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Abstract  The paper presents a computer system for detecting
deep fake images in videos. The system is based on continu-
ous wavelet transformation combined with a set of classifiers
composed of a few convolutional neural networks of diversified
architectures. Three different forms of forged images taken from
the FaceForensics++ database are considered in numerical ex-
periments. The results of experiments involving the proposed
system have shown good performance in comparison to other
current approaches to this particular problem.

Keywords  continuous wavelet transform, convolutional neural
networks, deep fake, ensemble of classifiers

1. Introduction

The ability to recognize face-manipulated images is cur-
rently an interesting research problem, as such images are
frequently exploited for malicious purposes. Different deep
fake algorithms based on either auto-encoders or genera-
tive adversarial networks are capable of replacing faces in
target videos with artificially created images. Different pro-
grams used for the generation of manipulated images, such as
FakeApp, FaceSwap or Face2Face, are nowadays easily avail-
able and are commonly used across the Internet. The methods
for detecting such manipulated images have become increas-
ingly important for individuals, businesses, and governments
alike. Many world-leading institutions and companies, such
as Facebook, Microsoft, Amazon, MIT, Berkeley, Oxford
University, etc., have joined their efforts to cope with this
problem. Consequently, large-scale databases, such as Face-
Forensics++ [1] or DeeperForensic [2], [3] are available to
train and test forged image detection algorithms.
Several detection algorithms have been developed recently
which demonstrate good performance in terms of detecting
forged images in videos. These are based mainly on differ-
ent configurations of deep convolutional neural networks
(CNN), such as Siamese CNN [4], capsule architecture [5],
different architectures of inception CNNs [1], [6], [7] long
short-term memory (LSTM) networks [8] or combinations of
deep structures and other aspects of signal processing, e.g.
CNN combined with biological signals [9] or CNN combined
with gated recurrent units (GRU) and spatial transformer net-
works [10].
This paper proposes a different approach to the problem. It
applies continuous wavelet transformation (CWT) to original

images in the process of generating input data for an ensemble
composed of different types of CNN architectures. The data
fed to the ensemble are processed independently by parallel
processing CNN units and the final classification decision is
made by majority voting. The results of numerical tests per-
formed with the use of the FaceForensics++ database have
shown an increased degree of accuracy of the forged image
detection process.
This article is organized as follows. In Section 2, we intro-
duce three recently developed deep fake video generation
algorithms which have been applied in our investigations.
The proposed approach relied upon to detect forged images is
described in Section 3. Section 4 presents and discusses the
results of deep fake image recognition tests performed with
the use of images taken from the FaceForensics++ database.
The obtained results are compared with the recent achieve-
ments in his field in Section 5. Finally, concluding remarks
are given in Section 6.

2. Database Creation

The numerical experiments have been performed using the
FaceForencics++ database [11]. It contains 1,000 original
video sequences taken from YouTube and the same num-
ber of synthetic videos with a few generative models. All
face images are presented in the frontal position. The images
were subjected to different artificial modifications involv-
ing the faces. Three types of manipulation applications were

Fig. 1. Examples of manipulated images: upper row – original face,
lower row – manipulated faces obtained with the use of the FaceSwap
method.
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Fig. 2. Examples of manipulated images: upper row – original face,
lower row – manipulated faces obtained with the use of the FaceApp
method.

used while creating the artificial images: FaceSwap, FakeApp
(Deepfakes), and Face2Face [1], [11].
FaceSwap, created by Laan Labs, allows users to swap faces
online. The method is based on the graphical transfer of char-
acteristic features of the original region of an image to its
newly created counterpart. The colors of the associated im-
ages are corrected. Figure 1 presents examples of manipulated
images, created based on the genuine picture.
The FakeApp method, also known as Deepfakes, applies the
autoencoder-decoder technique while creating the falsified
image. Two images A and B are first analyzed during the
learning process of an autoencoder-decoder system. In the
generation of the manipulated image, the decoder of A is re-
placed with the decoder of B. Thus, characteristic features of
image A are transferred to image B. The results of the decoder
are associated with the rest of the image using an interpo-
lation algorithm and Poisson edition. Examples of images
created with the use of the FakeApp method are presented in
Fig. 2. The upper row shows the original face and the low-
er row presents fake images generated with the use of the
FakeApp method [12].
The Face2Face method reconstructs the face by transferring
a facial expression from the source video to the target file. In
the first step, the original video frame is chosen. The system
traces the expression of the face in the subsequent frames. Fi-
nally, the blend shape coefficients of these expressions are

Fig. 3. Examples of manipulated images: upper row – original face,
lower row – manipulated faces obtained with the use of the Face2Face
method.

