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Abstract  Lexicographic max-min (LMM) optimization is of
considerable importance in many fairness-oriented applications.
LMM problems can be reformulated in a way that allows to
solve them by applying the standard lexicographic maximization
algorithm. However, the reformulation introduces a large num-
ber of auxiliary variables and linear constraints, making the
process computationally complex. In this paper, two approxima-
tion schemes for such a reformulation are presented, resulting
in problem size reduction and significant performance gains.
Their influence on the quality of the solution is shown in a series
of computational experiments concerned with the fair network
dimensioning and bandwidth allocation problem.

Keywords  fairness, lexicographic max-min, lexicographic opti-
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1. Introduction

No commonly accepted definition of fairness exists. In the
decision-making environment, if there are some uniform cri-
teria, i.e. criteria applied to different entities of the same
object type, one would like them to be treated equally and
impartially. For example, in a system serving multiple users,
resources could be allocated in a way ensuring that the out-
comes are fairly distributed among users.
Let us formalize the generic decision problem of this type.
There is a given set J of m clients (users, services), J =
{1, 2, . . . ,m}. There is also a given set Q ⊆ Rn of feasi-
ble decisions x, x ∈ Q. For each client j ∈ J , a real-valued
function fj(x) of the decision x is defined. This function mea-
sures the outcome yj = fj(x) of the decision for client j. An
outcome may have the form of a service time, service cost,
delay or a more subjective, case-specific utility level. Without
loss of generality, we can assume that each individual out-
come is to be maximized.
The basic notion of fairness would imply that the same maxi-
mal outcome is assigned to each client. This could be achieved
by the max–min solution concept depending on the optimiza-
tion of the worst outcome:

max
x

{
min
j∈J
fj(x) : x ∈ Q

}
. (1)

Obviously, this approach becomes inefficient when, due to
the complex nature of the feasible set Q, one of the clients
gets only a very small outcome, because in such a scenario
everyone obtains the same small outcome [1]– [3]. While
allocating clients to service facilities, for instance, such a sit-

uation may be caused by the existence of an isolated client
located at a considerable distance from all the facilities. Min-
imization of the maximum distance is then restricted to that
single isolated client, leaving other allocation decisions unop-
timized [4]. This clearly is an inefficient solution case, where
other outcomes may still be improved while maintaining fair-
ness (equitability), by leaving the worst outcome at its best
possible value.
Various approaches to fairness-related problems differ in
terms of the fairness/equality measures applied, ways of ex-
pressing preferences, and in solution algorithms deployed. A
thorough review of fairness-related approaches and formula-
tions may be found in [5].
One approach consists in the application of the so-called
max-min fairness (MMF) concept. It allows to achieve not
only fair solutions, but is also decently efficient in terms of
system utilization. It gained wide acceptance in many opti-
mization fields, for instance in network optimization [6], [7].
In MMF, fairness is accomplished by a simple max-min opti-
mization with regularization, through maximization of the
second-smallest outcome, provided that the smallest outcome
remains as large as possible. Then, maximization of the third-
smallest outcome is performed, provided that the two smallest
outcomes remain as large as possible, and so on.
This approach is equivalent to the lexicographic max-min
(LMM) solution. It prevents some services with structurally
low outcomes from blocking/disabling the max-min function.
Although LMM does not leave any room for the decision-
maker’s preferences regarding the distribution of outcomes,
such as maximizing the worst versus maximizing the average
outcome, it has also been widely used in practical applica-
tions [8]–[10].
One needs to note that the lexicographic maximization in
LMM is not applied to any specific order of the original
criteria, i.e. we do not assume any priority of the objective
functions to be maximized. Still, in the case of convex op-
timization, such as simple linear programming (LP), there
exists an objective function that is constant (blocked) on the
entire optimal set of the max-min problem from Eq. (1) [11].
Thus, after solving the max-min problem, it is possible to
identify and remove the blocked objective from the new re-
stricted max-min problem defined on the previously optimal
set. Additionally, in the case of linear problems and by using
the simplex method for solving the max-min problem, the set
of blocking objectives can be easily determined [12], [13].
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In discrete models, due to the lack of convexity, no blocked
outcomes may exist [2], thus eliminating the possibility of ap-
plying the sequential max-min algorithm. Such problems can
be solved effectively with the use of the ordered cumulated
outcomes methodology introduced in [14], [15] by sequential
optimization of directly defined criteria. In [16], two alterna-
tive approaches relying on this methodology were developed
and analyzed, namely ordered outcomes and ordered values.
They enable to form lexicographic sequential procedures for
various non-convex (possibly discrete) LMM problems and
are based on directly introduced criteria, with a certain LP
expansion of the original model.
However, both approaches suffer from fast growth of the
problem’s size in subsequent iterations of the standard lexi-
cographic algorithm, which results in implementation-related
difficulties. This is particularly evident in interactive decision
support systems, where the result should be computed within
a short timeframe. Hence, the need for accurate and efficient
approximation techniques.
Below, ordered outcomes and ordered values approaches are
briefly introduced. Next, we show how both approaches may
be effectively approximated for significant performance gains,
with only a minor deterioration of the quality of the solution.
Finally, we introduce an application example and show the
results of the numerical experiments performed.

