.
Most current research focuses on combining different meth-
ods to maintain the detectors’ performance and reduce their
complexity. Among the many works related to our approach
that have been proposed, we distinguish, for example, the
study of [13] dealing with an mMIMO signal detection algo-
rithm resulting from a combination of two iterative methods
(JA and GS), with the former exploited to initialize the lat-
ter in order to create a detector with a minimum complexity
level for an UL mMIMO system.
The authors of paper [19] based their approach on a com-
bination of steepest descent (SD) and JA methods, where
SD is employed to obtain an efficient searching direction for
the subsequent JA iteration, and to speed up convergence.
The study presented in [20] focused on a hybrid detector that
combines MMSE, the alternating direction method of multi-
pliers (ADMM), and the GS method. MMSE and ADMM
are used in the initialization, while the GS method is used in
the estimation. The combination of BLAST algorithms with
other detection methods has shown promise in decreasing
complexity and boosting massive MIMO detection efficiency.
In [21], the researchers presented a hybrid detection approach
that combines BLAST with an iterative detection algorithm.
Such a scheme utilizes a BLAST-based initial detection, fol-

lowed by a low-complexity iterative detection algorithm for
further refinement. As compared to previous state-of-the-art
detection approaches, the suggested hybrid scheme delivers
considerable performance gains while requiring less compu-
tational complexity.

In this paper, we select CG and SOR methods, linked serially,
to build a new algorithm for mMIMO BS detectors. In fact, the
CG method will be effectively utilized to compute the initial
solution of the named CG-SOR-based detector, and the SOR
iteration method will be exploited by choosing the optimal
relaxation parameter to achieve high BER performance and
lower complexity.

The rest of this paper is organized as follows. Section 2 in-
troduces the uplink massive MIMO system model. Section 3
describes the conventional linear detection approach. Sec-
tion 4 clarifies, in detail, the iterative methods for massive
MIMO detection, including the proposed approach. Section
5 contains numerical results and a discussion. Finally, some
conclusions are presented in Section 6.

Note: In this paper, italic capital letters and lowercase letters
represent matrices (e.g. A) and vectors (e.g. a), respectively.
The superscripts of matrix A, A−1, AT , AH and A† indicate
the inverse, the transpose, the Hermitian transpose and the
pseudo-inverse of A, respectively. Furthermore, IU denotes
the U × U identity matrix, |.| denotes the absolute operator.
We denote ||.|| and ||.||F as the Euclidean norm of a vector
and the Frobenius norm of a matrix, respectively. Functions
diag(.), tril(.) and triu(.) create and compute diagonal, lower
triangular, and upper triangular matrices, respectively.

2. Uplink Massive MIMO System Model

In order to study UL transmissions in the system model, we
consider a mMIMO BS having N antenna elements that can
serve U single-antenna users simultaneously, where N ≫ U .
The modulated symbol vector s = [s1, s2, . . . , sU ]T ∈
CU×1 denotes the signal transmitted by all users and the
symbol vector y = [y1, y2, . . . , yN ]T ∈ CN×1 represents
the signal received at the BS. The channel between U users
and N BS antennas forms a channel matrix H ∈ CN×U
defined by a set of flat Rayleigh fading complex coefficients,
with its elements being independent and identically distributed
(i.i.d.), generated by Gaussian random variables with zero
mean and σ2 unit variance.

For the theoretical analysis of mMIMO systems, we common-
ly consider that the flat (frequency non-selective) Rayleigh
fading channel model is accurate and widely adopted. This
assumes no correlation or mutual coupling between the trans-
mitting or receiving antennas. The favorable propagation
is the most important property of this model in mMIMO
systems.

The relationship between s, y and H can be modeled as:

y = Hs+ n , (1)
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where n ∈ CN×1 is the i.i.d. complex Gaussian noise vector
with zero mean and variance σ2n. Note that CSI is known at
the receiver.
The system model of mMIMO is described and shown in
Fig. 1.

CSI

Decoding

User 1

User 2

User U s2

s2

s1

s1

sU

sU

mMIMO BS
with N antennas

...

Fig. 1. Uplink massive MIMO system model withN antennas BS
serving U users.

