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Abstract  Smart antenna technologies improve spectral effi-
ciency, security, energy efficiency, and overall service quality
in cellular networks by utilizing signal processing algorithms
that provide radiation beams to users while producing nulls
for interferers. In this paper, the performance of such ML so-
lutions as the support vector machine (SVM) algorithm, the
artificial neural network (ANN), the ensemble algorithm (EA),
and the decision tree (DT) algorithm used for forming the beam
of smart antennas are compared. A smart antenna array made
up of 10 half-wave dipoles is considered. The ANN method is bet-
ter than the remaining approaches when it comes to achieving
beam and null directions, whereas EA offers better performance
in terms of reducing the side lobe level (SLL). The maximum
SLL is achieved using EA for all the user directions. The perfor-
mance of the ANN algorithm in terms of forming the beam of
a smart antenna is also compared with that of the variable-step
size adaptive algorithm.

Keywords  artificial neural network, decision tree, ensemble algo-
rithm, machine learning, smart antenna, support vector machine

1. Introduction and Related Work

A smart antenna system (SAS) is an adaptive aerial array that
radiates a beam towards the user and a null towards the inter-
ferer in a cellular network, after estimating the direction of
arrival (DOA) of the signal from a mobile device. The sys-
tem uses a signal processing algorithm [1], [2] to create such
an adaptive system. SAS may have the form of a switched
beam antenna or an adaptive antenna solution [2], [3]. The
switched beam system forms the beam only in pre-defined di-
rections, whereas the adaptive beam system forms the beam
in any desired direction. The adaptive SAS concept is depict-
ed in Fig. 1. In this approach, the signal’s DOA is estimated
first, before forming a retro-directive main beam towards the
desired users. The performance of the adaptive algorithm is
the main factor in the performance of the entire SAS.
There are several adaptive signal processing algorithms [4],
[5], each of them having its specific pros and cons. The most
common algorithms used for SAS-based beamforming in-
clude the least mean square (LMS) algorithm [6], [7], the
recursive least square (RLS) algorithm [8] and the sample
matrix inverse (SMI) algorithm [9]. The variable step-size
LMS algorithm is used for beamforming in [6], where lower
SLL values are achieved. In [7], various configurations are
used in a SAS, relying on the LMS algorithm for 5G and 6G
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Fig. 1. Smart antenna concept.

energy harvesting applications. The variable step-size LMS
(VS-LMS) algorithm is used for beamforming in [6], where
a lower SLL value is achieved. In [7], various dipole configu-
rations are used in a SAS solution with the LMS algorithm
for 5G and 6G energy harvesting applications. The tracking
properties of the RLS algorithm are used in [8] for an adap-
tive antenna operating in a flat Rayleigh fading environment,
to solve the interference cancellation problem. To avoid the
drawbacks of traditional algorithms, the adaptive diagonal
loading SMI algorithm is used in smart antennas to enhance
their performance in varying signal-to-noise (SNR) condi-
tions [9].
Many other algorithms are applied for beamforming in SAS,
e.g. those presented in [10], [11]. The minimum variance dis-
tortion less response (MVDR) approach to beamforming,
which is capable of estimating the weight vectors for adaptive
beam steering, is used in [10] to improve cellular network ca-
pacity. The constant modulus algorithm (CMA) is used for
blind adaptive beam formation and for SLL reduction in pa-
per [11].
The applications of ML in smart antenna beamforming pro-
cesses are relatively new and examples of using such a tech-
nique are presented, for instance, in [12], [13]. In addition,
the majority of papers deal with isotropic antennas. The use
of ANN for designing a SAS is considered in paper [14] and
serves as a remedy for the complexity of the antenna array’s
design stemming from its nonlinear nature. Good performance
of ANN in terms of improving directivity and reducing SLL
of smart solutions with circular and concentric circular arrays
of isotropic antennas is reported in [15]. An overview of dif-
ferent ML types and the importance of applying this method
while modelling antennas and antenna arrays are briefly pre-

46
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023

https://doi.org/10.26636/jtit.2023.4.1329
https://creativecommons.org/licenses/by/4.0/


Designing Smart Antennas Using Machine Learning Algorithms

Inputs

Output

x1
w1

w2

w3

wn

y1

x2

x3

xn

z

Σ f

Sum Activation
function

Fig. 2. Simulation model for ANN.

