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Abstract  Over the last few years, kernel adaptive filters have
gained in importance as the kernel trick started to be used in
classic linear adaptive filters in order to address various regres-
sion and time-series prediction issues in nonlinear environments.
In this paper, we study a recursive method for identifying finite
impulse response (FIR) nonlinear systems based on binary-value
observation systems. We also apply the kernel trick to the re-
cursive projection (RP) algorithm, yielding a novel recursive
algorithm based on a positive definite kernel. For purposes,
our approach is compared with the recursive projection (RP)
algorithm in the process of identifying the parameters of two
channels, with the first of them being a frequency-selective fad-
ing channel, called a broadband radio access network (BRAN B)
channel, and the other being a a theoretical frequency-selective
channel, known as the Macchi channel. Monte Carlo simulation
results are presented to show the performance of the proposed
algorithm.

Keywords  finite impulse response, kernel adaptive filtering,
kernel recursive projection identification, nonlinear system identi-
fication.

1. Introduction
Linear adaptive filters are a class of digital filters that can
automatically adjust their parameters based on the input data.
They are commonly used for signal processing tasks, such as
noise reduction, echo cancellation, and equalization [1]–[4].
The basic idea behind linear adaptive filters is to use an
algorithm that updates the filter coefficients in response to
changes in the input signal [5], [6]. The most widely used
algorithm for this purpose is the least mean squares (LMS)
algorithm [7], which iteratively adjusts the filter coefficients
to minimize the mean squared error between the filter’s output
and the desired output. The performance of linear adaptive
filters depends on several factors, including the choice of filter
structure, the algorithm applied to update the filter coefficients
and the design of the input signal. In general, these filters
work best when the input signal is stationary or varies slowly
over time and when the filter structure is chosen to match the
statistical properties of the signal.
One of the most challenging problems encountered in en-
gineering digital communication systems consists in mini-
mizing the impact of the communication channel. The most