2. Direct LMM Models

2.1. Ordered Outcomes Approach

The LMM problem becomes much more difficult in the case
of non-convex optimization, in particular with the mixed-
integer scenario applied. [17] showed that for any non-convex
LMM problem, the k-th ordered outcome, denoted by y⟨k⟩,
can be expressed using the following formula:

y⟨k⟩ = max
x,tk,zkj

{
tk : tk − yj ¬Mzkj , zkj ∈ {0, 1} ∀j,

m∑
j=1

zkj ¬ k − 1,

y ∈ A
}
,

(2)

where

A =
{
y = (y1, y2, . . . , ym) : yj = fj(x) ∀j, x ∈ Q

}
is a set of all attainable outcome vectors, i.e. outcomes of fea-
sible decisions x ∈ Q andM is a sufficiently large constant.
The model given by Eq. (2) restricts the number of violat-
ed constraints tk ¬ yk to k − 1. As tk is the objective being
maximized, it effectively evaluates to the k-th worst (small-
est) element of y. Equation (2) can be used to state any LMM

problem as a standard lexicographic maximization, namely:

lex max
x,tk,zjk

{
(t1, t2, . . . , tm)

s.t tk − yj ¬Mzkj , zkj ∈ {0, 1} ∀j, k∑
j∈J

zkj ¬ k − 1 ∀k

y ∈ A
}
.

(3)

However, the existence of the binary variables zkj makes this
representation computationally demanding.
The above problem can be solved using the standard lex-
icographic maximization algorithm which, for the general
problem of

lex max
{(
g1(s), g2(s), . . . , gm(s)

)
: s ∈ S

}
,

can be stated as follows:

0: Put k := 1,
1: Solve the problem Pk defined as:
g∗k = maxs∈Q

{
gk(s) : gj(s)  g∗j ∀j < k

}
,

2: If k = m, stop, otherwise put k := k + 1 and go to 1.

The optimal solution in the last step of the algorithm is
the optimal solution of the LMM problem. Note that in
each iteration, the problem solved in step 1 is expanded by
additional constraints applied to the objectives from previous
steps.

2.2. Cumulated Ordered Outcomes

The main drawback of the LMM model from Eq. (3) is the
need for binary variables zkj . The recently developed mod-
eling approach uses a cumulation of criteria with the help
of linear expressions [3], [18]. Let us consider a cumula-
tive operator expressing the total of k worst outcomes. As
lexicographic optimization of the cumulated criteria does
not influence the optimal solution of the original problem,
the LMM problem can be stated as a standard lexicographic
maximization of cumulated criteria:

lex max
{(
θ̄1(y), θ̄2(y), . . . , θ̄m(y)

)
: y ∈ A

}
. (4)

The cumulative operator used in the above formulation can be
modeled with the help of an auxiliary objective and a number
of criteria. For any given vector y, the cumulative operator
θ̄k(y) can be found as the optimal value of the following LP
problem:

θ̄k(y) = min

{∑
j∈J

yjukj :
∑
j∈J

ukj = k, 0 ¬ ukj ¬ 1 ∀j ∈ J
}
.