sented in [16]. An intelligent synthesis method based on SVM
for antennas and smart antennas is presented in [17], where
an antenna classification score of over 99% and a parameter
prediction with a mean absolute percentage error of less than
6% were achieved.
The ML method using an ensemble model which combines
two or more models for better output is used for the prediction
of the bandwidth of metamaterial antennas in [18], where the
model’s data are processed using DT and SVM algorithms.
According to related work, signal processing algorithms seem
to be used for the purpose of designing SAS in the majority
of cases. The use of machine learning allows to avoid the de-
ployment of digital signal processors (DSP). The aim of this
paper is to investigate the performance of ML algorithms in
the design of SAS of a dipole array. For beam formation of
smart antennas, four types of ML algorithms are used: SVM,
ANN, EA, and DT, and their performance is compared. As
far as the achievement of the desired beam and null direc-
tions is concerned, ANN offers better performance, whereas
the EA method is better for reducing SLL.

2. Machine Learning Algorithms

Machine learning (ML) techniques have been developing
rapidly in recent years and are increasingly used for analyzing
and computing data in such fields as mobile communica-
tions, healthcare, the Internet of Things (IoT), social media,
industrial applications, and so on. ML is the key technology
used for intelligent classification and analysis of data in real-
world applications. The ML domain may be divided classified
broadly into four types of learning: supervised, unsupervised,
semi-supervised, and reinforcement learning [19], [20]. In
supervised learning, the operator of the ML method supplies
a dataset with known inputs and outputs, and the algorithm
is used to find values that are the closest to those inputs and
outputs. In unsupervised learning, the ML method does not
rely on an answer key or a human operator. Here, the ma-
chine estimates the correlations by analyzing the pattern of
the available data. Semi-supervised learning is the interme-
diate state between supervised and unsupervised learning
algorithms, where both labeled and unlabeled datasets are
used during the training phase. In reinforcement learning,
a set of actions, parameters, and end values is provided by the

ML algorithm. Then the ML method explores the best opti-
mal result using the trial-and-error approach.
The supervised SVM algorithm is used for both classifica-
tion and regression [21]. In the decision function, known as
support vectors, a subset of training points is used to make it
memory efficient. In SVM, the regression models are based
on finding a function f(x) that satisfies the coefficients of an
equation and has a minimum difference between the actual
and predicted responses for the training data under consider-
ation. SVM is a linear algorithm and may be even classified
as a linear regression approach. An SVM classifier creates
a line (a plane or a hyper-plane, depending upon the dimen-
sions of the data set) in an N -dimensional space to classify
data points into two separate classes. If the data set contains
more noise, SVM does not perform well. In this work, a lin-
ear SVM with sequential minimal optimization (SMO) [22]
having a linear kernel polynomial of order 3, is used.
ANN is an algorithm that is derived from the biological neural
network of the human brain [23], [24] and is a sub-category
of deep learning. ANN is a fully connected multi-layer neural
network having an input layer, multiple hidden layers, and an
output layer. A simple model of an artificial neuron is shown
in Fig. 2, where random weights are used and the weight-
ed sum of inputs is passed through an activation function of
a non-linear nature. The signal flows from the left to the right
-– a move known as “forward pass”. The output is compared
with the training data, and then the error is calculated. Next,
the network performs the “backward pass” from the right to
the left and propagates the error to every individual node us-
ing the back propagation technique. Accordingly, weights
are adjusted to reduce the error unless the required output is
achieved.
In EA, decisions from several models are combined to im-
prove overall performance [25], [26]. Here, the supervised
learning process as well as the classification and regression
tasks are performed by linear combination, and the outputs of
the trained base learner are real-valued probability estimates
of the class label given the input data. The combination of
these base learners is expressed as an ensemble probability
estimate, such as:

p(y|x) =
T∑
t=1

wtpt(y|x) , (1)

