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Abstract  This paper investigates how to reduce the ellip-
tic curve discrete logarithm problem over prime fields to the
quadratic unconstrained binary optimization (QUBO) problem
in order to obtain as few logical qubits as possible. In the best
case scenario, if n is the bitlength of a characteristic of prime
field Fp, approximately 3n3 logical qubits are required for such
a reduction in the Edwards curve case. We present a practical
attack on an elliptic curve discrete logarithm problem over the
3-bit prime field F7 for an elliptic curve with the subgroup of
order 8. We solved this problem using the D-Wave Advantage
QPU. To the best of the authors’ knowledge, no one has made,
so far, a practical attack on the elliptic curve discrete logarithm
over a prime field using the direct quantum method.

Keywords  cryptanalysis, D-Wave, elliptic curve discrete loga-
rithm problem, quantum annealing

1. Introduction

Shor’s quantum algorithm for factorization and discrete loga-
rithm computation [1] is one of the essential research areas
in modern cryptology. The resources required to run Shor’s
quantum algorithm have been widely analyzed in [2]–[4]. The
estimations of resources required for implementing Shor’s
algorithm for the elliptic curve discrete logarithm problem
(ECDLP) are presented in [5] for binary elliptic curves and
in [6] for elliptic curves over prime fields.
As one may notice from Tab. 1, for real-world security param-
eters, the number of qubits necessary to run Shor’s algorithm
is not so big, but the number of Toffoli gates is huge. From
this point of view, much work is still required to run Shor’s
algorithm to solve ECDLP for real-world security parame-
ters. It is worth noting that a recent review of ECDLP using
classical methods may be found in [7].
On the other hand, quantum annealing is an approach that
is becoming increasingly popular. D-Wave Advantage is the
most powerful computer using the quantum annealing tech-
nology. One of the interesting cryptography-related applica-
tions of quantum annealing is transforming the factorization
algorithm [8] or the discrete logarithm problem over prime

fields [9] into the quadratic unconstrained binary optimiza-
tion (QUBO) problem, and then solving this problem using
the D-Wave computer.
QUBO [10] is a significant problem with many real-world
applications. The QUBO model can be described by the
following optimization problem:

min
x∈{0,1}N

xTQx , (1)

where Q is an N ×N upper-diagonal matrix of real weights
and x is a vector of binary variables. The diagonal terms Qi,i
are linear coefficients, and the non-zero off-diagonal terms
are quadratic coefficients Qi,j .
The QUBO problem may also be viewed as a problem of
minimizing a function such as:

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj . (2)

Let us note that the QUBO problem is a special case of the
binary quadratic model (BQM) problem, where BQM may
be given as: ∑

i

aivi +
∑
i<j

bi,jvivj + c , (3)

with ai and bi,j being real numbers and vi ∈ {−1,+1} or
{0, 1}. Transformation of the QUBO problem to the BQM
problem for vi ∈ {0, 1} is straightforward – we must forget
the constant c appearing in BQM.
This paper shows how to transform the ECDLP over prime
fields to the QUBO problem. The best method allows to
convert a discrete logarithm problem over a prime field Fp to
the QUBO problem using approximately 3n3 logical qubits,
where n is the bitlength of p.
With the scope of researched defined above, the authors’
contribution consists in the following:
• presenting a method for reducing the elliptic curve discrete

logarithm problem to the QUBO problem, with the said
method requiring approximately 3n3 logical qubits for such
a reduction,
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• presenting a practical example and the results of solving
ECDLP on the Edwards curve over F7 for the problem
with the order of generator equal to 8, using the D-Wave
Advantage QPU.

It is worth noting that, to the best of the authors’ knowledge,
no one has ever made a practical attack on the elliptic curve
discrete logarithm over a prime field using direct quantum
methods. Relying on the index calculus method, the appli-
cation of quantum annealing to solving ECDLP over prime
fields was presented in [11]. In that paper, hybrid classical-
quantum annealing methods were used to collect relations.
After that, the linear algebra step was computed classically to
retrieve the private key.

The results presented in this paper are more connected with
[9], where the DLP problem was transformed directly to the
QUBO problem and then solved using the direct quantum
annealing method. The main results of this paper are showing
the direct transformation of the ECDLP on Edwards curves
to the QUBO problem, with this problem then being solved
using direct quantum annealing methods.

Solving such a QUBO problem is equivalent to retrieving the
private key. There is no need to solve linear algebra steps, as
was required in [11]. However, it is also worth noting that any
QUBO problem may be run on a computer using a classical
annealing algorithm (for example simulated annealing). Yet,
there are some heuristic arguments that, in many cases, the
complexity of quantum annealing may reach even e

√
N for

a QUBO problem consisting of N variables [12], with the
simulated annealing algorithm offering some gains, as its
complexity is eN . Therefore, quantum annealing is much more
interesting to consider in this case. However, the presented
example is of the minor variety and the results obtained
constitute another step in applying quantum computations to
classical public-key cryptography problems.