Fig. 4. Examples of face images used in numerical experiments.

combined and applied to the original image, forming the fake
image. The results of using the Face2Face method are pre-
sented in Fig. 3.
The FaceForensics++ database contains 1,000 original videos
and 1,000 manipulated videos, each generated with the use of
the three methods referred to above. Consequently, 509,914
video frames are available. The images were compressed us-
ing the H.264 codec and the MPEG-4 AVC technique. An
average compression ratio classified as c23 was achieved. Due
to our limited computation resources, 1,000 video frames rep-
resenting the original and three types of fake images (4,000
in total, all compressed) have been used in the numerical ex-
periments in this work.
From each film (one original and three manipulated files),
we selected, randomly, those frames that represented images
shown within a 1-second sequence. Each original face in the
frame was accompanied by three manipulated faces.
The next step was to extract the fragments of the frame repre-
senting the face image only. This was done using the histogram
of oriented gradients (HOG) [13]. In the first step, the gradi-
ent values of the image pixels were computed. This was done
by applying a 1D centered, point discrete derivative mask
in the horizontal and vertical directions. In the second step,
the cell histograms were created. Each pixel within the cell
brings a weighted vote for an orientation-based histogram
channel, based on the values found in the gradient computa-
tion. The gradient magnitude itself contributes to the weight
of the vote.
The gradient strengths are locally normalized by grouping
the cells together into larger, spatially connected blocks. The
numerical descriptors generated by HOG are represented by
the concatenated vector of the components of the normal-
ized cell histograms from all regions of the block. The blocks
are overlapping, which means that the cells may contribute
to the final descriptor more than once. The HOG descriptors
serve as features relied upon for recognizing objects in the
analyzed frame images.
All those steps have resulted in creating a database of orig-
inal and manipulated images extracted from the frames of
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Fig. 5. The proposed system for acquisition and recognition of fake
images. Images extracted from video frames are subjected to CWT
and face landmark detection. The results of those processes are
superimposed and serve as a basis for creating input tensors to the
ensemble of CNN classifiers.

a video stream. Figure 4 shows some examples of face im-
ages extracted from the videos available in FaceForensics++.
Together with the accompanying manipulated images, they
create the database on which the numerical experiments were
based. Consequently, the database used in the experiments
was made up of 1,000 original images combined with 1,000
manipulated images, each created by applying FaceSwap,
FaceApp, and Face2Face algorithms.

3. Proposed System for the Detection of
Forged Images

The proposed method for detecting deep fake images can be
divided into the following steps.

1) Extraction of face images from the video.
2) Face landmark detection and localization in the image.
3) Continuous wavelet transformation of the image combined

with the inclusion of landmarks. The images created in
this way serve as a basis for the creation of input attributes
used by deep classifiers.

4) Application of the ensemble composed of several deep
CNN architectures used for recognizing fake images. The
input tensors for the CNN are created by combining images
resulting from CWT.

Figure 5 contains a graph presenting the above-mentioned
steps taken to acquire and recognize fake images.

3.1. Face Landmark Detection

The face landmark detection algorithm uses descriptors gen-
erated by the histogram of oriented gradients (HOG) algo-
rithm [13]. It counts the occurrences of gradient orientations
in localized portions of an image and performs computations
using a dense grid of uniformly spaced cells. To improve ac-
curacy, it uses overlapping local contrast normalization. The
features obtained in this way are used to find the character-
istic points of the face characterizing its structure. 68 such
points have been used.

3.2. Continuous Wavelet Transformation of Images

To create the input attributes used by the classifier, we sub-
jected the images to 2-dimensional continuous wavelet trans-

Original image

Scale 1

Scale 2

Scale 3

Scale 4

Amplitude
image

Amplitude image
with landmarks

Phase
image

Fig. 6. Examples of CWT-transformed face images: amplitude and
phase representations at the application of the Mexican hat as the
mother wavelet. The last column presents amplitude images with
superimposed landmark points.

