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Abstract  The tracking of moving objects with the use of
GPS/GNSS or other techniques is relied upon in numerous ap-
plications, from health monitoring and physical activity support,
to social investigations to detection of fraud in transportation.
While monitoring movement, a common subtask consists in
determining the object’s moving periods, and its immobility pe-
riods. In this paper, we isolate the mathematical problem of au-
tomatic detection of a stop of tracking objects under the stream
processing regime (ideal data processing algorithm regime) in
which one is allowed to use only a constant amount of memory,
while the stream of GNSS positions of the tracked object in-
creases in size. We propose an approximation scheme of the stop
detection problem based on the fuzziness in the approximation
of noise level related to the position reported by GNSS. We pro-
vide a solving algorithm that determines some upper bounds
for the problem’s complexity. We also provide an experimental
illustration of the problem at hand.

Keywords  algorithm complexity, GPS monitoring, object track-
ing, physical activity monitoring, stream processing

1. Introduction

The tracking the geographical position of various objects has
become a ubiquitous technique due to the proliferation of
global positioning systems (GPS), global navigation satellite
systems (GNSS) and other location solutions. The spectrum
of tracked objects is rather broad. These may include, for
instance, humans, vehicles, commodities or electronic equip-
ment. A bulk of research seems to concentrate on monitoring
people and vehicles. The monitoring of individuals serves
several purposes. Healthcare is the most important area here,
as the physical activity of individuals may be controlled –
see [1] for a survey. The monitoring of the locations of peo-
ple serves also a more general purpose, i.e. identifying their
“life patterns” – the routes they usually cover and, important-
ly for us, the indoor and outdoor places they usually visit or at
which they stay for a certain period of time – see [2] and the
references therein. This feature is harnessed to offer targeted
advertisements and recommendations, to provide personal-
ized assistance in schedule and route planning, to investigate
various social trends and, once again, to protect the health of
humans, as the monitoring of adolescents staying at locations
in which they may smoke offers the potential to mitigate that
specific health risk [3]. Vehicle monitoring [4] is another im-

portant area of tracking physical objects. It is relied upon by
transportation companies and, sometimes, by government au-
thorities willing to track some sensitive commodities carried
over the road. The main purpose of vehicle monitoring is to
prevent driver fraud. Such fraud may consist in illegally load-
ing or dropping commodities off, as well as in picking extra
passengers by taxi drivers. Other objectives may be achieved
as well, since transportation companies are able to observe
the progress of deliveries and monitor the personal safety
of drivers traveling to remote areas. Compliance with traffic
rules and working time requirements may be controlled as
well.
Traccar [5] is a large open-source vehicle monitoring system.
It consists of tools used for collecting position data from var-
ious on-board devices and a monitoring server. It is capable
of visualizing the positions and routes of specific vehicles on
a map and offered several automated analyses focusing on the
routes taken and potential fraud. The range of techniques used
to automatically detect driver fraud is rather extensive. Ge-
ofencing [6] is a simple technique used for observing whether
a given vehicle leaves the corridors predefined for a given
route. Many advanced approaches are reported, like using
the Dempster-Shafer evidence theory [7], support vector ma-
chines [8], clustering of routes [9], to name just a few.
A common subproblem encountered in automated monitor-
ing of objects seems to consists in discovering when a given
object is moving and when it is immobile. It is known as the
so-called “stop detection problem”, where we need to de-
cide whether the object experienced a period of immobility
given the sequence of its GNSS frames. Each frame con-
sists of a single observation of the object, namely the time
of the observation and the coordinates describing its posi-
tion. We could optionally demand that the algorithm returns
the position at which the object stops and the duration of its
immobility period. When a human being stops, they usually
perform no physical activity. They are also likely to stay at
a predefined location, such as a flat, a restaurant, an office,
a shop, etc. Traccar, similarly to many other vehicle moni-
toring systems, displays moving vehicles as green points on
the map, and stopped vehicles are identified by red points.
Stop detection techniques must be applied in order for such
a simple signaling system to operate. Complex fraud detec-
tion algorithms examining the shape of the vehicle’s route
and its deviation from the normal pattern could also benefit
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from stop-related information. The process of picking up or
dropping off illegal commodities requires the vehicle to stop,
hence the need for accurate stop detection techniques.