(5)
While this problem becomes non-linear for the variable vector
y, its LP dual preserves linearity even for the variable vector
y. Let tk and dkj denote the dual variables corresponding to
the equation:

m∑
j=1

ukj = k
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and to the upper bounds on ukj , respectively. Now, one may
write the following LP dual problem to Eq. (5):

θ̄k(y) = max

{
ktk−
∑
j∈J

dkj : tk−yj ¬ dkj , dkj  0 ∀j ∈ J
}
.

(6)
Using the above dual formulation, we can express the lex–max
problem – Eq. (4) – as follows:

lexmax

(
t1−
∑
j∈J

d1j , 2t2 −
∑
j∈J

d2j , . . . ,mtm −
∑
j∈J

dmj

)
s.t. y ∈ A, dkj  tk − yj , dkj  0
∀i, j ∈ J, k = 1, . . . ,m .

(7)

In needs to be noted that despite the auxiliary objectives,
constraints, and variables all being linear, the above problem
formulation remains valid for non-convex feasible sets A.
Unfortunately, its size grows quickly with each iteration of
the lexicographic algorithm, reaching – in the final iteration
m+m2 auxiliary variables andm2 constraints. Still, as shown
by our previous experiments, the above formulation performs
much better than the direct formulation (3).

2.3. Ordered Values Approach

In many applications, the set of attainable outcome val-
ues is finite, allowing for quite a different formulation of
the lexicographic max-min optimization. Let us express the
distribution of outcomes using outcome frequencies. Let
V = {v1, v2, . . . , vr} be a set of all possible outcome values,
i.e. objective values for each client, corresponding to feasible
decision vectors x ∈ Q, and v1 < v2 < · · · < vr. Further-
more, let the function hk(y) express the number of outcomes
in the vector y, taking the value vk, i.e.

hk(y) = |{j : yj = vk, j ∈ J}| .

We can now define a cumulative distribution function as:

h̄k(y) =
k∑
l=1

hl(y). (8)

Function h̄k(y) expresses the number of outcomes smaller
than or equal to vk. In particular, h̄r(y) = m for any outcome
vector y. As we intend to maximize all the outcomes, we
are interested in minimizing all the functions h̄k for k =
1, 2, . . . , r−1. Hence, we can express the LMM optimization
problem (3) as a standard lexicographic minimization problem
with objectives h̄k(y) [2]:

lexmin
{(
h̄1(y), h̄2(y), . . . , h̄r(y)

)
: y ∈ A

}
. (9)

Now, taking advantage of the fact that the cumulation of con-
secutive outcomes does not affect lexicographic optimization
and that values vk are strictly increasing, we can rewrite the
above problem using cumulated h̄k(y) values, weighted with
the differences among consecutive vk values:

lexmin
{(
ĥ1(y), . . . , ĥr(y)

)
: y ∈ A

}
, (10)

where

ĥk(y) =
k∑
l=1

(vl+1 − vl)h̄l(y) ,

for k = 2, . . . , r, and ĥ1 = 0. One can interpret the ĥk(y)
value as the total shortage of outcome values to the value vk,
and express it in an alternative fashion as:

ĥk(y) =
∑
j∈J

max{vk − yj , 0} .

This enables the formulation of the LMM as a standard
lexicographic minimization with auxiliary constraints and
variables [18], [19]:

lexmin
(∑
j∈J

h2j ,
∑
j∈J

h3j , . . . ,
∑
j∈J

hrj
)

s.t. hkj  vk − yj , hkj  0
∀j ∈ J, k = 2, . . . , r, y ∈ A.