Class

Majority voting

Input images
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Fig. 7. The ensemble of deep CNN structures used for fake image
recognition. The CNN structures are denoted by the following
numbers: 1 – alexnet, 2 – mobilenetv2, 3 – resnet50, 4 – efficientnet,
5 – squeezenet, 6 – googlenet, 7 – shufflenet, 8 – inceptionresnetv2.
Majority voting is used to find the winning class.

formation (CWT). The 2D CWT is a representation of 2D
data (the image) with the use of 3 variables: scale (dilation),
and position (in 2 dimensions) [14]. Scale is a real-value
scalar and position is the 2D vector with real-valued ele-
ments. Representing the image as a function f(x) with x
being a two-element vector of real numbers associated with
the position of pixels in the 2-dimensional space, the CWT is
defined as follows:

Wf (a, b) = |a|
∫ ∞
−∞

f(x)
1
a
ψ (

x− b
a
) dx , (1)
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where ψ represents the 2-dimensional wavelet function, a is
the continuous scale and b represents the continuous shift.
The 2D CWT is a complex space-scale representation of an
image.
The complex results achieved by applying the CWT tech-
nique may be represented by module and phase images. The
application of different scale values results in slightly differ-
ent results of CWT. This is seen in Fig. 6, which contains
amplitude and phase representations of the original image
presented in the first row, for the values of scale changing
from 1 to 6. There are visible differences in the resulting im-
ages using different scale factors (both in amplitude and phase
representations). Combining them together leads to an im-
proved representation of the details of the analyzed image.
Their combination might be done in different ways to create
the input attributes for the block of CNN classifiers. More-
over, to provide additional information on the structure of the
analyzed image, the face landmarks are superimposed on the
results of the amplitude images created by CWT. The result
of such an operation is illustrated in the last column in Fig. 6.
The continuous wavelet transform plays an important role in
the system. Wavelet transformation decomposes the image
into many levels with different resolution values. Such an ap-
proach provides more information on the details in different
regions of the image, thus enhancing the differences between
the original and forged images. Therefore, the classifiers are
supplied with richer information about the analyzed images
and are able to generate more accurate results.

3.3. CNN Ensemble System for Classification

By applying the CWT method, space for the generation of
input attributes used by the classification system is created.
In our solution, we have applied an ensemble of CNN clas-
sifiers. CNN classifiers combine two functions within one
structure: they generate and select diagnostic features, also
performing the final stage of classification [15], [16].
In creating the ensemble, it is important to ensure independent
operation of its constituent members. Therefore, we decided
to use the transfer learning technique applied to different ar-
chitectures of CNN. After some introductory experiments, the
following CNN pre-trained models have been chosen: alexnet,
mobilenetv2, resnet50, efficientnet, squeezenet, googlenet,
shufflenet and inceptionresnetv2 [17]–[22]. The classifica-
tion system defined in this way is presented in Fig. 7. The
applied CNN architectures differ significantly in terms of sig-
nal processing, types and sizes of filters applied, number of
processing layers, etc. All of them rely on cross-entropy in
the definition of the loss function, and on the softmax classi-
fier in the output layer. For the purpose of training these CNN
networks, the ADAM optimizer with an initial learning rate
of 0.001 was used.
The choice of input attributes used by the classification sys-
tem was made based on the introductory experiments. They
have shown that the best results were obtained by applying
amplitude representations of CWT-transformed images of
different scales. Due to the fact that the pre-trained CNN ar-
chitectures allow 3 parallel images to be used, in parallel, as

Tensor 1

Tensor 2

Tensor 3

Fig. 8. The exemplary images represent combinations of transformed
images as input tensors for the CNN ensemble classification system.
The tensors were formed from three succeeding scales of CWT
results.

input, we have tried different combinations of 3 amplitudes
as well as phases of such images, corresponding to different
scales. As a result of the experiments, we have found that the
information contained in 3 subsequent scales of amplitude
CWT leads to the greatest improvement in the operation of
the classification system.
The final experiments have been performed by application
of the following input tensors composed of only magnitude
representations superimposed with the face landmarks:
– tensor 1: scale 1 + scale 2 + scale 3,
– tensor 2: scale 2 + scale 3 + scale 4,
– tensor 3: scale 5 + scale 6 + scale 7.
Figure 8 shows the exemplary images forming the tensors
defined in such a way.