2. Literature on Stop Detection

We must be aware that the problem of stop detection is often
not verbalized by the authors of object tracking systems, not
speaking about revealing its solution method. Perhaps it is
considered an obvious part of a much more complicated soft-
ware. Scientific literature provides a more generous treatment
of this problem, albeit it somewhat selectively concentrates
on specific solution approaches.
The problem of stop detection has various definitions. How-
ever, one of them is ubiquitous – having a sequence of GNSS
positions and the sequence of corresponding GNSS times,
a stop (stay) of an object is defined there as staying with-
in a circle of the given radius at least for the given time. This
definition is very natural. Small movements during the stay,
within the reach of the radius, are allowed to reflect either the
noise in the reported GNSS position in the samples, or move-
ments of the object within a place like shop or work office.
This definition is used in [2], [10]–[12]. Others [13], [14],
rather treat the problem as a recognition task for a machine,
do not define it precisely, and compare the recognition of the
algorithm with the human supervisor statements about when
the stops actually took place.
The literature stop detection methods will be to a great extent
analyzed according to their time and memory effectiveness.
For this sake we shall use a notion of stream processing
regime.
Stream processing is a setting when an input to the algorithm
is a possibly infinite stream of consecutive objects, say, of the
same type, like GNSS frames, each containing time and the
corresponding object position. The algorithm is fed the con-
secutive elements of the stream. The algorithm itself can use
only a limited memory. This limit is constant in the number
of stream elements seen so far. Hence, the algorithm cannot
even store the whole so-far seen trajectory of the object in its
data structures. Instead, it must use some aggregates.
The stream processing setting is important in many object
tracking applications, mainly due to the massive character
of many such systems. A fleet monitoring systems of a large
petrol company, or some government car monitoring system
may watch hundreds of thousands of cars. The cars move-
ments must be analyzed simultaneously and on-line. Hence,
it creates efficiency problems for the computing servers, both
in terms of used memory and processor power. Stream al-
gorithms clearly help to decrease the memory requirements.
They are also potentially faster, since they are by far dif-
ferently constructed than their non-stream counterparts, for
example, they do not iterate over a large array that stores the
fragment of input streams seen so far.
Stop detection methods might be of various complication
level. Simple, technical, easily implementable approaches
are valuable in practical monitoring systems, or monitoring
smartphone applications. They traditionally use a wider set of

input data, not only GPS positions and timestamps. Such data
might be the information whether the car engine is on or off,
which highly correlates with stops. Another data might be ob-
ject speed taken from GNSS. The authors of [13] use simple
data like speed and their straightforward derivatives (rapid
speed change, differences in consecutive GNSS timestamps).
A predefined decision tree equipped with comparisons of
these quantities with predefined thresholds) are used to rec-
ognize stops.
Such methods are very fast, usually they are stream algo-
rithms, but it is inherently difficult to reason about their
recognition precision, which can be just assessed experi-
mentally. Also, a wider set of data is not always available for
particular objects, which may prevent some massive applica-
tions.
A stop is visually a concentration of the trajectory points.
Thus one naturally tends to use some clustering methods. Var-
ious authors have noticed that methods with an a priori given
number of cluster, like k-means, are not suitable, since we do
not know the number of stops in advance. Giving a too big
number would make the algorithm find stops where the ob-
ject is moving, but slowly. Hence, methods with unspecified
number of clusters are used, and the famous DBSCAN clus-
tering method has found an enormous interest – see [10], [14],
for instance. This method must be modified for our purpose.
Constraints defining cluster are changed to reflect time de-
pendencies: we expect a cluster “duration” to be over a given
threshold, and also the cluster must be formed by consecutive
frames.
Interestingly, in [14], also entropy of movement direction is
used to enhance DBSCAN: during stays, the direction of po-
sition movement is chaotic, whereas on a real way it becomes
more ordered. An important feature of [14] is using support
vector machines to further divide stop places into actual ac-
tivity stops and non-activity stops (e.g. waiting for a green
light). In turn, [10] provides an interesting notion of com-
mon stay points, when it is required that many monitored
objects stay within a given distance of such a point at least
for a given time (finding this is not equivalent to correlating
ordinary stay points of several objects). Many stay places:
shops, parks, etc. are common. Also, the authors consider a
hierarchy of stay point (e.g. a university campus might be di-
vided into particular buildings). DBSCAN might be a quite
fast method, with linear-logarithmic time complexity, howev-
er, its memory complexity is linear instead of constant, which
makes derivative approaches not stream. Also, the approach-
es of [10], [14] remain heuristics. The authors do not strictly
prove the correctness of the solution, even when the problem
itself is sufficiently strictly defined.
Many other authors form the clusters of points, perhaps sim-
pler that the approaches above. The complexity of such ap-
proaches is often large, for example, the authors of [15], [16]
use two nested “for” loops to iterate over the set of GNSS
probes, thus obtaining an algorithm quadratic in their num-
ber, which might suitable only for medium size post-factum
analyses.
Two approaches – [2], [12] – are close to the proposition in
this paper. They solve the most common stop detection prob-
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lem, i.e. staying within a ball of a given radius ρ at least for
the given time ϑ. They consume GNSS probes consecutive-
ly, as these become available. The probes contain positions
and time stamps. They algorithms maintain a sort of “cur-
rent potential cluster”, represented by its potential center, as
imagined by the particular algorithm. When the next probe
comes, it is decided whether it lies within the cluster (within
the distance ρ from the cluster center) and can be added to
the cluster, or not – and the cluster should be forgotten and a
new cluster created around the new point. Whenever a cluster
duration in time exceeds ϑ, a stop is detected. This scheme
is extended in [2] by delaying the cluster closing: two points
sufficiently distant from it are necessary instead of one point.
In [11], in turn the cluster center is not taken from a particu-
lar GNSS position but calculated as an arithmetic average of
the so-far seen cluster points.
The two algorithms are not precisely stream algorithms. How-
ever, they seem quite easily extendable to stream algorithms,
because they essentially use low memory, mainly for repre-
senting the center of the current potential cluster. The neces-
sary extensions would contain correcting the representation
of cluster, combined with a fast computation of cluster dura-
tion in time, or a fast calculation of the arithmetic average.
Again, the authors do not provide any strict proof that their
algorithms actually solve the problem. As exact solving of
many mathematical problems by stream algorithms is not
possible, we might expect the same in this case. Perhaps the
authors suspected that their solution are not certain and thus
introduced their improvements: the delay of cluster change
and the representation of cluster center by an arithmetic aver-
age of some points (the latter is especially suspicious: since
the clusters lie within a ball around some point, this point
is rather more close to the distance center of the cluster of
points than to the arithmetic average of the points).