(11)

3. Approximation Methods

In the following section, two different approximation methods
and their variations are considered. The first one is based on
the reduction of the number of lexicographic iterations. In
the cumulated ordered outcomes approach, this is achieved
by reducing the number of lexicographic levels, while in
the ordered values approach, by reducing the number of
distinguished target values. The latter approximation strategy
preserves the number of lexicographic steps but prevents the
problem from increasing in size by aggregating the auxiliary
constraints from the previous iterations, in the form of simple
bounds applied to the outcome variables.

3.1. Reduction of Lexicographic Steps (RLS)

Let us consider the cumulated ordered outcomes model and
a sequence of indices I = {i1, i2, . . . , iq} ⊂ J , where
i1 < i2 < · · · < iq . For example, I may consist of every n-th
index from the original sequence J . We can now formulate the
approximation of the original LMM problem in the following
manner:

lex max
{(
θ̄i1(y), θ̄i2(y), . . . , θ̄iq (y)

)
: y ∈ A

}
. (12)

In such an approach, we can expect a reasonably fair solution,
and the only unfairness may be related to the distribution of
outcomes within classes of the skipped criteria. The model’s
efficiency and approximation error will be related to the
number and distribution of indices within sequence I .
A similar methodology can be applied to the ordered values
approach with the number of the distinguished target values
being restricted.
Let us consider a sequence of indicesK = {k1, k2, . . . , kq},
where vki < vk2 < · · · < vkq . Now, the corresponding
approximate lexicographic optimization problem can be stated
as follows:

lex min
{(
ĥk1(y), ĥk2(y), . . . , ĥkq (y)

)
: y ∈ A

}
. (13)

The original problem with the full set of attainable target
values allows us to generate the optimal LMM solution.
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However, the reduction in the number of lexicographic steps
certainly introduces approximation errors resulting from the
unfair distribution of outcomes within classes of the skipped
criteria, and depends on the distribution of indices in sequence
K.

3.2. Aggregation of Auxiliary Constraints (AAC)

The basic idea behind this approach is to replace the con-
straints applied to objective functions from previous iterations
by the bounds imposed on the outcomes.
Let us go back to the standard lexicographic maximization
algorithm. In each iteration k, an additional constraint in the
form of gk−1(s)  g∗k−1, where g∗k−1 is the optimal objec-
tive value from step k − 1, is included in the maximization
problem. This constraint is kept in all subsequent iterations
and prevents the outcome of the previous iteration from wors-
ening its values, which is consistent with the definition of
LMM.
In the case of the cumulated ordered outcomes approach (7),
in iteration k of the standard lexicographic maximization
algorithm, objective

gk(s) = ktk −
∑
j∈J

dkj

together with constraints dkj  tk − yj ∀j ∈ J expresses
the cumulated value of k worst outcomes. In subsequent
iterations, it is lower-bounded by the optimal value g∗k from
iteration k, i.e.

ktk −
∑
j∈J

dkj  g∗k ,

which effectively prevents the total of k lowest outcomes
from decreasing. All constraints applied to the objectives in
previous iterations, together with auxiliary variables and con-
straints, are kept in the model, thus increasing its size bym
variables dkj , one variable tk andm auxiliary constrains in
the form of dkj  tk − yj after one k-th iteration.
At the end of the standard lexicographic maximization al-
gorithm, the size of the model may be large enough to pose
a significant challenge even to modern solvers.
Let t∗k and y∗j be the values of tk and yj in an optimal solu-
tion in iteration k, when solving model (7) with the use of the
standard lexicographic maximization algorithm. The value of
the k-th objective denoted by g(s):

g(s) = ktk −
∑
j∈J

dkj ,

which expresses the total of k worst (smallest) outcomes

g(s) =
k∑
i=1

y⟨i⟩

will obviously not decrease in subsequent iterations if none
of the outcomes worsens, i.e. if we put yj  y∗j ∀j ∈ J .
Actually, for some outcomes, this lower bound may be relaxed,
i.e. yj  t∗k for j ∈ J such that y∗j > t∗k, as this does not affect
the total of k worst outcomes. Hence, in iterations following

Tab. 1. Example network parameters.