3. Conventional Linear Detection

MIMO signal detection seeks to identify sent vector s from
received vector y. It searches and scans in an exhaustive
manner. The maximum likelihood (ML) is the ideal algorithm
to solve Eq. (2), which is formulated as [13]:

ŝ = argmin
s∈|χ|U

∥∥∥∥y −
√
SNR

U
Hs

∥∥∥∥2 , (2)

where ŝ, SNR and χ are the estimated signal, signal-to-
noise-ratio, and modulation alphabet size, respectively.
For an N × U mMIMO system with symbols from the M-
QAM constellation alphabet, the computational complexity
grows exponentially with the constellation size M and the
number of transmittersU , as shown in Eq. (2). SNR is defined
as U ×Es/σ2, where Es is the average transmit power per
symbol.
The accuracy of the noise power estimation can affect mMI-
MO signal detection performance by influencing uncertainty
in noise power on the SNR side, represented by σ2. Therefore,
it is important to reduce uncertainty in noise power estimation
to ensure optimal performance of mMIMO signal detection.
ML is considered to be one of algorithms characterized by
exponential complexity, which renders it unsuitable [13].

3.1. Matched Filter (MF) Detector

Matched filter is one of the most attractive features of mMI-
MO, as it considers interference from other substreams to be
pure noise. When the number of users U is substantially low-
er than N BS antennas, MF performs adequately, but as U
increases, MF underperforms compared to more complex de-
tectors. Maximum ratio combining (MRC) is an alternative
word for MF that seeks to maximize the received SNR for

each stream by ignoring the influence of multi-user interfer-
ence [8]. The mathematical expression of the MF detector
can be given as:

ŝMF = S(H
Hy) . (3)

The slicer S(.) determines the closest symbol to the MF
output.
The MF output of y is represented by:

yMF = H
Hy . (4)

By MRC, the equalized symbol ŝ becomes:

ŝMRC =
HHy

||H||F
. (5)

3.2. Zero-Forcing (ZF) Detector

The zero-forcing criterion-based receiver is the simplest
linear detector which simply inverts the channel matrix while
assuming that the H matrix is invertible. When H is badly
adapted, the ZF detector gives the correct results for high
SNR, but for low SNR, performance is strongly affected by
noise. Practically, if H is not square (i.e. if U ̸= N ), it is
imperative to multiply by the pseudo-inverse of the channel
matrix to recover all transmitted symbols. So, the estimated
vector is:

ŝZF = (H
HH)−1HHy = H†y , (6)

where H† is the pseudo-inverse of the channel matrix.
To mitigate the noise enhancement introduced by the ZF
detector, an MMSE detector has been proposed, where the
noise variance is considered in the construction of the filtering
matrix.

3.3. Minimum Mean-Square Error (MMSE) Detector

The objective of the detector used in the MMSE-based mMI-
MO approach is to reduce mean square error caused by noise
and inter-symbol interference (ISI). The estimated signal
vectors coming from U different users can be represented by:

ŝMMSE = (H
HH + σ2IU )

−1HHy =W−1yMF . (7)

This estimated signal can be interpreted as the matched filter
output yMF defined in Eq. (4) and the MMSE weighting
matrix W , which is expressed by:

W = G+ σ2IU , (8)

where G = HHH is the Gram matrix.
We note that the computational complexity is extremely high
if the inverse matrix of W exists, and the problem gets even
worse when using a large size of W . As a result, numerous
iterative strategies for approximating or avoiding the inverse
of W have been proposed [13], [22]. The MMSE detector is
a practical and efficient solution that can achieve near-optimal
performance in mMIMO scenarios, where the channel state
information (CSI) is accurately known. In comparison to the
ML detector, which is theoretically optimal but computation-
ally complex and not always practical, the MMSE detector is
considered to be an optimal combining detector, due to its
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good performance and practicality. Overall, the MMSE detec-
tor provides a balance between performance and complexity
that makes it a popular choice for many practical mMIMO
systems.