2. Transformation of General Discrete
Logarithm Problem to QUBO Problem

Consider a general discrete logarithm problem in any cyclic
finite group G with group operation □ . Let us also denote

Tab. 1. Estimated number of qubits and Toffoli gates for Shor’s
attack on ECDLP.

Bitlength of the
base field

Number of
qubits

Number of Toffoli
gates

128 1176 1.52 ·1010

192 1754 5.30 ·1010

256 2330 1.29 ·1011

384 3484 4.49 ·1011

512 4636 1.09 ·1012

scalar multiplication by y in G by y ⋄ g as:

y : G→ G,

y ⋄ g = g □ . . . □g︸ ︷︷ ︸
y times

. (4)

Now, the discrete logarithm problem is defined. Having ele-
ments g, h ∈ G for which holds that:

h = y ⋄ g , (5)

the problem is to find proper y.
If for any g1, g2 ∈ G holds that g1 □g2 may be written as
a multivariate Boolean polynomial with integer coefficients,
then such a discrete logarithm problem may be transformed
to the QUBO problem.
Let m be the bitlength of the order of element g, denoted as
ord(g).
If y = 2m−1um + · · · + 2u2 + u1, where u1, . . . , um are
binary variables. Then:

y ⋄ g =
(
2m−1um + · · ·+ 2u2 + u1

)
⋄ g

=
(
(2m−1um) ⋄ g

)
□ . . . □

(
(2u2) ⋄ g

)
□ (u1 ⋄ g)

=
(
um ⋄ (2m−1 ⋄ g)

)
□ . . . □

(
u2 ⋄ (2 ⋄ g)

)
□ (u1 ⋄ g) .

(6)

Let o be the neutral element of group operation in G. Then,
for every element g ∈ G must hold:

ui ⋄ (2i−1 ⋄ g) =

{
o, ui = 0 ,

2i−1 ⋄ g, ui = 1 .
(7)

The most important factor in this context is to ensure that
one will be able to write ui ⋄ (2i−1 ⋄ g) as in Eq. (7), using
multivariate polynomials of Boolean variables and real coef-
ficients. By applying xi = ui ⋄ (2i−1 ⋄ g), the general DLP
problem given by Eq. (5) may be transformed to a problem
of finding the solution of:

x1 □x2 □ · · · □ xm = h . (8)

Transformation of the discrete logarithm problem over finite
fields in additive and multiplicative groups has been pre-
sented in detail in [9]. Application of the quantum annealing
approach while solving such discrete logarithms was also
presented. Therefore, we omit these descriptions and focus
mainly on transforming the elliptic curve discrete logarithm
problem to the QUBO problem and solving it using quantum
annealing.

3. Transformation of Elliptic Curve
Discrete Logarithm Problem to QUBO

Elliptic curve cryptography (ECC) is an important part of
modern security. Many cryptographic problems are based on
the computational complexity of the elliptic curve discrete
logarithm problem (ECDLP), which will be described below.
The most popular cryptographic algorithms based on ECDLP
are Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve
Digital Signature Algorithm (ECDSA).
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x1 x2
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vm 2– □

Fig. 1. Decomposition diagram of a general discrete logarithm
problem.

We begin by defining an elliptic curve discrete logarithm
problem over a prime field Fp:

[y]P = Q , (9)

where P,Q ∈ E(Fp) and y ∈ {1, ord(P )− 1}.
Let m be the bitlength of ord(P ).
If y = 2m−1um + · · · + 2u2 + u1, where u1, . . . , um are
binary variables. Then:

[y]P = [2m−1um + · · ·+ 2u2 + u1]P = [2m−1um]P + . . .

+[2u2]P + [u1]P = [um]([2m−1]P ) + · · ·+ [u2]([2]P )

+[u1]P .
(10)

It is worth noting that writing

y = 2m−1um + · · ·+ 2u2 + u1

allows to obtain y > ord(P ), and to get the result from
{0, . . . , ord(P )− 1} computing y mod ord(P ).
For simplicity, let us suppose that the neutral element O of
addition operation in E(Fp) may be represented using affine
coordinates andO = (Ox,Oy). This is the case, for instance,
in Edwards or twisted Edwards curves. Then, for every point
P = (Px, Py) ∈ E(Fp):

[ui]([2i−1]P ) =

{
O, ui = 0 ,

[2i−1]P, ui = 1 .
(11)

If Pi = [ui]([2i−1]P ), Eq. (11) above is equivalent to:{
Pi,x = Ox + ui

( (
[2i−1]P

)
x
−Ox
)
,

Pi,y = Oy + ui
( (
[2i−1]P

)
y
−Oy
)
.