common solution to this issue consists in estimating the chan-
nel’s impulse response parameter, and then using an equalizer
to equalize it (see e.g. [8]–[12]). This approach relies strongly
on the quality of the estimation, also known as system identi-
fication. System identification (SI) is an area of key interest
in the field of automatic control. In SI, the aim is to build
the most adequate mathematical models of dynamic systems
based on experimental data, i.e., using measurements of the
system input/output (IO) signals [13]–[16].
At present, binary-valued observation systems are receiving
a great deal of attention [17]–[22] thanks to the extensive ap-
plications of binary-valued sensors, including asynchronous
transfer mode (ATM), Hall-effect sensors for velocity and
acceleration, witching sensorsfor exhaust-gas oxygen level,
industrial sensors for brushless DC motors, photoelectric po-
sition sensors, etc. [23], [24]. The input (or output) monitored
in these systems cannot be directly measured. Instead, it is
the information whether the input (or output) of the system
is superior or inferior to a specific numerical value, called
a threshold (a key factor for binary-valued systems), that can
be measured and used to implement a system controller. In
terms of binary-valued observation systems, there are sev-
eral important results impacting the recursive identification
of single-input single-output (SISO) finite impulse response
(FIR) communication channels, the identification of infinite
impulse response (IIR) systems, and state estimation problems
that are presented in [25]–[28].
Over the last few years, a technique based on kernel adap-
tive filtering (KAF) [29], [30] has been employed in a wide
range of telecommunication applications. KAF is proposed
as a way to overcome the limitations of classic linear filtering
techniques when handling non-linear systems.
Linear filtering techniques, such as the LMS algorithm and
its normalized variant (NLMS algorithm) [5], suppose that
the input signal and the filter coefficients have a linear re-
lationship, which may not be accurate in many real-world
applications. KAF integrates kernel methods which can map
data to a higher-dimensional space where classical linear
techniques can be more accurate, with adaptive filtering tech-
niques to handle non-linearity and non-stationarity in the
input signal, where linear filtering can be executed [31]. The
kernel function can be chosen to correspond to the input sig-
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nal’s properties, enabling KAF to adapt to the change in the
signal’s properties over time.
One of the key advantages of kernel-based methods is that they
can work with non-linearly separable data. They are based on
the principle that a decision boundary in a high-dimensional
reproducing kernel Hilbert space (RKHS) [32] can be repre-
sented as a linear boundary in a lower-dimensional space. This
allows kernel methods to effectively handle complex, nonlin-
ear relationships between the input features and the output
variable, which represents an emerging technique for ma-
chine learning applications, i.e. regularization networks [33],
Gaussian process regression (GPR) [34], and support vec-
tor machines (SVMs) [35], as well as for nonlinear signal
processing and classification.
At present, there are many adaptive kernel filtering algorithms
that have been described in the literature of the subject. Some
of them include the following: kernel affine projection al-
gorithms (KAPA) [36], kernel principal component analysis
(KPCA) [37], kernel least mean squares (KLMS) [38], and
kernel recursive least square (KRLS) [39]. To increase the ro-
bustness of these adaptive kernel filtering algorithms, many
different variants have been developed, such as quantized ker-
nel recursive least squares (QKRLS) [40], quantized kernel
least mean square (QKLMS) [41], extended kernel recur-
sive least squares (Ex-KRLS) [42], kernel least mean square
with adaptive kernel size (KLMS-AKS) [43], random Fouri-
er feature kernel recursive least squares (RFF-KRLS) [44],
quantized kernel least lncosh (QKLL) [45], and kernel ex-
tended improved proportionate normalized least mean square
algorithm (KE-IPNLMS) [46]. In this paper, we address the
recursive identification problem of finite impulse response
(FIR) single-input single-output (SISO) communication chan-
nels using kernel techniques. Indeed, the method proposed by
Guo and Zhao in [26] for linear systems with binary-valued
observations is extended to the general case of nonlinear sys-
tem identification using kernel methods. Several simulation
results, both under noisy environments and for diverse data
lengths N , are provided to demonstrate the accuracy of the
proposed kernel method. Our proposed algorithm is referred
to as the KRPI algorithm.
The paper is organized as follows. In Section 2, we described
the configuration of the nonlinear system identification prob-
lem based on binary-valued output observations. In Section 3,
we briefly presented the recursive projection (RP) algorithm.
In Section 4, we examined some fundamental notions of the
kernel approaches. In addition, the proposed kernel recur-
sive projection identification (KRPI) algorithm for nonlinear
systems with binary output measurements is explained in
Section 5. Some simulations to demonstrate the effectiveness
of the proposed algorithm are shown in Section 6. Finally,
Section 7 focuses on a brief discussion and concludes the
paper.

2. System Descriptions and Assumptions

We consider the single-input single-output (SISO) nonlinear
system (presented in Fig. 1) described by the following Eq. (1):

u(k)
v(k) d(k)

b(k)

s(k)
Channel
{θ(i)} f (v(k)) I[d(k)≥C]

Fig. 1. System configuration.

v(k) =
L−1∑
i=0
θ(i)u(k − i),

d(k) = f
(
v(k)
)
+ b(k), k = 0, 1, 2, . . . , N

, (1)

where u(n) = [u(k), u(k−1), . . . , u(k−L + 1)]⊤ ∈ RL,
θ = [θ(0), θ(1), . . . , θ(L− 1)]⊤ ∈ RL and f(.) are the
input sequence, channel coefficient (parameter vector), of
size L, and non-linearity, respectively. The transpose operator
is denoted by the superscript ⊤. d(k) is the system output
corrupted by the measurement noise b(k). Using a binary
detector I[.] equipped with a predefined threshold C ∈ R, the
output of the system d(k) becomes measurable. The quantized
output data s(k) could be expressed by:

s(k) = I[d(n)­C] =

{
1 if d(n) ­ C

−1 otherwise .
(2)

To make the system analysis easier and to come up with a good
result, we assume, in this paper, that:

Assumption 1. The input sequence {u(n)} is an i.i.d. (inde-
pendent and identically distributed) bounded random process
with zero mean.

Assumption 2. At any time k, input {u(n)}Nk=1 satisfies the
following equation:

θ⊤u(n) ̸= 0 . (3)

Assumption 3. The additive noise {b(k)} is Gaussian, i.i.d.
and independent of {u(k)} and {d(k)} (bounded).

Assumption 4. The nonlinear function f(.) is invertible and
continuous for all finite u.