4. Results of Numerical Experiments

In the numerical experiments, we have used the FaceForen-
sics++ database [11] containing 1,000 original face images
and 3,000 deep fake images, representing three different meth-
ods of manipulation (FaceSwap, FakeApp and Face2Face,
each with a population of 1,000). For each pair of data (normal
image and one type of a fake image), an individual ensem-
ble comprising 8 CNN architectures, as presented in Fig. 7,
was applied. The database was split into randomly chosen
learning parts (70% of samples) and testing parts i.e., the re-
maining samples. The experiments were performed 10 times,
with the content of learning and testing samples changing
randomly. The paper presents and discusses the statistical re-
sults of tests performed on data sets that do not take part in
the learning process. The accuracy (Acc.), precision (Prec.),
recall (Rec.), and F1 measures will be presented for the three
methods of creating fake images taken into consideration.
Table 1 shows results for deep fake images created with the
use of the FakeApp algorithm. The results are related to the
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Tab. 1. Statistical results related to the process of recognizing fake
images created with the FakeApp algorithm, with three different
methods of defining input tensor applied.

Metrics Ens.
[%]

Mean
[%]

Std
[%]

Best
[%]

Worst
[%]

Tensor 1

Acc. 90.16 78.78 5.00 87.43 78.33
Prec. 91.18 86.42 7.38 90.16 76.53
Rec. 90.17 86.98 2.38 88.82 84.66
F1 90.67 86.70 3.59 89.47 84.60

Tensor 2

Acc. 91.33 87.11 8.87 90.22 82.71
Prec. 92.61 85.65 8.97 91.09 81.89
Rec. 91.34 79.25 6.55 87.17 78.67
F1 91.97 82.31 7.57 89.09 80.25

Tensor 3

Acc. 97.33 94.39 6.71 96.79 92.23
Prec. 97.49 85.50 7.41 95.10 84.28
Rec. 97.33 94.67 5.33 96.73 93.33
F1 97.41 89.85 6.20 95.91 88.57

Tab. 2. Statistical results related to the process of recognizing fake
images created with the FakeSwap algorithm, with three different
methods of defining input tensor applied.

Metrics Ens.
[%]

Mean
[%]

Std
[%]

Best
[%]

Worst
[%]

Tensor 1

Acc. 84.12 79.35 4.11 82.78 77.02
Prec. 84.19 77.80 5.94 82.13 74.26
Rec. 82.04 75.87 5.91 81.17 71.96
F1 83.10 76.82 5.92 85.03 73.10

Tensor 2

Acc. 87.50 83.21 3.48 85.67 80.22
Prec. 88.68 84.06 2.54 84.62 80.03
Rec. 88.94 83.32 3.01 85.45 81.62
F1 88.81 83.69 2.82 85.03 80.82

Tensor 3

Acc. 93.16 85.85 5.99 90.04 81.07
Prec. 92.67 86.51 6.03 89.29 82.30
Rec. 93.60 88.61 5.19 92.24 77.93
F1 93.13 87.54 5.58 90.74 80.05

quality values of the integrated ensemble, the mean of non-
integrated classification units, the standard deviation of the
results of the individual units. The results of the best and
worst members of the ensemble are presented as well. We
observed a significant improvement in the integrated ensem-
ble, compared to the mean of its non-integrated members, for
all types of tensor representations. The best quality parame-
ters (accuracy, precision, recall, and F1) have been observed
for input attributes having the form of tensor 3. For exam-
ple, the accuracy of the integrated ensemble increased, in that
scenario, from the mean of 94.39% to 97.33%. Statistical
results corresponding to the remaining methods of creating
fake images (FaceSwap and Face2Face) are presented in Tabs.

Tab. 3. Statistical results related to the process of recognizing fake
images created with the Face2Face algorithm, with three different
methods of defining input tensor applied.

Metrics Ens.
[%]

Mean
[%]

Std
[%]

Best
[%]

Worst
[%]

Tensor 1

Acc. 71.72 64.56 9.73 69.34 59.50
Prec. 67.02 66.14 7.65 66.40 60.95
Rec. 67.51 62.89 4.21 66.98 60.60
F1 67.26 64.48 5.43 66.70 60.77

Tensor 2

Acc. 75.09 68.33 7.16 73.61 63.04
Prec. 72.31 68.42 3.42 70.59 66.32
Rec. 72.83 69.62 2.75 70.63 65.71
F1 72.57 69.01 3.05 70.61 66.01

Tensor 3

Acc. 83.50 78.25 4.62 82.07 76.81
Prec. 82.68 79.05 4.66 81.58 76.95
Rec. 81.15 78.73 6.21 80.54 71.01
F1 81.91 78.89 5.32 81.06 73.86

2 and 3, respectively. In both cases, tensor 3 contained the
best configuration of input attributes. It may be noticed that
quality-related measures depend, to a considerable degree,
on the fake image creation method relied upon. The worst re-
sults were achieved while using the Face2Face method. This
is strictly related to the manner in which the manipulated
images are generated. This method concentrates on a small
portion of the face, without changing its general structure.
Consequently, the manipulated images contain few changes
compared with the originals. Therefore, they are very difficult
to recognize in the subsequent frames of the video.