4. Iterative Methods for Massive MIMO
Detection

4.1. Conjugate Gradient (CG) Method

Conventional CG is one of the most effective methods allow-
ing to avoid matrix inversion and solving linear equations.
The CG method is implemented as an iterative algorithm, and
it is a member of the class of Krylov subspace methods [8].
In CG, the estimated signal can be obtained as follows:

ŝ(k+1) = ŝ(k) + α(k)p(k), k = 1, 2, . . . , (9)

where ŝ(k) and ŝ(k+1) are the approximations of ŝ in the k-th
and (k+1)-th iterations, respectively, and p(k) is the conjugate
direction in relation to the MMSE filtering matrix W , i.e:(

p(k)
)H
Wp(j) = 0 , ∀ k ̸= j (10)

and α(k) is a scalar parameter which can be calculated as:

α(k) =

∥∥r(k)∥∥2(
p(k)
)H
Wp(k)

. (11)

Let us define the residual r(k) at the k-th iteration as:

r(k) = yMF −Wŝ(k) (12)

and
r(k+1) = r(k) − α(k)Wp(k) . (13)

Each subsequent step (for k + 1) is a linear combination of
the next residual r(k+1) and the current step of the conjugate
direction p(k):

p(k+1) = r(k+1) + β(k)p(k) , (14)

where the scalar for the linear combination is:

β(k) =

∥∥r(k)∥∥2∥∥r(k−1)∥∥2 . (15)

Algorithm 1 summarizes the CG method for mMIMO signal
detection.

Algorithm 1. CG method for UL mMIMO detection.
Input: H , y, k, and σ2

Output: Estimated-transmitted signal ŝ
Initialization:
MF output of yMF defined in Eq. (4)
MMSE filtering matrix defined in Eq. (8)
Initialize: ŝ(0) = 0, r(0) = 0, p(0) = r(0); k = 0

While r(k) ̸= 0 do
– Construct step-size using Eq. (11)
– Construct next iteration by stepping in conjugate direc-

tion p(k) according to Eq. (9)

– Construct new residual according to Eq. (13)
– Construct scalar for linear combination using Eq. (15)
– Construct next conjugate vector according to Eq. (14)
– Increment k = k + 1

End while
Return the result is ŝ.

According to Algorithm 1, we can see that computational
complexity in the k-th iteration was reduced from O(U3) to
O(U2). The result shows that the CG algorithm outperforms
state-of-the-art algorithms and attains near-perfect perfor-
mance of the MMSE for mMIMO system by using a minimum
number of iterations [23]. Based on this feature, we chose to
use the CG method for initializing the proposed scheme in the
initial iterations, relying on its performance and numerical
stability.

4.2. Successive Over-Relaxation (SOR) Method

The SOR method is one of the most important solutions for
large linear systems, such as those expressed in Eq. (1). It is
a method that improves and accelerates the outcomes achieved
with the use of the GS method. The estimated signal vector
using the SOR iteration method is:

ŝ(k) =
(
L+ 1

ω
D
)−1[

yMF +

((
1
ω
−1
)
D−LH

)
ŝ(k−1)

]
,

k = 1, 2, . . . . (16)

where ω is called the relaxation parameter, affecting SOR
convergence.
As demonstrated in [24], because the MMSE filtering matrix
W is symmetric positive definite for uplink mMIMO system,
we can decompose W into strictly lower triangular entries L,
strictly upper triangular elementsLH , and diagonal entriesD.
The decomposed W matrix is:

W = D + L+ LH . (17)

The process of reducing residuals at each stage is called
“successive relaxation”. If 0 < ω < 1, the iterative method is
known as “successive under-relaxation” and it can be used to
obtain convergence when the GS algorithm is not convergent.
For choices of ω > 1, the method is called “successive over-
relaxation” and it is used to accelerate the convergence of GS
iterations. SOR becomes a GS iteration when ω = 1. So, the
GS method is a particular case of SOR. Right now, the aim
is to choose ω such that the convergence rate is maximized,
and the purpose of using the ω value is to reduce the spectral
radius of the iteration matrix. Then, the SOR iteration given
in Eq. (16) can be rewritten as [24]:

ŝ(k) = Bω ŝ
(k−1) + e , (18)

where Bω represents the iteration matrix given by:

Bω =
(
L+
1
ω
D
)−1[( 1

ω
− 1
)
D − LH

]
, ω ̸= 0 , (19)

and e is an iteration vector given by:

e =
(
L+
1
ω
D
)−1
yMF . (20)
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The necessary condition for the convergence of Eq. (18) is
that the spectral radius ρ(Bω) should satisfy ρ(Bω) < 1 only
if 0 < ω < 2.
The authors of [25] demonstrated an uncomplicated method
for computing the quasi-optimal relaxation parameter of the
SOR detector used in practical mMIMO system configura-
tions. This method was proven to be optimal and depends
only on the loading factor, which includes the number of users
and the number of BS antennas.
The optimal relaxation parameter for the SOR detector can
be computed as:

ω0 =
2√

1−
[
ρ(Bω)max

]2 . (21)

The quasi-optimal relaxation parameter for a SOR-based
detector is:

ω̂0 ∼=
2

1 +

√
1− 1

ψ

(
2 +
√
1
ψ

)2 . (22)

where ψ = N/U denotes the loading factor.
From Eq. (22) we can observe that once N and U are pre-
viously known and further H and W are changed, ω̂0 is not
computed again [25].
The above method is summarized in Algorithm 2.

Algorithm 2. SOR method for UL mMIMO detection.
Input: H , y, ω, k, and σ2

Output: Estimated-transmitted signal ŝ
Initialization:
MF output of yMF using Eq. (4)
MMSE filtering matrix expressed in Eq. (8)
D = diag(W ), LH = −triu(W ), L = −tril(W )
Choose the optimal relaxation parameter: 0 < ω < 2
Initialize ŝ(0) = 0
Iteration:

For k = 0, 1, . . . , i do
Construct the SOR iteration using Eq. (16)

End for
Return the result is ŝ.

The SOR equation defined by Eq. (16) can also be written
equivalently in the following form:

ŝ
(k)
m = (1− ω)ŝ(k−1)m + ω

wmm

(
yMF
m
−
∑
u<m

wmuŝ
(k)
u

−
∑
u>m

wmuŝ
(k−1)
u

)
, m, u = 1, 2, . . . , 2U , (23)

where ŝ(k−1)m , ŝ(k)m and yMF
m

indicate the m-th element of
ŝ(k−1), ŝ(k), and yMF in Eq. (7), respectively. Entry wmu is
an element in the m-th row and u-th column of the filtering
matrix W .

4.3. Proposed Method

In this work, we combine the advantages of two iterative
methods, CG and SOR, to design a low-complexity UL

mMIMO detector. Figure 2 shows a block diagram of the
proposed detector based on the CG-SOR algorithm. The pro-
posed detector is constructed based on two main cascading
stages: initialization and final estimation. The proposed de-
tector consists of the following stages:

1) Initialization stage. To improve the performance of the
proposed algorithm by taking advantage of the perfor-
mance feature and the numerical stability in the first
iterations of the CG, the initial estimation using this
method is computed where k = 1, and it is computed as
follows:

– initialize the scalar parameter of the CG method:

α(0) =

∥∥yMF

∥∥2
(yMF )H ·WyMF

, (24)

– apply the first iteration of the CG method:

ŝ(1) = ŝ(0) + α(0)yMF . (25)

2) Final estimation stage. Proceed to the final solution with
the remaining iterations by applying the SOR method. In
other words, performing (k − 1)−time SOR iterations
where k  2.

Apply 
the SOR
method

Final estimationInitialization

y s
(1)Apply s  

the first iteration 
of CG method

(0)Compute α  the 
initial scalar para-

meter of CG method

Fig. 2. Block diagram of the proposed CG-SOR detection method.

Algorithm 3 provides a summary of the processes in detail.

Algorithm 3. The proposed detection algorithm based on UL
mMIMO detection.

Input: H , y, ω, k, and σ2

Output: Estimated-transmitted signal ŝ
Initialization:
MF output of yMF according to Eq. (4)
MMSE filtering matrix given in Eq. (8)
D = diag(W ), LH = −triu(W ), L = −tril(W )
Choose the optimal relaxation parameter: 0 < ω < 2
Initialize ŝ(0) = 0, r(0) = 0, p(0) = r(0), k = 0
Initial estimation:
Set the initial value of scalar parameter for CG: α(0) via
Eq. (24)
First iteration of CG via Eq. (25)
Iteration:

For k = 0, 1, . . . , i do
Construct the SOR iteration using Eq. (16)

End for
Return the result is ŝ.
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5. Numerical Results and Discussion

In this section, we assess and compare the computation-
al complexity of the proposed approach with that of other
well-known algorithms described in the literature, as well as
analyze the detection performance for a multi-user massive
MIMO uplink system configuration.