3. The Contribution

We propose a stream, and thus efficient, algorithm to solve the
stop detection method, of a provable solution quality. Both
the stream character and provability of the algorithm which
are so scarce in the literature on stop detection. We use only
position data and timestamps. We pose a stop (stay) detec-
tion problem. It is a variant of the most ubiquitous demand of
staying in a ball of the given radius at least by the given time,
defined in the stream processing regime. We give an interest-
ing definition of approximation of this problem, based on the
fuzziness of the radius defining the problem. We prove that
our algorithm gives solutions approximate in this sense.
The algorithm is based on a more complicated design of po-
tential stop clusters, containing many points, but still using
a little memory. Our intention is to promote a more formal
analysis of the stop problem in the stream processing regime
and initiate constructing various suitable provable algorithms.
Also, our research has already shown the multitude of def-
inition and solving nuances that appear when we tread the
problem formally, like ambiguities of the “stop cluster” and

its time limits, problems with overlapping stops. These nu-
ances also deserve investigation.
The rest of the article is structured as follows. In Section 4,
we describe the stream processing regime. The stop prob-
lem is posed in Section 5. Section 6 gives an approximation
solving algorithm, with the discussion of its properties, in-
cluding this approximate character, defined in a specific way.
Finally, some illustrations of solving the problem is given in
Section 7, and the work is concluded and directions for a fur-
ther research are presented in Section 8.
Note. By dist(a, b) where x, y ∈ Rn the Euclidean distance
in this space is denoted:

dist(a, b) =
√
(a1 − b1)2 + (a2 − b2)2 .

4. Stream Processing Regime

Problems and their solving algorithms might be defined with
the use of a stream processing regime, with its properties
being as follows:
1) input data has the form of an infinite sequence of

identically-typed elements; the algorithm is provided with
consecutive elements from the stream; each element is
presented to the algorithm only once,

2) the memory of the algorithms is constant in the number
of elements presented to the algorithm so far.

“Stream algorithm” is a new name for the former notion of
“ideal data processing algorithm” [17]. More precisely, let
(d1, d2, . . .), where di ∈ D be a possibly infinite sequence of
input data elements, each of the type represented by some set
D. The stream algorithm is a box with a constant memory and
works in the stream regime (Algorithm 1), where the steps
are performed for each element of the sequence (d1, d2, . . .).
In practice, algorithms can only partially be of the stream
variety, i.e., only a specific portion of the data may form
a stream and the constancy of memory may be required
only with respect to this part of data. The remaining part
of data may be treated in a standard way. It might be fed to
the algorithm at the beginning of the computations and the
memory complexity of the algorithm with respect to this part
of data may be over-constant.