5. Comparative Analysis of Results

Detection of forged images has attracted a lot of attention
in the past and different deep-learning approaches relying
on various configurations of classifiers have been proposed
in various papers. These include feedforward convolutional
neural networks of different architectures (Xception, cap-
sule, spatial transformer) [1], [4]–[7], [9], as well as recurrent
LSTM and gated recurrent unit GRU [8], [10] approaches.
Most of these papers focus solely on the accuracy of the
image recognition process. The results depend on the clas-
sification algorithms applied, the type of algorithm used to
create the fake image, and the compression ratio used in the
image acquisition process, i.e., raw image, moderate com-
pression c23, or high compression c40. The best accuracy
values achieved while working on the same FaceForensics++
database are summarized in Tab. 4. Some papers specify the
image compression method used, and some do not. Also, the
types of image forgery algorithm used are not specified in
some papers.
The declared accuracy for FakeApp manipulated images sub-
jected to moderate compression (c23) changed from 98.10%
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Tab. 4. Comparative results obtained for data taken from the Face-
Forensics++ database, with different fake image creation methods
applied. C23 and c40 notations are used to identify images with av-
erage and high compression ratios applied, respectively, while “raw”
means uncompressed images.

Paper Recognition
system Method Accuracy

[%]

[5] Capsule
FaceForensics++ (raw) 99.13
FaceForensics++ (c23) 98.00
FaceForensics++ (c40) 82.00

[23] Optical net FaceForensics++
(FakeApp) 98.10

[4] Siamese
CNN

FaceForensics++
(FakeApp) 87.15

FaceForensics++
(Face2Face) 82.14

FaceForensics++
(FaceSwap) 92.14

[1] Xception
CNN

FaceForensics++ (raw) 99.26
FaceForensics++ (c23) 95.73
FaceForensics++ (c40) 81.00

[6] Mesoinc-
eptionv4

FaceForensics++ (raw) 95.23
FaceForensics++ (c23) 83.10
FaceForensics++ (c40) 70.47

[10]
CNN +
GRU +
STN

FaceForensics++
(FakeApp) 96.90

FaceForensics++
Face2Face) 94.35

FaceForensics++
(FaceSwap) 96.30

[9] CNN +
biology

FaceForensics++
(FakeApp) 93.75

FaceForensics++
(Face2Face) 95.25

FaceForensics++
(FaceSwap) 96.25

[22] to 93.75% [9]. In the case of Face2Face forged im-
ages, the declared accuracy changed from 95.25% [9] to
82.14% [4]. The best result for FaceSwap manipulated im-
ages equaled 98.00% (as was presented in [5]), while the
lowest value of 92.14% was achieved in paper [4].
The compression ratio of the images has a very high impact
on the quality level achieved by the recognition system. This is
due to the fact that the losses resulting from the compression
procedure reduce the differences among images and make the
recognition problem more difficult to solve. As some infor-
mation is lost, small differences existing between the original
and the forged images created with the use of the fake algo-
rithm may not be noticed in the course of the direct analysis
of the images. The application of CWT introduces more de-

Tab. 5. Comparison of our best AUC values for the three fake image
creation methods under consideration with the best results presented
in [4].