Assumption 5. There is no delay in the system, i.e. θ(0) ̸= 0.

Assumption 6. The C-value is available (i.e. known).

Our primary objective in this paper is to construct a recursive
kernel identification algorithm for FIR systems by using
positive definite kernels and binary observations s(k), in
order to provide a recursive estimate of θ.

3. Recursive Projection (RP) Algorithm

A recursive projection algorithm for finite impulse response
(FIR) system identification with binary-valued observations
under sufficiently rich inputs and a fixed quantized threshold
was presented by Guo and Zhao [26]. In this paper, we briefly
present this algorithm. The goal of this method is to estimate
the vector parameter θ in real time. It is based on the following
assumptions:
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Assumption 1. θ ∈ Θ ⊂ RL, where Θ is a bounded convex
compact set.

Assumption 2. The measurement noise {b(k), k ­ 1} is an
i.i.d. sequence of random variables with finite variance σ2
and zero mean. F (.) and f(.) are the distribution and density
functions of b(1), respectively. Note that F (.) and f(.) are
assumed to be known.

Assumption 3. Input sequence u(k) is F (k − 1)-measurable
with F (k − 1) being the σ-algebra that is generated by
b(k), . . . , b(k − 1).

The update equations of the RP algorithm are given by:

θ̂(k) = ⊓Θ
{
θ̂(k − 1) + u(k)

r(k)

}
, (4)

r(k) = 1 +
k∑
i=1

u⊤(i)u(i) , (5)

ŝ(k) = β
(
F
(
C − u⊤(k)θ̂(k − 1)

)
− s(k)

)
, (6)

where:
– θ̂(k) represents the estimation of θ(k) at time k,
– ⊓Ω is the projection operator in a convex compact set
Ω ⊆ RL, which is defined as:

⊓Ω = argmin
ω∈Ω
∥u− ω∥,∀u ∈ RL , (7)

– β > 0 denotes the constant scalar, that has an important
role in the convergence of θ̂(k).

From the point of view of search procedures, new chal-
lenges arise and the recursive projection algorithm does not
work due to the difficult knowledge of the noise distribution
function (when the channel error is unbounded). Therefore,
many extensions of this algorithm are proposed, see for
example [25], [47], [48].

4. Kernel-based Adaptive Filters

Kernel methods are a class of machine learning algorithms
that are widely used for classification, regression, identi-
fication, and other tasks [29], [30], [32]. They operate by
transforming data into a higher-dimensional space in which it
can be more easily separated.
One of the key advantages of kernel methods is that they can
work with non-linearly separable data. They are based on
the principle that a decision boundary in a high-dimensional
space can be represented as a linear boundary in a lower-
dimensional space. This allows kernel methods to effectively
handle complex, nonlinear relationships between the input
features and the output variable.
The present section will proceed by presenting a short back-
ground on the crucial idea behind KAF techniques. The re-
producing kernel theory [49] has allowed many adaptive
algorithms to evolve. The suitability of these approaches for
training is founded on the concept of learning by error cor-
rection. For the purpose of implementing the kernel methods
over a measurement data input U , we only need to obtain

kernel function values for each pair of the measurement da-
ta input. Usually, these values are stored in a square matrix
named the kernel matrix (or the Gram matrix).

Definition 1. The Gram matrix, also known as the kernel
matrix, is a matrix that summarizes the pairwise similarities
between a set of data points using a kernel function. Specifi-
cally, given a set of N input data points u1, u2, . . . , uN , the
Gram matrixK is an N ×N matrix whose (i, j)-th entry is
defined as:

Kij = κ(ui, uj), for i, j = 1, . . . , N , (8)

where κ is the kernel function.

The Gram matrix is important in kernel methods, such as
kernelized support vector machines, as it allows us to compute
the dot products of data points in the feature space implicitly
defined by the kernel function, without explicitly computing
the feature vectors themselves. This is because the dot product
of two feature vectors in the feature space can be expressed as
a function of the corresponding entries of the Gram matrix.
In the remainder of the document we denote, by κ, the re-
producing kernel and by U the input space. Like the inner
product, we can also expect the kernel function to be positive
definite.