Algorithm 1 Stream processing scheme.
1: Initialize the algorithm memory (state).
2: Consume d1, perform some processing using the box

memory and possibly produce some output.
3: Consume d2, perform some processing using the box

memory and possibly produce some output.
· · ·

5. The Stream Stop Detection Problem

Although the main idea of defining a stop (stay) is simple,
there are many nuances and singularities connected with the
ambiguity of the time limits applicable to the stay period,
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difficulties in crisply defining consecutive stays, potential to
represent one stay as two consecutive stays, etc. These nuances
are even more pronounced in the stream regime, leading to
unavoidable solution inaccuracy. Therefore, some reasoning
may seem to be a little confusing. We shall try to simplify the
problem posing even beneath the practical application needs,
in order to simplify the analyze with outlook to practical
needs.
Let the input stream of data be (d1, d2, . . .) where di =
(ti, pi) ti ∈ R+ represents the GNSS time for probe i and
pi = (xi, yi) ∈ R2 represents the position of the object in
probe i.
To describe the position of the probes, a Cartesian plane is
used, with an orthonormal system of coordinates and the
Euclidean distance. In this way the curvature of the Earth may
be ignored, as the problem of stop is local in its nature and
may be approximated by adopting such an approach. For big
system trajectories representing long vehicle routes, a local
transformation of the geographic coordinates (longitude and
latitude) into our plane might be recomputed from time to
time.
For simplicity, the fact that multiple stops may occur along the
object’s trajectory is also ignored, as the task is to detect the
existence of a stop condition only once, as soon as it occurs.
However, the processing may be easily extended to the realistic
case of multiple stays, e.g., by resetting the algorithm’s state
when it is discovered that the stop (stay) has come to an end.
Now the problem may be formulated in the following manner:

P (δp, δt) .

The problem-related parameters include time threshold δt > 0
and distance threshold δp > 0.
In a stream regime, if for some step e of the scheme from
Algorithm 1 there exists b ∈ 1 . . . , i, e > b, b ∈ 1 . . . , i,
such that the following stop condition is fulfilled:

te − tb > δt ∧ ∃s∈R2∀j=b,...e dist(pj , s) ¬ δp , (1)

the algorithm must output a “stop” at step e of the scheme
from Algorithm 1 at the latest.
The algorithm seeks for a situation when there exists a sta-
ble position s, such that the consecutive points are located
on a fragment of the trajectory, starting at GNSS probe b,
ending with probe e and lasting for at least time δt, and the
GNSS positions of that fragment are located not more than δp
away from s (Fig. 1). The use of a lower time threshold while
defining a stop is natural. More explanations are required in
relation to the position threshold δp. It may be interpreted in
two ways. For tracking people staying at a specific location,
such as a room, or a shop, we must allow for their movement
within this facility. So, the coordinates cannot be identical
throughout the entire stay. When monitoring vehicles, a vehi-
cle may be staying at the same place, but its GNSS positions
may vary around the true position, due to GNSS inaccura-
cy (noise). The latter phenomenon is also encountered when
monitoring people, where inaccuracy in sensing the position
within rooms may be rather substantive.
It needs to be noted that the position of the stay is induced
from the trajectory itself; without using any coordinates of

spb pe

δt

Fig. 1. Example of a stop (stay): te − tb > δt must hold.

potential, predefined stay locations. This is natural for ve-
hicles that may stop anywhere. Due to privacy constraints,
when monitoring the position of people, it is often desirable
not to label the potential stay locations or to compile any
databases of such places [18].
A variant of the above problem is possible, in which the stop
condition – Eq. (1) – is modified by replacing demand s ∈ R2
with the requirement stating that s needs to be one of points
pi on the trajectory fragment recorded so far. This slight mod-
ification would be motivated by practical implications. When
we show information concerning the stay to the user, it is bet-
ter to show a specific and real GNSS probe and identify it
as the place at which the vehicle is present, instead of pre-
senting a hypothetical and artificial position, much less likely
to be convincing for the user. Also, the process of designing
simple algorithms for such a variant may be easier. Howev-
er, this modification is not used later. Optionally, we could
require that the algorithm:
• outputs a stable position (stay point) s,
• outputs an input element index b at which the stay com-

menced,
• outputs “Start” while processing the first input element di

such that the fragment of input data from any index b < i
to i does not fulfill the condition (1).

Outputting a stable position may be necessary for the system
to present the results to the user or to process this informa-
tion further, in accordance with specific information. The
same applies to the stay commencement index b. Outputting
“Start” informs that the stay period is ending and the object
is moving from the stay point. Then, the algorithm may be
reset (reinitialized) and may look for another stop in the suit-
ably renumbered remainder of the input stream.
Note that the stable position s is not necessarily uniquely de-
fined for a given input sequence di. There may exist many
s-es fulfilling Eq. (1). If we require s to be returned by the
algorithm, we shall be satisfied with any of the candidate val-
ues.
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The same applies to index b, describing the beginning of the
stay period. It may happen that if a trajectory fragment de-
limited by input sequence indexes b and e fulfills the stop
condition given by Eq. (1), then some shorter fragment de-
limited by b′  b and e also fulfills the stop condition. This
will happen whenever te − tb′ > δt. Thus, whenever we re-
quire that a pair of stay fragment bounds (b, e) be returned
by the algorithm, we shall be satisfied with any pair meeting
the stop condition.
Note that in problem P (δp, δt), we require a “Stop” to be
output at iteration e at the latest. This actually means that
Stop should be output as soon as the stay may be proved
based on the so-far revealed fragment of the input sequence
(d1, . . . , dj).
Definition of the problem does not determine how many times
a “Stop”‘ may be output for a given stay. This is an intention-
al technical omission aiming to facilitate the further analysis.
To avoid “hiccups”, only the first “Stop” may be counted, and
the subsequent occurrences of “Stop” may be ignored. The
algorithm proposed later does not suffer from any hiccups.
Although the proposed algorithm is equipped with some ad-
ditional features described above, i.e., elimination of hiccups
or an additional output, we will not deal with these extensions
in its formal analysis.