Network Nodes Links

pdh 11 34
newyork 16 49

ta1 24 55
france 25 45
norway 27 51
cost266 37 57

iteration k, the constraint

ktk −
∑
j∈J

dkj  g∗k

together withm auxiliary constraints dkj  tk − yj ∀j ∈ J
is replaced with simple lower bounds put on the outcomes:
yj  min{y∗j , t∗k}.
Obviously, this constrains the solutions in subsequent itera-
tions of the lexicographic maximization algorithm, leading
to non-optimal solutions, but simultaneously greatly reduces
the size of the problem.
Some balance between performance and solution quality may
be achieved if in the subsequent iterations k + 1, . . . ,m only
1, . . . , k − n previous objective constraints are aggregated
in the above way, and the remaining objective constraints
k − n+ 1, . . . , k are formulated to the full extent, as defined
in problem (7).
A similar aggregation may be formulated for the ordered
values approach to LMM. The objective in iteration k, i.e.∑

j∈J

hkj

together with auxiliary constraints in the form of

hkj  vk − yj ∀j ∈ J

express the total shortage of outcome values to vk. In subse-
quent iterations, it is upper-bounded by including constraint∑

j∈J

hkj ¬ g∗k

to the optimization problem. However, the total shortage
expressed by the objective may be preserved in subsequent
iterations if the above constraints are aggregated in the form of
lower bounds put on the outcome values: yj  min{y∗j , v∗k}.
This once again accelerates the solution time with a trade-off
in terms of the solution’s quality. The right balance may be
achieved by applying those aggregations to earlier iterations
only.

4. Application Example and Numerical
Experiments

One of the basic application areas of the MMF concept
is the optimization of systems that serve many users. In
the following example, network dimensioning and routing
are considered. This problem has an important prerequisite
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of preserving the right level of fairness when allocating
bandwidth to competing services (users).
Let us consider a network G consisting of a set V of nodes
and a set E of undirected links. There is also a set J =
{1, 2, . . . ,m} of services defined in the network. Each service
j ∈ J depends on a flow between a given pair of nodes. The
flow may be routed on exactly one path chosen from set Pj
of paths allowed for each service. The paths are represented
by given binary matrices

∆e = (δejp)j∈J;p∈Pj ,

assigned to each link e ∈ E, where δejp = 1 if link e belongs
to path p ∈ Pj .
The services may use any bandwidth assigned thereto. Ex-
amples can be found in Voice over IP or Video on Demand
services, where a higher bandwidth translates into higher
audio or video quality. The objective is to allocate link capac-
ities (common resource) to competing services, maximizing
total throughput, and taking care of the fairness of the alloca-
tion.
The above traffic routing problem is extended by allowing
some network dimensioning, performed by expanding the
existing capacities. Each link e ∈ E is assumed to have an
existing capacity. It can be expanded to ae + ξe, where the
expansion value is bounded in the range of 0 to āe. A limit-
ed budget B constrains the overall expansion of the network.
The unit expansion cost of each link e ∈ E is given and de-
noted by ce.
The formal model may be stated as follows:

0 ¬ xjp ¬Mbjp, bjp ∈ {0, 1} j ∈ J ; p ∈ Pj (14)∑
p∈Pj

xjp = yj ,
∑
p∈Pj

bjp = 1 j ∈ J (15)

∑
j∈J

∑
p∈Pj

δejpxjp ¬ ae + ξe ∀e ∈ E (16)