Definition 2. A positive definite kernel is a function that takes
pairs of inputs and produces a measure of their similarity.
More formally, a kernel function κ is positive definite if for
any finite set of inputs u1, u2, . . . , uN , the corresponding
kernel matrixKij = κ(ui, uj) is positive definite, meaning
that its eigenvalues are all non-negative:

N∑
i,j=1

aiajκ(ui, uj) ­ 0 , (9)

for all N ∈N, (u1, . . . , uN )⊆ UN and (a1, . . . , aN )⊆RN .
In machine learning, positive definite kernels are commonly
used in kernel methods, such as support vector machines and
kernelized ridge regression [50]. They allow us to implicitly
map the input data into a high-dimensional feature space,
where linear methods can be applied even when the data is not
linearly separable. Positive definite kernels have a number of
desirable properties, including being symmetric and positive
semi-definite, and they can be used to define a notion of
distance between data points that takes into account their
similarity in the feature space.
Common examples of positive definite kernels include the
linear kernel κ(u, u′) = (⟨u, u′⟩) = u⊤u′, the polyno-
mial kernel κ(u, u′) = (⟨u, u′⟩+ c)p, the sigmoidal kernel
κ(u, u′) = tgh(a⟨u, u′⟩+ c) and others.
Symmetric and positive definite scalar functions, often re-
ferred to simply as “kernel”, are more precisely “Mercer
kernel”. This expression comes from what is called “Mercer’s
theorem”.

Theorem 1. Mercer’s theorem is a fundamental result in
kernel methods which provides the necessary and sufficient
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condition for a function to be a valid positive definite kernel
function. Specifically, Mercer’s theorem states that a continu-
ous and symmetric function κ(u, u′) on a compact domain is
a valid positive definite kernel function if and only if it can
be expressed as:

κ(u, u′) =
∞∑
i=1

ζiΦi(u)Φi(u
′) , (10)

where ζi and Φi are the eigenvalues and eigenfunctions of
the integral operator Tκ : L2(U)→ L2(U), defined by:

Tκ(f)(.) =

∫
U
κ(u, .)f(u)du (11)

and the series converges absolutely and uniformly.

In simpler terms, Mercer’s theorem says that a function
κ(u, u′) is a valid positive definite kernel function if and
only if it can be written as a weighted sum of inner products
of feature functions Φi(u) and Φi(u′), with non-negative
weights ζi.
Mercer’s theorem is important in kernel methods because it
provides a way to construct valid kernel functions for a given
problem, by finding a suitable set of feature functions and
their corresponding weights that satisfy the conditions of
the theorem. It also provides a theoretical foundation for the
effectiveness of kernel methods, by showing that any positive
definite kernel function can be used to implicitly map the
input data into a high-dimensional feature space, where linear
methods can be applied effectively even when the data is not
linearly separable in the original space.
In reproducing kernel Hilbert space, the mapping representa-
tion Φi would be made as follows:

Φ(x) =
[√
ζ1Φ1(u),

√
ζ2Φ2(u), . . .

]⊤
. (12)

As a means of representing the components ofH from their
coordinates, a Hilbert spaceH must be given an orthonormal
base. The assigned kernel of this should be a symmetric,
continuous, positive definite function κ : U × U 7−→ R,
normalized, where U ⊂ RN is a compacted subset.

5. Kernel Recursive Projection
Identification (KRPI)

In this section, we will introduce the proposed algorithm. The
general concept is to operate the algorithm introduced in [26]
in the feature space of the kernel that connects to a positive
definite kernel κ, under the characteristic mapping Φ(.) as
defined in Eq. (13). The sample sequence is transformed by
using a feature map Φ:

Φ : U −→ H
u(i) −→ κ(u(i), .), 0 ¬ i ¬ N. (13)

In order to establish the model of Hilbert spaces with a repro-
ducing kernel, we have decided to use the (Gaussian) radial
basis function (RBF) kernel that is, ideally, a predefined se-

lection due to its general-purpose property of approximation
and numeric stability. The reason for choosing the Gaussian
kernel function is that it is a convex optimization problem.
We have done a convex subset on the solution provider space
while using a Gaussian function, and we establish a norm
on a vector space when we use the Mercer kernel. The opti-
mization problem has almost one optimal point, since it is
a strictly convex Gaussian kernel:

κ(u, u′) = e
−
∥u− u′∥2

2σ2 , ∀(u, u′) ∈ U2 , (14)

where σ > 0 represents the smoothing parameter.
Figure 2 illustrates the mapping of the data space U to
the Hilbert spaceH obtained by the Gaussian reproducing
kernel κ.

u u´

Φ

Φ(u) Φ(u )´

Fig. 2. Define a characteristic map.