6. Solving Algorithm

Recall that in [15], a problem similar to the proposed prob-
lem P (δp, δt) is considered, but in a non-stream setting. The
algorithm receives the entire set [d1, d2, . . . , dm] as input da-
ta. The stop condition is formulated similarly to Eq. (1) and
is checked directly in the algorithm. This results in a dou-
ble loop where both the inner and the outer loops iterate over
the input data. The memory complexity of the algorithm in
the GNSS stream length is O(m2) and the time complexity
is O(m2). With the trajectory length of 1000 probes and in
a system monitoring hundreds of thousands of objects, this
could be too wasteful. Instead, a much more effective stream
algorithm is proposed, at the cost of some inaccuracy. The
description of the algorithm is divided into two parts: initial-
ization and consumption of an input data element di.
The idea behind the proposition is as follows. The algorithm
is supposed to detect stays without any prior knowledge of
potential stay locations (rooms, flats, shops, etc.). It should
infer stay locations from the trajectory. However, if the po-
tential stay location was known in advance, it would be easy
to detect stopping at this place by relying on stream process-
ing. Only the lowest time value should be remembered, such
that between that value and now, the trajectory did not leave
the sphere around the potential stay location, with its radius
equaling δp. In an iteration in which this time value becomes
distant from the current moment by more than δt, a Start is
detected. Since the potential stay location is unknown a pri-
ori, this action needs to be repeated for all points in Rn. This
is certainly infeasible. Thus, the set of potential stay locations
is first reduced to a regular grid in R2. This grid still is infi-

nite, but we can easily reduce it by considering, in the i-th
iteration, only those grid points which are within the sphere
of radius δp around pi. Point outside this sphere cannot be
stay locations, since pi is too distant from them.
Let us precisely define the grid of points.
Definition 1. The ε-grid Gxiε ⊂ R2 is equivalent to set{
(iε, jε) : i ∈ Z, j ∈ Z

}
.

Now, we can define an algorithm for problem P (δp, δt). The
algorithm is parametrized by a natural number ε ∈ (0, 1),
representing the guarantied precision of the solution. The
main variables are:
• T – a mapping from Gε·√2 into R. The algorithm will not

try to give an argument that is not stored in the mapping.
An empty mapping means that no correspondence is stored
in the mapping. T is a typical key-value map compiled
using a popular programming language. T (p) will be ti
for “the oldest possible stay commencement index b” for
a given candidate p for the steady position.
• B – a similar mapping from Gε·√2 into N. B(p) will be

the “the oldest possible stay commencement index b” for
a given candidate p for the steady position. T similarly to
the time we would have to remember in case of the a-priori
known potential stay place.
• stop_printed – a Boolean variable saying whether there

has already been some output produced by the algorithm
and the last message has been “Stop”, with additional
information.

Algorithm 2 Provable ε-algorithm proposition – initializa-
tion.

1: Initialize T and B to empty mapping
2: stop_printed:=false

The purpose of the algorithm is as follows. When Algorithm
2 consumes the e-th element di of the input, only points from
G are considered as candidates for the stay position. G is an
approximation of the sphere with the center in pi and radius
δp. No point from outside of this sphere could be a proper s
for a stay that becomes detectable precisely in this consump-
tion, since it would be more distant from pi than by δp, and
this would violate the stop condition Eq. (1).
If some point g⋆ ∈ G belonged to similar spheres around pre-
vious pi-s from the previous consumptions, then time T (g⋆)
is lower than ti − δt. Then again, when moving back in time
until T (g⋆), g⋆ has always been located not further than δp
from a particular pi. Hence, we can detect a stop in s = g⋆.
This algorithm is practical in that it does not display any hic-
cups behavior, Stop and Start outputs are printed alternately
and delimit the consecutive stay periods. Also, the algorithm
does not need to be reinitialized after the first detection of
a stop, as it detects consecutive stop periods by itself.
The following theorems describe the algorithm’s accuracy.
Theorem 1. If for a problem P (δt, δp), ε-algorithm 2-3 out-
puts a “Stop”, then a sound and exact algorithm for this
problem also returns a “Stop”, at the e-th consumption at the
latest.
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Proof. Since in step 19 in the e-th consumption T (g⋆) was
less than ti − δt, step 9 could have been run in consumptions
b to e. Hence, in this period g⋆ has always been within the
appropriate G-s, the stop condition Eq. (1) is fulfilled with
e.