0 ¬ ξe ¬ āe ∀e ∈ E (17)∑
e∈E
ceξe ¬ B, (18)

where xjp is the flow for service j on path p ∈ Pj and yj –
being the total flow for service j – represents the model out-
come for each service. The single-path flow requirement is
enforced with binary variables bjp and multiple-choice con-
straints (14)–(15), with a sufficiently large constantM .
The outcomes yj for each service j ∈ J are to be distributed
fairly, using lexicographic max-min optimization. The ap-
plication of one of the previously defined LMM models to
the above problem consists in extending model (14)–(18) by
a number of auxiliary linear constraints, variables, and objec-
tives embedded in the standard lexicographic optimization
algorithm.
We analyzed the time performance and the quality of the pro-
posed LMM approximations, namely RLS and AAC. For the
experiments, we used six network topologies from the surviv-
able network design library (SNDLib) [20]. Their respective
parameters (number of nodes and links) are listed in Tab. 1.
For each topology, we generated 10 random problems follow-

ing the algorithm introduced in [18]. First, for each link, we
generated its current capacity ae and unit expansion cost ce,
as numbers from the range of 2 to 10 and 1 to 1.5, respective-
ly. Based on the current capacity, the maximum expansion
capacity ā is also generated as a number in the range of 0.2 ae
to 0.6 ae. Budget B for the network expansion was set to
130% of the current network value, i.e.

B = 1.3
∑
e∈E

(ceae).

All random numbers referred to above were generated with
uniform distribution applied.
Two problem sizes were tested with respect to the number of
services – problems with 30 and 50 services were considered.
Each service is defined by a random node pair, and the service
flow can be realized on one of three different, potential paths.
Two of them are fully random, and one is the shortest path
between the end nodes (with the smallest number of links).
The exact and approximate algorithms were tested in diverse
configurations. As a reference for all experiments, we used
the cumulated ordered outcomes approach (COO) to compute
exact LMM results.
As for the RLS approximations applied to the COO approach,
two configurations were analyzed:
1) COO2 – utilizing every second index from the original

outcomes sequence plus the last index,
2) COO4 – utilizing every fourth index from the original

outcomes sequence plus the last index.

As for the AAC approximation applied to the COO approach,
we tested an aggregation of constraints from all previous it-
erations (COOa) and an aggregation of constraints from all
previous iterations except the last iteration (COOa1).
No bandwidth granulation and thus no grid of possible band-
width values were assumed. Therefore, in the ordered values
approach (OV), the resulting bandwidth allocation is always
an approximation to the exact LMM solution. However, to
compare its computational effectiveness to that of COO and
COO2, we decided for the OV to use the same number of
LMM steps (and distinct vk values) as in COO or COO2, re-
spectively. The OV approach with the number of vk values
reduced by factor 2 in the RLS approximation will be denot-
ed by OV2. The assumed attainable outcome values vk are
computed with formula:

vk = z +
(k − 1)
(|J | − 1) (z̄ − z),

where k = 1, 2, 3, . . . , |J | for OV and k = 1, 3, . . . , |J | for
OV2, z is the worst outcome (precomputed with max-min)
and z̄ is a simple estimation of the highest possible flow for
any of the services.
It is computed asmaxj∈J,p∈Pj mine∈p(ae + āe), which ex-
presses the least burdensome bottleneck over all possible
service paths. One needs to not that the real objective value
may exceed z̄. In our preliminary experiments, this happened
only occasionally and by a small margin.
The AAC approximation was also applied to the ordered val-
ues approach and the only tested case was a configuration
aggregating all the constraints from previous iterations (OVa).
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Tab. 2. Average computing times [s].

Network No. of
srv

Algorithm
COO COO2 COO4 COOa COOa1 OV OV2 OVa

pdh

30

2.2 0.6 0.3 0.3 0.3 1.8 0.5 0.2
newyork 6.4 1.4 0.5 0.3 0.5 3.3 0.9 0.3

ta1 5.2 1.3 0.4 0.3 0.4 2.8 1.0 0.3
france 3.0 0.7 0.3 0.3 0.4 2.0 0.7 0.3
norway 8.0 1.9 0.7 0.8 0.8 3.2 0.6 0.4
cost266 4.9 1.1 0.3 0.4 0.4 2.3 0.6 0.3

pdh

50

211.9 31.9 5.3 1.7 2.0 30.1 6.8 1.0
newyork 207.9 47.6 12.1 1.3 2.0 122.6 18.8 1.0

ta1 235.2 55.0 36.5 4.1 4.0 107.7 10.1 2.0
france 154.2 22.5 5.6 5.4 3.7 15.8 3.0 0.8
norway 164.2 23.7 5.5 2.9 3.7 22.8 7.3 1.3
cost266 174.7 28.7 5.9 1.8 2.1 18.7 4.3 0.7