5.1. Complexity Analysis

To analyze the computational complexity of the proposed
approach and compare it with other recently presented algo-
rithms, in this paper we can consider that multiplication and
division operations are of the utmost importance in terms of
complexity, while addition and subtraction operations can be
neglected [26].
Firstly, we analyze the computational complexity of the initial
estimation. From Algorithm 3, the computational complexity
in the first iteration of the CG method is related to computing
α(0) and ŝ(1). The operation to compute α(0) consists of
one multiplication of the (1 × U) vector (yMF )H and the
(1 × U) vector yMF , together with a multiplication of the
(1 × U) vector (yMF )H , the (U × U) matrix W and the
(1×U) vector yMF , so U2+2U multiplications are needed.
U multiplications are necessary to calculate ŝ(1). To sum
up, U2 + 3U multiplications are requested for the initial
estimation.
Secondly, the computational complexity of the final estima-
tion, from the calculation of Eq. (23) for SOR iterations,
determines the required number of multiplications in the
computation of:

(1− ω)ŝ(k−1)m

and
ω

wmm

(
yMF
m
−
∑
u<m

wmuŝ
(k)
u −

∑
u>m

wmuŝ
(k−1)
u

)
is 1 and (2U+1), respectively. Thus, the computation of each
element of ŝ(k) requires (2U + 2) multiplications. As there
are (2U) elements in ŝ(k), then the number of multiplications
is (4U2 + 4U). So, the overall number of multiplications
needed for k-th iteration of the SOR method is 4k(U2 + U).
Finally, the proposed CG-SOR detector requires (U2 + 3U)
to initialize the detection and 4k(U2 + U) to estimate the
signal. Thus, the total computational complexity linked with
implementing the proposed algorithm becomes (4k+1)U2+
(4k + 3)U .

Tab. 1. Computational complexity of various methods.

Method Computational complexity
ZF 1/2(U3 +NU2 + 5U2 + 3NU)

MMSE 4U3 + 4N2 + 3NU

CG kU2 + 6kU

SOR 4kU2 + 4kU

JA 4kU2 + 2kU

CG-SOR (4k + 1)U2 + (4k + 3)U

Table 1 shows the computational complexity of different
algorithms. From this table, we can see that ZF and MMSE
algorithms are characterized by considerable computational
complexity, which is in the order of O(U3). On the other
hand, computational complexity is in order of O(U2) for all
considered iterative algorithms.
The proposed method accomplishes the requirement of low
complexity, which is determined by the number of users, BS
antennas, and iterations used in the simulation. Furthermore,
it requires a low number of iterations to achieve the expected
performance.

5.2. Performance Results

In this sub-section, we perform certain computer-based sim-
ulations in order to verify the detection performance of the
proposed algorithm using the parameters listed in Table 2,
and we compare BER performance of the proposed algo-
rithm with the benchmark MMSE detector and the studied
iterative algorithms, such as JA, CG, and SOR, with suitably
chosen optimal parameters. To present the relationship be-
tween BER and average SNR, we use Matlab software based
on Monte-Carlo simulations to reduce the time needed to
perform the computations.

Tab. 2. Simulation parameters.

Simulation parameters Type and value
Antennas at base station 128
Number of users 16-32 single antenna
Massive MIMO channel Rayleigh fading channel
Noise AWGN
Number of Monte Carlo trials 102