In other words, a recognition of Stop by the proposed algo-
rithm is correct, though maybe delayed. This is not surprising.
Perhaps there existed some older fragments of the trajecto-
ry during Stop, not deviating from the actual steady point by
no more than δt, and thus the detection of Stop could hap-
pen earlier, but the algorithm that uses only an approximation
of the set of potential steady points could overlook this frag-
ment. The lag, however, does not have to be very bothersome
in practice. It can be easily shown that the delayed detection
of Stop does not overlap with Start immediately following
the moment at which a precise algorithm would detect Stop.
Therefore, the delay works within the period of the stay.
Now, sensitivity of the algorithm will be assessed.
Theorem 2. Assume a sound algorithm for problem P (δ̄t, δ̄p)
with input stream (di) returns Stop in the e-th consumption of
input data. Then proposed ε-algorithm for problemP (δ̄t, δ̄p+

Algorithm 3 Provable ε-algorithm proposition – algorithm’s
reaction to element di = (ti, pi) in the input stream.

1: G := {p ∈ Gε·√2 : dist(p, pi) ¬ δp}
2: Set T ′ to empty mapping
3: Set B′ to empty mapping
4: for g ∈ G do
5: if g within the set of keys currently stored in T then
6: Add the correspondence g – T (g) to T ′
7: Add the correspondence g – B(g) to B′
8: else
9: Add the correspondence g – ti to T ′

10: Add the correspondence g – i to B′
11: end if
12: end for
13: T := T ′

14: B := B′

15: if ∃ g ∈ G : ti − T (g) > δp then
16: if not stop_printed then
17: Output “Stop”
18: Set g⋆ to some g satisfying the expression

under the above quantifier
19: Output “Stop”
20: Output “Stop position s=”; Output g⋆
21: Output “Stop begin index b=”; Output B(g⋆)
22: Output “Stop begin time =”; Output T (g⋆)
23: stop_printed := true
24: end if
25: else
26: if stop_printed then
27: Output “Start”
28: Output “Start iteration index=”; Output i
29: Output “Start iteration time=”; Output ti
30: stop_printed := false
31: end if
32: end if

ε) with the same input stream di also returns Stop in the e-th
consumption at the latest. In other words, we can achieve
100% sensitivity of the algorithm by slightly decreasing δp
to which the algorithm is tuned.

Proof. Since the sound algorithm detects Stop in consump-
tion e, the stop condition Eq. (1) is fulfilled with s = s⋆
for e. It is easy to verify that there exists ḡ in Gε·√2 with
dist(ḡ, s⋆) ¬ ε. By the triangle inequality, pi-s in consump-
tions i = b+1, . . ., e were at the distance from s⋆ not greater
than dist(pi, ḡ) + dist(ḡ, s⋆). Hence, using the stop condi-
tion dist(pi, s⋆) ¬ δ̄p+ ε in these consumptions. This means
that T (g⋆) could not be changed in consumptions b+1, . . . , e
(step 9 was not run in these consumptions). The condition
from step 15 was satisfied and Stop was output iteration e at
the latest.

In order not to overlook stops when using the proposed al-
gorithm, one could slightly increase parameter δp. In most
cases, this is practically viable. Parameter δp often represents
the maximum possible noise affecting the GNSS position of
an object (e.g., a car) that is fully immutable. Assuming that
maximum possible noise is quite arbitrary, a larger maximum
noise value can be easily set. If δp represents a diameter of
a building or a room, it is also an approximation, since build-
ings and rooms are not sphere-shaped. This means that we
can once again increase this parameter slightly. This way, we
can certainly make the algorithm slightly oversensitive, but
as long as the stay locations are sufficiently remote from each
other, this should not be problematic.
The possibility that the algorithm detects stops quicker that
the proper exact algorithm is, in reality, not surprising. It
is not a fault per se, but a consequence of the oversensitiv-
ity. The algorithm with an artificially increased δp cannot
falsely move the beginning of the detected stay backwards. It
could even detect a false stop before the correct one, if the
fluctuations of the object’s position oscillate slightly more
and exceed the original δp. Some complexity issues concern-
ing the ε-algorithm for problem P (δ̄t, δ̄p) still remain to be
investigated. Mappings T and B are typical of popular pro-
gramming languages. If real keys of these maps were in doubt
for accuracy reasons, they can be essentially replaced with
integer indexes in an efficient implementation, since they are
points of some regular grid. The maps can be realized effi-
ciently, e.g. by using binary trees.
Let us assume that the memory requirement for a k-elements
map is O