where pt(x|y) is the probability of estimating class label y for
a given input x by the trained base learner t with weight wt.
For a uniformly distributed base learner, wt = 1/T . Com-
pared with the basic methods, the performance of ensemble
learning methods for decision-making processes is very good.
In this work, the least-square boost ensemble algorithm [27]
is used.
The DT algorithm is a supervised ML method and is mostly
used to solve classification problems, though it can be used
for regression problems as well [28], [29]. DT relies on deci-
sion nodes and leaf nodes. Decision nodes are used to take
decisions and have many branches, whereas leaf nodes are the
outputs of those decisions and have no branches. The possible
solutions to a problem or decision are represented graphical-
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ly for specific, given conditions. DT contains a number of
terminologies. The root node is the entire population or sam-
ple, which is further divided into two or more homogeneous
sets. In the splitting phase, the process is divided into two or
multiple sub-nodes, and when the split node is divided fur-
ther, it is called the decision node. Terminal or leaf nodes do
not split any further. The split node is known as the parent
node, and the sub-node is known as the child node. When
the sub-nodes of a decision node are removed, the process is
called pruning.
Basic DT architecture is shown in Fig. 3. The different in-
stances are classified by DT by estimating the attributes of
the nodes, starting from the root node all the way to the
tree branch nodes corresponding to those attribute values.
The splitting is based on Gini impurity and entropy criteria
used for estimating the information gain. Entropy H(x) is
expressed for the probability p(x) as [29]:

H(x) = −
n∑
i=1

p(xi) log2 p(xi) , (2)

and Gini (E) is defined as:

E = 1−
c∑
i=1

p2i . (3)

In this work, deep regression [30] is used. In deep regression,
the features of deep neural networks are integrated in the
course of a regression analysis.

3. Beamforming of SAS Using ML

In this work, a smart antenna of made of linear, uniform, half-
wave dipole antennas is considered (Fig. 4). The antennas are
separated by uniform spacing of d. For a dipole of length of
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Fig. 5. Comparison of results for BD=47o and ND=35o.
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Fig. 6. Comparison of results for BD=40o and ND=27o.
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Fig. 7. Comparison of results for BD=30o and ND=21o.

l, the radiated electric field is [3]:

E(θ) = jη
I0e−jβr

2πr

[
cos(βl2 cos θ)− cos

βl
2

sin θ

]
, (4)

where β = 2π/λ is the propagation constant, I0 is the current
amplitude, η = 120 πΩ is the free space impedance and r is
the distance between the observation point and the source.
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For N dipoles in the array, the total radiated field is:

Etotal = E(θ)AF (θ) , (5)

Tab. 1. Comparison of results obtained using different ML methods.

Desired BD
and ND

ML
method

Obtained
BD [o]

Obtained
ND [o]

SLLmax
[dB]

BD=47o

ND=35o

SVM 53.51 41.82 –9.12
DT 34.88 19.98 –10.46

Ensemble 44.21 33.01 –13.42
ANN 46.42 35.02 –8.40

BD=40o

ND=27o

SVM 47.21 34.91 –12.40
DT 34.84 20.00 –5.68

Ensemble 34.85 22.15 –13.65
ANN 39.50 26.44 –11.32

BD=30o

ND=21o

SVM 36.00 20.00 –12.40
DT 36.00 19.95 –8.87

Ensemble 25.68 15.22 –13.55
ANN 30.42 20.44 –6.74

where AF (θ) is the array factor for isotropic elements given
by:

AF (θ) =
N∑
n=1

I0 ej(n−1)(
2πd
λ
cos θ+α) , (6)

where λ is the wavelength, α is the progressive phase shift of
the dipole array and I0 is the feed current. Equations (5), (6)
are the cost function for beamforming using ML methods.
In this work, a uniform linear array of 10 (N = 10) half-
wavelength dipoles with inter-element spacing of d = λ/2
is considered. The frequency of operation is 1800 MHz
(f = 1800MHz), the desired beam (user) direction (BD) is
θs and the desired null (interferer) direction (ND) is θI .
For beamforming using the ML method, a data set with
a matrix dimension of (2205×25) is created from different
combinations of f , d, β, θs and θI . The ANN network consists
of 5 input variables, 2 hidden layers and 20 output variables.
The first hidden layer has 20 neurons and the second hidden
layer has 5 neurons. The ANN is run 9000 times with the
learning rate initialization of 0.01 and a tolerance value of
10–5. After training and testing, 10 complex weights are
obtained and these updated weights are used for smart antenna
beam formation using the cost function, i.e. the array factor
for the dipole array. For beamforming using SVM, a linear
SVM model is created by using solver-sequential minimal
optimization (SMO) with a linear kernel of the third order
polynomial. In SVM, after training and testing, 10 complex
weights are obtained and the process is run 9000 times. For DT
implementation, a deep regression decision tree model [30]
is created and other parameters, such as SVM, are estimated.
For the ensemble algorithm, a boost ensemble model [27] is
created and other parameters, such as SVM, are assumed.
Matlab is used to simulate the beamforming of smart antennas
of dipole arrays with the use of ML methods. Normalized
array factors (AF) for a smart antenna comprising a 10-
element dipole array are compared in Figs. 5 – 7, for different
beam directions (BD) and null directions (ND). The plots
showing mean square error (MSE), root mean square error
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Fig. 10. Simulation results for ANN and VS-LMS (BD=0o,
ND=12o).