Tab. 3. Relative deviation for β = 10% of the worst outcomes [%].

Network No. of
srv

Algorithm
COO2 COO4 COOa COOa1 OV OV2 OVa

pdh

30

0.0 –1.9 0.0 0.0 –0.9 –1.3 –1.0
newyork 0.0 –1.5 0.0 0.0 –0.9 –2.0 –1.0

ta1 0.0 –0.2 0.0 0.0 –0.2 –0.3 –0.3
france 0.0 0.0 0.0 0.0 0.0 0.0 –0.3
norway 0.0 0.0 0.0 0.0 –0.3 –0.4 –0.5
cost266 0.0 0.0 0.0 0.0 0.0 0.0 –0.3

pdh

50

0.0 0.0 0.0 0.0 –1.1 -2.2 –1.3
newyork 0.0 0.0 0.0 0.0 –1.4 –1.4 –1.6

ta1 0.0 0.0 0.0 0.0 –0.6 -0.8 –1.0
france 0.0 0.0 0.0 0.0 –0.1 –0.1 –0.8
norway 0.0 0.0 0.0 0.0 –0.2 –0.2 –0.8
cost266 0.0 0.0 0.0 0.0 –0.1 –0.1 –0.9

All the experiments were performed on the Intel Core i7 3.4
GHz microprocessor using the CPLEX 12.1 optimization li-
brary for MIP optimization problems. All the results are the
average of 10 randomly generated problems. The results of
the experiments are shown in Tabs. 2–5. Table 2 presents the
average computing times, and Tabs. 3–5 show the estimated
approximation errors. The first two columns of each table de-
scribe the network name and the number of services defined
over the networks. The remaining columns denote the results
for different lexicographic max-min approaches (COO or
OV) and approximation algorithms (RLS – columns COO2,
COO4, OV2 or AAC – columns COOa, COOa1, OVa).
As one may notice in Tab. 2, the computing time increases
rapidly along with the problem size and depends heavily on
the number of services defined over the network (columns

COO and OV). As for the approximation methods, the newly
introduced AAC approximation performs exceptionally well,
as compared to the basic lexicographic max-min approaches,
meaning that when compared with the exact cumulated or-
dered outcomes approach (column COO), the computing time
of the AAC approximation (columns COOa and COOa1) is
reduced by a factor of 30–120 in the case of 50 services. A
similar reduction is observed when the AAC approximation
(column OVa) is applied to the ordered values approach (col-
umn OV).
The RLS approximation does not offer as spectacular results
as achieved in the case of AAC approximation. However,
when using the RLS approximation, the computing times can
be reduced by a significant factor (columns COO2, COO4,
and OV2).
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Tab. 4. Relative deviation for β = 50% of the worst outcomes [%].

Network No. of
srv

Algorithm
COO2 COO4 COOa COOa1 OV OV2 OVa

pdh

30

0.0 0.0 –0.1 0.0 0.3 0.1 0.1
newyork 0.0 0.0 –0.3 –0.5 0.2 –0.3 –0.6

ta1 0.0 0.0 –0.4 –0.1 –0.1 –0.2 –0.3
france 0.0 –0.3 0.0 –0.1 –0.3 –1.0 –0.6
norway 0.0 –0.3 –0.3 –0.2 0.0 –1.7 –0.1
cost266 0.0 0.1 0.0 0.0 0.8 0.4 0.5

pdh

50

0.1 0.1 –0.2 0.0 –0.3 –0.5 –0.5
newyork 0.1 0.1 –0.8 –0.3 0.3 0.3 –0.4

ta1 –0.3 –0.4 –0.75 –0.3 –0.2 0.7 –0.8
france 0.0 0.1 –0.8 –0.4 –0.2 –0.7 –0.4
norway 0.0 0.0 –0.1 –0.6 0.4 –0.9 0.3
cost266 0.0 0.0 0.0 0.0 0.5 –0.1 0.0

Tab. 5. Relative deviation for β = 100% of the worst outcomes [%].