(
kpolylog(k)

)
. The maximum size of G, a set

of plane grid points within a sphere of radius δ̄p, can be
easily verified to be O

((
δ̄p/ε
)2). T , T ′, B, B′ are nev-

er of a greater size than G. The remaining variables do
not dominate the memory complexity, which is finally the
O
(
polylog

(
δ̄p/ε
)
·
(
δ̄p/ε
)2). This does not depend on the

length of the input stream for the fragment consumed so far,
so the algorithm truly is a stream algorithm.
The initialization costs clearly O(1) time. Assume derefer-
encing the value in the map costs polylog(k), and adding
a correspondence to the map costs polylog(k) where k is the
maximum possible number of map elements. The complex-
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Fig. 2. Example route A, detected stay points for δp = 0.05 and
δp = 0.06.

ity of one input element consumption is dominated by the
O
(
polylog

(
δ̄p/ε
)
·
(
δ̄p/ε
)2) additions of correspondences

to maps. The total complexity of one input element consump-
tion is finally O

(
polylog

(
δ̄p/ε
)
·
(
δ̄p/ε
)2).

This is usually essentially less than the rank of the square of
the input trajectory length, as typical for simple algorithms.
However, accuracy ε should not be taken to be unnecessarily
small, since it affects the problem’s complexity through an
inverse-square function.

7. Numerical Illustration

The operation of algorithm 2–3 will be demonstrated on
several simple, real life GNSS traces, in order to validate the
algorithm and to observe its sensitivity to changes of some
basic parameters.
Three GPS route traces generated by volunteers on their
journeys or walks were used in the experiments. They were
obtained from the Open Street Map “traces” service, available
under an Open Data Commons Open Database License [19].
Three up-to-date OSM examples of different lengths have
been selected:
• Example A – OSM trace 11208248, 49 probes, approx-

imately 15 h for the GPS device switched on, the time
distance was varying between the ranks of one second and
of one minute,
• Example B – OSM trace 11208345, 4620 probes, approxi-

mately 3 h, approximate time distance between consecutive
probes 2 s,
• Example C – OSM trace 11208347, 6440 probes, approxi-

mately 7 h, approximate time distance between consecutive
probes 2 s.
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Fig. 3. Example route B, detected stay points for δp = 0.05 and
δp = 0.06.

We used timestamps, longitudes, and latitudes from the traces.
However, the proposed algorithm uses an Euclidean space to
represent object positions. Hence, a transformation convert-
ing the longitude-latitude space into the X − Y Euclidean
plane was used, where the units are kilometers. This transfor-
mation was affine. Coordinate X was an affine function of
longitude, coordinate Y was an affine function of latitude.
The coefficients of the functions were selected so that the first
probe of the trace yields coordinates (0, 0), and that in the
direct surroundings of this point,X and Y properly represent
distance in km. This approximation around the first probe
from the trace was used also for other probes – we ignored the
Earth’s curvature, since the routes were of the local variety.
Various times were expressed throughout the experiments in
seconds from the first trace frame’s timestamp. Algorithm
2–3 was run using these routes. The default settings were as
follows: δt = 300 s, δp = 0.05 km, ε = 0.01. We observed
the output of the algorithm regarding the stays detected.
In the first phase, the stay radius parameter δp was varied (it
was increased slightly from 0.05 to 0.06 km). We observed
whether this increase, representing the surrogate increasing
of δp required by the analysis of the algorithm, exerts a sub-
stantial impact on the detection of the stay.
In the second phase, grid pitch parameter ε was increased
from the default value of 0.01 to 0.03 km. This was a con-
siderable decrease of the algorithm’s accuracy. The pitch of
0.03 was only slightly lower than the stay radius δp equaling
0.05. We wanted to see whether such a setting would sub-
stantially deteriorate detection efficiency. The routes and stop
points s, stop commencement iteration indexes b and times
tb, as well as the start messages signaling the end of the stay
generated by the algorithm for the different settings are pre-
sented in Figs. 2–7 and the details, in a slightly abbreviated
format, are shown in Tab. 1.
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Fig. 4. Example route C, detected stay points for δp = 0.05 and
δp = 0.06.