The block diagram shown in Fig. 3 illustrates the adaptive
kernel-based channel estimation using the proposed algo-
rithm. The system inputs and outputs, u(k), s(k) are consid-
ered measurable.

u(k)
s(k)

e(k)

y(k)

System configuration

Feature
mapping

KRPI algorithm

ω(k)
κ(u(k), ...)

 

Fig. 3. Schematic of kernel adaptive system identification.

The proposed KRPI algorithm is defined by the following
steps:
– Step 1. Transformation of measured data. As the initial

step, in order to create input data, the observation data
space X is transformed into a nonlinear Hilbert spaceH:{

(Φ(u(1)), s(1)), . . . , (Φ(u(N)), s(N)), . . .
}
. (15)

– Step 2. Application of the RP algorithm methodology. The
Guo et al. algorithm is used in the second step to minimize
the cost function by applying its logic to the data sequence
generated in the first step that is formulated in Eq. (15):

E
[
|s(k)− ⟨(Φ(u(k))), ω⟩H|2

]
, (16)
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where the term ω represents the weight vector in reproduc-
ing kernel Hilbert spaceH.

– Step 3. Determination of the reproducing kernel in Hilbert
space. In this step, we proceed directly in the feature
space H, assuming that our data have already been
successfully modeled in RKHS using the mapping func-
tion Φ, i.e.:

X ∋ x −→ Φ(x(n)) := κ(x, .) ∈ H . (17)

The kernel recursive projection identification algorithm for
estimating the parameter vector ω is summarized in Algo-
rithm 1.

Algorithm 1. Kernel recursive projection identification
(KRPI).

Input: Samples {u(k), s(k)}, k = 1, 2, . . . , N .
Initialization:
Initialize weight vector ω(0).
Select the kernel bandwidth σ, constant scalar β,
data length N , and the threshold C.
Computation:
While {u(k), s(k)}Nk=1 available do:

1) Compute Φ(k) as:
Φ(k) =

[
κ(u(k), u(1)), . . . , κ(u(k), u(k − 1))

]⊤
2) Compute system’s output:
y(k) = ω(k)⊤Φ(k)

3) Compute the prediction error as:
e(k) = s(k)− y(k)

4) Compute r(k) as:

r(k) = 1 +
k∑
i=1
Φ⊤(i)Φ(i)

5) Compute the estimation of s(k) as:
ŝ(k) = β

(
F
(
C − Φ⊤(k)ω̂(k − 1)

)
− s(k)

)
6) Update weight vector:

ω(k) = ⊓ω
{
ω̂(k − 1) + Φ(k)

r(k)

}
End while

6. Simulations

We proceed in this paragraph with Monte Carlo simulations to
investigate the performance of the proposed KRPI algorithm
in nonlinear system identification (NSI) with binary-valued
output observations (Fig. 1) under different data inputs. We
compare the performance of KRPI with that of RP in finite
impulse response identification. Their parameters are set as:
KRPI (C = 0.5, β = 1000, σ = 0.5), and RP (C = 0.5,
β = 1000). It is worth noting that if we change one of these
simulation parameters, the others, remain unchanged. The
mean square error (MSE) of the estimated impulse response
parameters is chosen as a specific metric to evaluate the
performance of these algorithms, which is defined here as
follows:

MSE =
1
L

L∑
i=1

[
ω(i)− ω̂(i)
ω(i)

]2
, (18)

where ω(i) and ω̂(i) ) represent the measured and estimated
impulse response parameters in each iteration, respectively.
All simulations were implemented using Matlab software.
To examine the strength of the measurement noise for each
algorithm, we define the signal-to-noise ratio (SNR) by the
following relationship:

SNR = 10 log10

[
E
(
v2(n)
)