Network No. of
srv

Algorithm
COO2 COO4 COOa COOa1 OV OV2 OVa

pdh

30

0.0 0.3 –0.1 –0.3 0.1 0.6 –0.3
newyork 0.0 0.1 0.1 –0.4 0.5 1.2 –0.4

ta1 –0.4 0.1 –0.4 –0.2 –0.2 0.4 –0.4
france 0.5 1.0 –0.6 –0.6 0.7 1.2 –0.3
norway 0.1 0.8 –1.0 –1.0 0.6 0.9 –0.4
cost266 0.1 0.8 0.1 –0.2 0.7 1.7 0.8

pdh

50

0.0 0.2 –0.6 –0.3 0.1 0.4 –1.0

newyork –0.1 –0.1 –0.1 –0.4 0.3 0.5 0.0
ta1 0.9 1.1 –0.2 –0.2 1.1 1.2 0.2

france 0.2 0.3 0.3 0.2 1.1 1.7 0.4
norway 0.1 0.3 –0.3 –0.3 0.6 1.0 0.1
cost266 0.1 0.4 –0.1 –0.2 1.5 0.8 0.7

The lexicographic max-min applied to the multiple criteria
problem results in a certain distribution of outcomes. Each
approximation method introduces some deviations from this
distribution. To show the quality of RLS and AAC approxima-
tion methods, we compare three parameters of the resulting
distribution: the total of the 10%, 50%, and 100% of the worst
outcomes. The worst outcome is assumed to be correctly com-
puted by each approximation approach. The actual number of
the worst outcomes is upper rounded to the nearest integer.
To make the results independent of the absolute values, the
relative deviations were computed as:

xβ − COOβ
COOβ

· 100%, (19)

where xβ is the total of β (β equals 10%, 50%, or 100%)
worst outcomes in one of the approximation approaches, and

COOβ is the total of β worst outcomes in the exact solution
computed with use of the COO algorithm.
The results are presented in Tabs. 3–5, for the total of 10%,
50% and 100% of the worst outcomes, respectively.
For the COO approach, in the case of 10% of the worst
outcomes, the COO2, COOa and COOa1 approximations
fail to generate any noticeable approximation errors. For the
50% scenario, one may notice a slight deterioration of the
quality of the AAC approximations (COOa and COOa1), as
compared to RLS approximations (COO2 and COO4). The
COOa1 approximation performs much better than COOa with
only a minor computation time penalty. When the total of all
outcomes (100%) is considered, the quality of COO2, COO4,
COOa and COOa1 solutions is similar, but does not deviate
from the exact solution by more than 1.1%.
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Also, the approximations for the ordered outcomes (OV)
approach perform quite well, although, for obvious reasons,
the relative deviations are more significant than for COO
approaches. However, values in the range [−1.0%, 1.7%]
may still be qualified as a very good result.

5. Conclusions

We developed approximate optimization methods that con-
tribute to the previously known max-min fairness principle
and the underlying lexicographic max-min optimization al-
gorithms. They allow high-speed and accurate computations
and can be applied for both convex and non-convex solution
spaces. The numerical experiments for the fair bandwidth
allocation and network dimensioning problem proved the
exceptional performance and high solution quality of the
proposed methods. With short computing times and minor
solution quality losses, they allow to apply the lexicograph-
ic max-min approach in the context of interactive decision
support systems, where short system response times are pre-
ferred.
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