The experiment seems to have validated the algorithm. Stops
are detected at reasonable locations: places of concentration
of specific points – as visible in example A, around point
(0, 0), which is the start of the trajectory. We can suspect that
the volunteer had switched the GPS device on a while before
the journey actually commenced. Other detections appear to
take place at locations in which the object clearly deviates
away from the route.
The increase in stop radius δp did not impact the detection
of particular stays. As foreseen in this analysis, an increase
in δp may lead to slightly earlier stop detections. Also, the
stay point s was occasionally moved by a distance in the rank
of 10 m. This should not raise the level of anxiety, since the
stop point does not need to be unique and the displacement
was considerably smaller than the stay radius δp of 60 m. In-
significant reaction of the algorithm to the increase in δp is
satisfactory, since such an increase is necessary to counteract
a slight inaccuracy of the algorithm.
The increase in the grid pitch parameter ε from 0.01 m to
0.03 m also resulted in insignificant consequences to the place
and time of detected stops. One additional detection occurred
in such a scenario. The time complexity is over-quadratic
in the ratio of δp/ε. For ε = 0.03, this ratio is as low as 5/3,
and the algorithm still exhibits a fair behavior. While taking
large ε values, the surrogate increasing δp to a sufficient lev-
el should be applied simultaneously. Although we have not
done so, the algorithm was still able to work in a satisfactory
manner.

8. Conclusions and Further Work

We have shown that the problem of stop detection in monitor-
ing moving objects, when defined crisply and in the stream
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Fig. 5. Example route A, detected stay points for ε = 0.01 and
ε = 0.03.
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Fig. 6. Example route B, detected stay points for ε = 0.01 and
εp = 0.03.

regime, is scientifically important, complex, and should not
be overlooked. Many nuances need to be taken into consid-
eration. Time limits of a stay are ambiguous: a larger time
segment within which the trajectory points are close to the
stay point s might be as good as some time segment con-
tained in that, provided that both the segment lengths exceed
the definitional time threshold δt.
However, with a stream regime we might not see the data
from whole outer interval as early as from the inner one. A
question arises which segment to report, and when. We have
actually looked for a single stop in this paper, but if when we
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require our algorithm to report all stops, the time limits am-
biguity of stops probably will cause further problems with
possible overlapping of stops and ambiguity of the number
of stops. It must be stressed that our algorithm processes the
multi-stop case in a reasonable manner, however, this behav-
ior is not investigated formally.
We showed how the problem can be solved effectively, i.e,
within the stream processing regime. Reaching this level an
effectiveness might be crucial in large-scale applications. We
gave an algorithm, which is inaccurate, but of provable limits
of its inaccuracy. This algorithm seems to work soundly in
the first tests.
Many directions of further research come to mind. A more
precise definition of the stop problem is desired, that accounts
for more nuances. Actually, describing the abovementioned
nuances and ambiguities could require quite a mini-theory.
A more thorough analysis of the complexity of the problem
would be welcome. First of all, a lower bound on the effec-
tiveness of the solving algorithms should be given. It seems
possible that the considered problem cannot be solved exactly
with a stream algorithm, similarly to many other mathemati-
cal problems. For this sake, a counterexample could be given.
Perhaps some tradeoff line matching the solution inexact-
ness with time complexity of an iteration of stream algorithm
could be given.
It seems appealing to define the θ-approximation of the solv-
ing algorithms, where the real number θ says how we should
artificially change δp for the algorithm in order to attain the
hundred percent od sensitivity. This is a formalization of what
we did in Theorem 2. This tool could be used as the measure
of inexactness of algorithms.
The sensitivity of the problem to changes in its parameters
could also be investigated. For example, the detected stays
and their time bounds should not change too rapidly with a
change of δp. For this sake, the problem definition could be
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Fig. 7. Example route C, detected stay points for ε = 0.01 and
ε = 0.03.

modified. Alternatively, some properties of the trajectory it-
self, naturally expected in practice, could be formulated that
prevent such a behaviour.
Most importantly, new solving algorithms should be searched
for. In particular, creating grid points in our proposed algo-
rithm is a bit complex and results in somewhat increased time
of the iteration of our stream algorithm. Perhaps selecting all
possible points from the intersection of the ball and the grid
might be avoided. Our algorithm iteration (the consumption
of the new data batch) costsO

(
1/(θ−1)2

)
time. Perhaps on-

ly one characteristic point can be taken instead of all points in
the intersection that could construct a much faster algorithm
with a reasonable proximity of the solution, say θ equal to
1.5 or 2. As discussed in Section 6, such inaccuracy might be
still useful, e.g., when δp describes the noise level of GNSS,
which is not very precisely known. Also, our attention should
be directed to randomized algorithms, i.e., algorithms that
internally generate sequences of randomly-chosen numbers
and use them in the solving process [17].
Such algorithms are known to have lower complexity in many
cases, at the inessential cost of yielding the solution only
with a high probability (that can be arbitrarily close to 1),
not for certain. Quite possibly, this would help overcome the
inverse-quadratic dependency of the inexactness of solution,
that holds for our proposition.
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