(RMSE) and mean absolute error (MAE) are shown in Fig. 8.
The predicted weight and actual weight for ANN, ensemble,
DT, and SVM methods are shown in Fig. 9. In Fig. 9, the
difference between actual and predicted weights are illustrated
for ANN and other ML methods. The results for beamforming
of a smart antenna are shown, for reference, in Tab. 1.
In the next step, parameters of the beamforming process
relying on the ANN method is compared with the method
based on the signal processing algorithm, i.e., variable step-
size LMS (VS-LMS) algorithm [6], [31]. In VS-LMS, step
size µ is a variable and is evaluated as [31]:

µn+1 =

{
αµn + δεn , if 0 < µn+1 < µmax
µmax , otherwise

, (7)

where µmax is the maximum value of the step-size parameter
[6], [31]. In Eq. (7), α and δ are constant parameters and, in
this work, α = 0.95 and δ = 0.0003. Factor εn in Eq. (7) is
related to the weight vectors [31].
The VS-LMS algorithm updates the weight according to the
following relation:

w(n+ 1) = w(n) + µn+1x(n)e
∗(n) , (8)

where e∗(n) is the complex conjugate of the error e(n) be-
tween the desired signal d(n) and array output y(n). The per-
formance of ANN and VS-LMS for beamforming in a smart
antenna is compared in Figs. 10–11. In both cases (Fig. 10
and Fig. 11), ANN shows better performance in terms of re-
ducing SLL. The maximum SLL values in Fig. 10, using
ANN and VS-LMS, are –13.3 dB and –4.7 dB, respective-
ly. In Fig. 11, the maximum SLL values using ANN and
VS-LMS, are –13.4 dB and –9 dB, respectively.
The results for maximum SLL (SLLmax) are compared with
other papers [32]– [34] in Tab. 2. A recurrent neural net-
work (RNN) from [32], is used for beamforming. The RNN
is based on the gated recurrent umit, the Elman RNN, and
the SVM with the covariance matrix taper from [33]–[35],
respectively. No relevant papers on the application of DT
and EA algorithms for beamforming in smart antennas were
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Fig. 11. Simulation results for ANN and VS-LMS (BD=20o,
ND=32o).

Tab. 2. Performance comparison: ANN vs. other papers.

References Beamforming
method Parameters SLLmax

[dB]

[32]
RNN N=32,

BD=0o –7.5

RNN N=16,
BD=–10o –8.5

[33]
RNN based
on the gated

recurrent unit

N=16,
BD=100o –11.5

[34] Elman RNN N=5,
BD=30o –11.5

[35]
SVM with
covariance

matrix taper

N=10,
BD=0o –10.5

ANN N=10,
BD=40o –11.32

This paper
SVM N=10,

BD=30o –12.40

DT N=10,
BD=47o –10.46

EA N=10,
BD=40o –13.65

found in recent publications.
Side lobe is one of the main reasons generating interference
in cellular networks. The reduction in SLL presented in this
paper is compared with other reported results.

4. Conclusions

For a smart antenna made of a dipole array designed us-
ing ML algorithms, ANN shows outperforms other methods
in terms of achieving the desired null and beam directions,
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whereas the EA method is better suited for reducing SLL.
SLL reduction is important for minimizing interference in
a cellular network. The theoretical aspects and the simulation
methods are easier for the ANN approach when compared
with other ML algorithms. The simulation time for the ANN
method is the shortest compared with other methods. For
BD=47o and ND= 35o, the simulation using SVM, DT, EA,
and ANN methods took 5.724, 1.057, 1.174, and 1.022 min-
utes, respectively. ML algorithms may be successfully applied
beamforming in smart antennas used in cellular networks,
including massive multiple-input multiple-output (MIMO)
systems operating in multiuser environments, where antenna
arrays are used with a very narrow beam pointing towards the
target.
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