Symbol mapping 64-QAM
SNR range 2 to 20 dB
Number of iterations k = 2, 3, and 4

Figure 3 illustrates BER performance of the proposed CG-
SOR detection approach versus the relaxation factor for differ-
ent SNRs, where the number of iterations is k = 3 in the case
of an N × U = 128× 32 configuration. As shown in Fig. 3,
the BER performance curve appears in the form of a parabo-
la and has different depths, depending on the SNR value. The
higher the SNR, the deeper the parabola dip. So, an efficient
relaxation factor is determined by a minimum BER value
at high SNRs. In this case and according to the graph, the
optimal relaxation parameter of ω0 = 1.2 is recommended.
Figure 4 shows the BER performance of the SOR iterative
algorithm versus the relaxation parameter. SNR is fixed at
18 dB, and the number of iterations is k = 3 for the N×U =
128×32 configuration. The optimal relaxation parameter ω0
is determined by the minimum point of the graph. Minimum
BER performance is achieved at ω of approximately 1.2.
In order to optimize the relaxation parameter of the SOR and
the proposed CG-SOR methods, as shown in Fig. 3 and Fig. 4,
we considered the 128×32 scenario in the third iteration with
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Fig. 3. BER performance of the proposed CG-SOR algorithm
versus relaxation parameter ω, with a 128×32 mMIMO system
configuration and k = 3 under 64-QAM.
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Fig. 4. BER performance of the SOR algorithm versus the relaxation
parameter ω, with a 128×32 mMIMO system configuration for
SNR= 18 dB and k = 3, under 64-QAM.

a 64-QAM modulation scheme as the scenario that includes
other scenarios that achieve the computational theoretical
result of Eq. (22) based on the optimal relaxation parameter
calculation depending on the loading factor only.
Figures 5–7 compare BER performance across a range of
SNR values of the proposed CG-SOR detector with those of
some conventional detectors in situations in which two, three
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Fig. 5. BER versus SNR plots of JA, SOR, CG, and the proposed CG-
SOR algorithm for anN×U 128×16mMIMO system configuration
and k = 2, under 64-QAM.
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Fig. 6. BER versus SNR plots of JA, SOR, CG, and the proposed CG-
SOR algorithm for anN×U 128×16mMIMO system configuration
and k = 3, under 64-QAM.
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Fig. 7. BER versus SNR plots of JA, SOR, CG, and the proposed CG-
SOR algorithm for anN×U 128×16mMIMO system configuration
and k = 4, under 64-QAM.

or four iterations are used for a 128×16 mMIMO system
configuration with 64-QAM modulation constellations. When
we increase the number of iterations from two to three and
then to four, we see that the shape of the BER curve reflects
the quasi-optimum quality of the proposed detector.
Figures 8–9 reveal that the advantages of the proposed al-
gorithm based on CG-SOR are evident when the number of
users increases (for a 128×32 mMIMO system configura-
tion). We can see that our proposed CG-SOR algorithm is
still capable of achieving near-MMSE performance, which is
obviously superior to that of JA, CG, and SOR algorithms for
a small number of iterations.
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Fig. 8. BER versus SNR plots of JA, SOR, CG, and the proposed CG-
SOR algorithm for anN×U 128×32mMIMO system configuration
and k = 3, under 64-QAM.
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Fig. 9. BER versus SNR plots of JA, SOR, CG, and the proposed
CG-SOR algorithm for an N×U 128×32 mMIMO system con-
figuration and k = 4, under 64-QAM.
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Fig. 10. Comparison of the number of multiplications for different
iterative methods in a 128×16 UL mMIMO system.

Figure 10 illustrates the number of multiplications required by
the proposed detector and other iterative methods. It is clear
that the CG method has the least number of multiplications
among those mentioned in the computational complexity in
Table 1 but it requires a large number of iterations with high
SNR to obtain the best BER performance. This is one of
the features that made us exploit it to initialize the proposed
algorithm. JA, SOR, and the proposed method are relatively
equal in terms of the number of multiplications, but differ
in performance. However, the CG-SOR method outperforms
them in terms of BER performance, as seen in the three
graphs above, simultaneously offering low computational
complexity.

6. Conclusion

In this paper, we developed an efficient detection scheme by
proposing a low-complexity algorithm for the problem of up-
link signal detection in massive MIMO systems through the
selection and joint use of two iterative methods. Compared
with its constituent algorithms (CG and SOR) and other con-
ventional linear detectors, the proposed detector can always
outperform other detectors for all antenna system configu-
rations, simultaneously remaining insensitive to low SNR
values and a small number of iterations. Numerical simula-
tions show that our CG-SOR algorithm is stable and offers
robust performance approximating that of a near-optimal
algorithm.
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