FakeApp FakeSwap Face2Face

Paper [4] 0.894 0.981 0.807
Our best

value 0.954 0.916 0.848

tail to the images at different resolution levels, thus enhancing
these differences.
The compression effect is well visible in papers [1] and [5].
The best result declared with no compression at all is 99.26%
(with Face2Face and FaceSwap applied) in [1], or 99.13%
in [5]. The experiments performed by the same authors at an
average compression rate (notation c23) reduced these values
to 95.73% [1] or to 98.00% in [5]. At very high compression
rates (notation c40), the accuracy dropped to 81.00% in [1]
and 82% in [5]. The most stable FakeApp, FaceSwap, and
Face2Face results are observed for not-compressed images
presented in [9], [10].
Since our data were created by applying moderate compres-
sion rates, the comparison of results will concentrate on this
type of image presentation. We also include databases oth-
er than FaceForensics++. Paper [7] presented the results for
a dataset composed of 5,000 short, 10-second clips, with an
ensemble based on Xception + EfficientnetB3 + Attention
applied. The results depend on the size of the data: accuracy
Acc=92.20%, area under ROC curve AUC=0.975 for the basic
set or Acc=93.64% and AUC=0.9841 for a data set that was
10 times larger. Paper [8] has applied a Resnet architecture
CNN and a recurrent LSTM to detect deep fake videos. The
accuracy obtained by the model over the Celeb-DF dataset
was: Acc=91% and AUC=0.8880. In paper [4], accuracy de-
pended on the type of the fake algorithm used. The best score
of 92.14% was achieved for FaceSwap and the worst results of
82.14% for Face2Face, with the average AUC=0.89. Our best
results obtained for the three types of fake algorithms under
consideration are as follows: Acc=97.33% and AUC=0.954
for FakeApp, Acc=93.16% and AUC=0.916 for FakeSwap
and Acc=83.50% and AUC=0.848 for Face2Face. Such re-
sults are comparable with or are among the best in the case
of FakeApp manipulated images.
Figure 9 presents three ROC curves for the fake image creation
methods under consideration and the AUC values associated
therewith. They correspond to the best choice of input data in
the form of tensor 3.
Table 5 shows the best values of AUC obtained with the use
of our method for different fake algorithms. They are com-
pared with the corresponding values shown in paper [4]. Our
results are better for FakeApp and Face2Face and worse for
FakeSwap.

6. Conclusions

The paper has presented a new approach to fake image detec-
tion. It is based on the application of CWT and an ensemble
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Fig. 9. Receiver operating characteristics (ROC) of the proposed
system, corresponding to the best choice of input data (tensor 3).

of CNN architectures. The resulting CWT images consti-
tute a basis for the creation of input tensors to this deep
ensemble. Three forms of input tensors to the CNN classifiers
have been studied and compared by applying the publicly
available benchmark database of FaceForensics++ and us-
ing moderately compressed images (c23). In the training of
the classification units of the ensemble, the transfer learning
approach has been implemented. The results of numerical ex-
periments have shown the superiority of the CNN ensemble
over classification units working individually. For example,
the best ensemble accuracy score for the FakeApp algorithm
equaled 97.33%, while the mean for the individual classifiers
(not integrated) was only 94.39%.
The important advantage of CNN classifiers is their relative
insensitivity to the initial choice of parameters, such as start-
ing filter weight values, the learning constant used during the
adaptation process, random choice of connecting weights to
softmax in each iteration (dropout procedure), etc. As a re-
sult, the adaptation process is based on the statistics of the
learning samples, which are largely insensitive to the details
of the learning data. The numerical experiments have shown
high repeatability of results in different learning procedure
runs, showing good generalization abilities of the system.
The obtained results are presented in the form of quality mea-
sures, such as accuracy, precision, recall, F1, and AUC, all
estimated for testing data not taking part in learning. The
experiments performed show that the method relied upon
while creating fake images exerts a considerable impact on
the quality of operation of the recognition system. The best
results (the values of all quality measures above 97%) have
been obtained with fake images created by means of FaceApp
(Deepfakes). The remaining fake image creation methods
(FaceSwap and Face2Face) have resulted in slightly worse
quality values.
The proposed image processing system does not introduce
significant limitations in terms of the size of images. How-
ever, the smaller the image the better results are expected,
since CWT increases the number of details taking part in the
recognition process. In the case of very large images, some

limitations stemming from the amount of computer memo-
ry available might appear. The proposed system is relatively
complex and requires a considerable amount of high-quality
computation resources, especially with high FPS rates used
in the videos processed.
Future investigations will focus on using other fake image
creation methods, such as generative adversarial networks or
the variational autoencoder. Also, more databases available
to the public will be investigated and compared. Increasing
the number of CNN units cooperating within the ensemble is
an interesting research area as well. The key point is to ac-
celerate the computation process and reduce the time within
which the final decision is made by applying more advanced
organizational structures of the computation system.
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