E
(
b2(n)
) ] , (19)

where E[.] is the mathematical expectation.
For all simulations, we considered the function f(.) (see
Fig. 1) as a hyperbolic tangent function (tgh). It is an indefi-
nitely differentiable function that realizes a bijection of R
on [−1, 1]:

f(x) =
ex − e−x

ex + e−x
. (20)

Since we have a non-linear system with binary output s(k)=1
or −1, it corresponds to the asymptotes of the hyperbolic
tangent function:
– limx→+∞ tgh(x) = 1,
– limx→−∞ tgh(x) = −1.
The physical interpretation of the hyperbolic tangent function
in this context is that it introduces a nonlinear relationship
between the input and output signals of the system.
The Figs. 4 and 5 show the input and output signals of the
nonlinear system identification with binary-valued output
observations (Fig. 1). The bottom graphs show the complete
signal form of data length N = 1000 and the top graphs are
zoomed in to between 400 to 500 data lengths to give more
accurate details of the processed signals.

400 420 440 460 480 500

−0.5

0

0.5

1

0 200 400 600 800 1000
−1

0

1

Samples

Fig. 4. Input sequence: top: zoomed-in, middle: 400 and 500 sam-
ples, bottom: full 1000 samples.

6.1. ETSI BRAN Mobile Radio Channels

The broadband radio access networks (BRAN) channel is
a type of a wireless channel that is used in broadband
wireless communication systems, such as WiMAX and
4G LTE. The BRAN channel is characterized by its wide
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400 420 440 460 480 500
−1

0

1

0 200 400 600 800 1000
−1

0

1

Samples

Fig. 5. Example of binary-valued output data: top zoomed-in to
400–500 samples, bottom full 1000 samples.

bandwidth, typically spanning several hundred megahertz,
and its high data rates, which can be several tens of megabits
per second.

In this subsection, we apply the algorithms presented in
NSI to assess the benefit of the proposed KRPI algorithm
in identifying the parameters of ETSI BRAN mobile radio
channels: BRAN B. This model is suggested for use in large
open areas and typical indoor scenarios with considerable
delays under non-line-of-sight (NLOS) propagation settings.
The details about the ETSI BRAN mobile radio channels can
be found in [51], [52].

The ETSI BRAN radio channels’ impulse response is de-
scribed by:

h(n) =
L−1∑
i=0

ωiδ(n− τi), L = 18 , (21)

where δ(n), τi and ωi ∈ N(0, 1) denote, the Dirac function,
the path i time delay and path i magnitude, respectively.

Table 1 summarizes the measured impulse response of the
ETSI BRAN B radio channel.

Tab. 1. Delay and magnitudes of 18 targets of ETSI BRAN B radio
channel.

Del. τi[ns] Mag. ωi[dB] Del. τi[ns] Mag. ωi[dB]

0 −2.6 230 −5.6
10 −3.0 280 −7.7
20 −3.5 330 −9.9
30 −3.9 380 −12.1
50 0 430 −14.3
80 −1.3 490 −15.4

110 −2.6 560 −18.4
140 −3.9 640 −20.7
180 −3.4 730 −24.6

6.1.1. Impulse Response Parameter Estimation

In Fig. 6, for a data length of N fixed at 3000, with SNR =
20 dB and 50 Monte Carlo iterations, we have plotted the
parameters of ETSI BRAN B channel estimated as a function
of the path delays using the two algorithms. From this figure,
we noticed that the proposed KRPI algorithm gives the best
performance because the estimated parameters of the ETSI
BRAN B channel impulse response are closer to the true
one. Meanwhile, for the RP algorithm, we have a difference
between the estimated and measured impulse response.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay [ns]

C
ha

nn
el

 i
m

pu
ls

e 
re

sp
o
ns

e 
[V

]

 

measured BRAN B
estimated using KRPI
estimated using RP

Fig. 6. Estimation of the ETSI BRAN B channel impulse response
for a data length of N = 3000 and SNR = 20 dB.

6.1.2. Magnitude and Phase Estimation

Using the proposed kernel recursive projection identification
(KRPI) and recursive projection (RP) algorithms, we have
identified, in this paragraph, the amplitude and phase of the

0 0.5 1 1.5 2
−150

−100

−50

0

50

100

150

P
ha

se
 [

]o

0 0.5 1 1.5 2
−40

−20

0

20

40

Normalized frequency  [×π rad/sample]

Normalized frequency  [×π rad/sample]

M
ag

ni
tu

de
 [

dB
] measured  BRAN B

estimated using KRPI
estimated using RP

Fig. 7. Estimation of the amplitude and phase of the ETSI BRAN B,
for a data length N = 3000 and SNR = 20 dB.
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ETSI BRAN B channel impulse response. Figure 7 represents
the estimation of the ETSI BRAN B magnitude and phase
for an SNR = 20 dB and a data length of N = 3000. As
shown in this figure, the proposed algorithm offers a very
accurate estimation of the amplitude and phase compared
to the RP algorithm. Also, in the same figure (Fig. 7), we
have more parameters which are the same as those measured
for ETSI BRAN B in the case when we apply the proposed
KRPI algorithm. The evident difference between the estimated
amplitude and phase patterns and the real model is clearly
seen when using the RP algorithm.
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Fig. 8. Estimation of the amplitude and phase of the ETSI BRAN B
for different data lengths N and SNR = 20 dB.
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Fig. 9. Estimation of the Macchi channel impulse response for a data
length of N = 3000 and SNR = 20 dB.

Figure 8 illustrates the results of the estimation of the ETSI
BRAN B magnitude and phase by employing the proposed
KRPI algorithm for a fixed signal-to-noise ratio SNR of
20 dB and various data inputs N . Figure 9 demonstrates

that for the data length ofN = 2500, estimations of the ETSI
BRAN B magnitude and phase are very close to the true
ones and they remain in complete agreement. Regarding
the impulse response of ETSI BRAN B channel for one
data length of N = 1500 the estimated phase of the ETSI
BRAN B channel is closer to the true value, but the estimated
magnitude follows the real model with minor differences. In
unfavorable conditions, i.e. small data sample (N = 500),
the performance of the proposed algorithm degrades during
magnitude and phase estimation. To summarize, the data
length N has a significant impact on the estimated phase,
but only a minor impact on the estimated magnitude. The
proposed algorithm needs, therefore, a large data sample to
obtain an accurate approximation of the real values.

6.2. Macchi Channel

We adopted the Macchi channel to evaluate the theoretical
outcome of the proposed algorithm. The Macchi channel,
also known as the Macchi-Hall channel, is a quantum com-
munication channel that models the transmission of quantum
information between two parties in the presence of a noisy
environment [53]. The impulse response of this channel is
described by the following model:
v(k) = 0.8264u(k)−0.1653u(k−1) + 0.8512u(k−2)

+ 0.1636u(k−3) + 0.81u(k−4),
Zeros: z1=0.5500+0.9526i, z2 = 0.5500−0.9526i ,

z3=−0.4500+0.7794i, z4 = −0.4500−0.7794i .

In the Macchi channel, the sender prepares a qubit in a partic-
ular state and then transmits it to the receiver through a noisy
quantum channel that introduces errors and disturbances to
the qubit state. The noisy channel is modeled as a sequence of
independent and identically distributed (i.i.d.) quantum oper-
ations, with each of them being capable of causing a certain
type of error.

6.2.1. Impulse Response Parameter Estimation

Under the conditions of SNR = 20 dB and N = 3000,
Fig. 9 illustrates the estimations of Macchi’s channel impulse
response parameters using the two algorithms presented
previously. This comparison proves that the proposed KRPI
algorithm can be successfully used for the identification of the
Macchi channel impulse response parameters. The average
estimation values are close to the real model. This could be
due to the nonlinear nature of the system which we need to
identify, and the proposed KRPI algorithm effectively employs
a linear model in a high-dimensional nonlinear space, which
is equivalent to applying a nonlinear technique in the original
space. In the opposite situation, the RP algorithm is a linear
method.

6.2.2. Magnitude and Phase Estimation

In this subsection, the Macchi channel impulse response
magnitude and phase will be estimated. Figure 10 repre-
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sents the estimation of the Macchi channel’s magnitude and
phase using the KRPI and RP algorithms for a data length
of N = 3000 and for an SNR = 20 dB. Based on this
result, we can conclude that, in comparison to the RP al-
gorithm, the proposed KRPI algorithm is very important,
since it offers approximately the same amplitude and phase
(estimated and measured). Using the RP algorithm, we ob-
tain a large difference between the estimated and measured
phases.
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Fig. 10. Estimation of the amplitude and phase of the Macchi channel
for a data length of N = 3000 and SNR = 20 dB.
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Fig. 11. Estimation of the amplitude and phase of the Macchi channel
for different SNR and N = 3000.

Now, we want to see how much the noise level affects the
proposed KRPI algorithm’s behavior. To do so, we run a sim-
ulation with various SNRs by adjusting the value of N .

Figure 11 shows the average values of the estimated parame-
ters using the proposed KRPI algorithm. We can see that, in
a very noisy environment (lowest SNR=0 dB), the Gaussian
noise influenced the estimated parameters of the model, as we
see a significant difference between the estimated values of
the amplitude and phase and the measured data, and a slight
influence of the noise in the estimation of the parameters of
the impulse response, principally if the variance of the noise
is small (e.g. when we take SNR=10 dB). If SNR=20 dB,
the estimated magnitude and phase are very close to the mea-
surement and in perfect accordance. According to this result,
we can notice that the performance of the proposed KRPI
algorithm in a very noisy environment (SNR tends towards
0 dB) is acceptable compared to the RP algorithm.

6.3. Mean Square Error Criterion

In this subsection, the performance of the KRPI and RP meth-
ods is compared, where SNR ranges from 0 dB to 30 dB.
The mean square error (MSE) results are reported in Tables 2
and 3. As presented in these tables, the use of both presented
algorithms shows that MSE decreases if SNR increases for
a fixed N . For the two studied channels (Macchi and ETSI
BRAN B), the proposed KRPI algorithm ensures better per-
formance convergence than the RP algorithm for all SNR
values, even in a high noise environment (SNR=0 dB), due
to the fact that MSE values of the proposed KRPI are much
lower than those obtained by the RP algorithm. For example,
in the case of the ETSI BRAN B impulse response channel,
the MSE value achieved by the proposed KRPI algorithm
amounts to only 9.44% and 6.6% of the MSE value obtained
using the RP algorithm, when the SNR is equal to 0 dB and
10 dB, respectively, and represents 20.56% and 0.68% of the
MSE value obtained by the RP algorithm in the case of the
Macchi impulse response channel for SNR = 20 dB and
30 dB, respectively.

Tab. 2. Comparison of performance of KRPI and RP for different
SNR values and for a data length of N =3000 in the case of the
ETSI BRAN B channel.

SNR [dB] MSE: RP MSE: KRPI

0 2.7917 0.2636
10 2.3604 0.1577
20 0.1023 0.0833
30 0.0568 0.0099

Tab. 3. Comparison of performance of KRPI and RP for different
SNR values and for a data length of N = 3000 in the case of the
Macchi channel.

SNR [dB] MSE: RP MSE: KRPI

0 0.4855 0.3465
10 0.0288 0.0238
20 0.0214 0.0044
30 0.0878 0.0006
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7. Conclusion and Future Work

In this paper, we proposed a novel kernel method for single-
input single-output (SISO) nonlinear system identification
with binary-valued observations. This approach employs
a kernel function to perform an implicit mapping of the
data using the kernel trick. This kernel trick-based approach
implicitly maps the original measured data input into an
infinite (or high)-dimensional nonlinear space. The method
was used to estimate the impulse response parameters of
ETSI BRAN B and Macchi channels. Note that based on the
numerical simulation results, we have obtained good results,
compared with the recursive projection (RP) algorithm. It was
demonstrated that the proposed KRPI algorithm is capable
of estimating the parameters of the finite impulse response
system with a good level of accuracy, higher than that achieved
by the RP algorithm whose performance deteriorates con-
siderably. As far as channel impulse response identification
is concerned, the proposed KRPI algorithm is effective and
efficient in identifying the amplitude and phase of the channels
(ETSI BRAN B and Macchi) with various SNR values.

The future work will focus on the stability and convergence
of our solution in the context of non-line-of-sight outdoor
channel identification for wireless sensor networks based on
impulse ultra-wide band radio.
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