(12)

Similar transformations can be repeated when the neutral
element cannot be represented using affine coordinates but
must be presented using projective coordinates, as it is the
case in short Weierstrass curves.
Now, the ECDLP given by Eq. (9) may be transformed to the
problem of finding a solution of:

P1 P2

P3

P4

Pm

R =P +P1 1 2

R =R +P2 1 3

R +P =Qm 2 m–

Fig. 2. General decomposition scheme of an elliptic curve discrete
logarithm problem.

P1 + P2 + · · ·+ Pm = Q . (13)

Let E be an elliptic curve with complete arithmetic and let
us assume, for simplicity, that all points from ⟨P ⟩ may be
presented using affine coordinates. Then, for every two points
P1, P2 ∈ E(Fp) and point Q ∈ E(Fp), where Q = P1 + P2
holds: 

Qx =
φ (P1, P2)
ψ (P1, P2)

,

Qy =
ξ (P1, P2)
ψ (P1, P2)

,
(14)

where φ, ξ, ψ are polynomials.
To solve the problem given by Eq. (13), a regular binary tree of
maximal height is used (Fig. 2), the same as for transforming
the DLP problem to the QUBO problem [9].
In Eq. (14), point Q is computed explicitly, but may be
presented by the coordinates of every point implicitly.
For the case of ECDLP and the method of decomposition
presented in Fig. 2, the following system of equations is
obtained:

f1,1 = (φ (P1, P2)− R1,xψ (P1, P2))mod p− k1,1p = 0,
f1,2 = (ξ (P1, P2)−R1,yψ (P1, P2))mod p− k1,2p = 0,
f2,1 = (φ (R1, P3)−R2,xψ (R1, P3))mod p− k2,1p = 0,
f2,2 = (ξ (R1, P3)−R2,yψ (R1, P3))mod p− k2,2p = 0,

. . .

fm−2,1 =
(
φ
(
Rm−3, Pm−1

)
−Rm−2xψ

(
Rm−3, Pm−1

))
mod p

−km−2,1p = 0,
fm−2,2 =

(
ξ
(
Rm−3, Pm−1

)
−Rm−2,yψ

(
Rm−3, Pm−1

))
mod p

−km−2,2p = 0,
fm−1,1 = (φ (Rm−3, Pm−1)−Qx)mod p− km−1,1p = 0,
fm−1,2 = (ξ (Rm−3, Pm−1)−Qy)mod p− km−1,2p = 0,

(15)
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where:
Pi = (Pi,x, Pi,y) for i = 1,m and
Ri = (Ri,x, Ri,y) for i = 1,m− 2.
Next, we will focus on the transformation of the ECDLP
defined on different models of elliptic curves to the QUBO
problem.

In the direct method presented above, it is important to use
only one kind of formula that should work for all proper pos-
sible inputs. In the case of the elliptic curve in the Weierstrass
form, the main issue is that efficient formulas work separately
while adding and separately while doubling. Furthermore, in
the case of the Weierstrass curve, a neutral element cannot be
added using classical, reasonably efficient addition formulas.

On the other hand, complete arithmetic formulas exist for the
Weierstrass curves, but they are inefficient [13]. Therefore,
using an elliptic curve model that would allow to use the
following:

• efficient arithmetic with a small number of multiplications,
• neutral element which can be represented by affine coordi-

nates,
• complete arithmetic,
seems much more convenient.

Therefore, we focus on applying the proposed method to
the case of Edwards curves, which fulfills all the conditions
presented above.

3.1. Edwards Curves

Definition 1. The Edward’s curveEEd over a field K is given
by [14]:

EEd/K : x2 + y2 = 1 + dx2y2, (16)
where d ̸∈ {0, 1}.

The sum of points P = (x1, y1) and Q = (x2, y2) on EEd is
given by:

P +Q =

(
x1y2 + y1x2
1 + dx1x2y1y2

,
y1y2 − x1x2
1− dx1x2y1y2

)
. (17)

The neutral element is O = (0, 1) and the negation is given
by −(x, y) = (−x, y). If d is not a square in K, the above
addition formula is complete in the K-rational points set onE.
Putting Pi = [ui]([2i−1]P ), the Eq. (12) for Edwards curves
is equivalent to:{

Pi,x = ui
((
[2i−1]P

)
x

)
,

Pi,y = 1 + ui
((
[2i−1]P

)
y
− 1
)
.

(18)

In such a case, using the idea presented earlier as well as Eq.
(15), the system of equations in the case of the Edwards curve
will be given by Eq. (19). Assume that the Edwards curve is
defined over a prime field Fp and n denotes the bitlength of
p and m denotes the bitlength of the size of the order of the
group generated by P .



f1,1 = (A1 − P1,yP2,y)mod p− k1,1p = 0,
f1,2 = (B1 − P1,xP2,x)mod p− k1,2p = 0,
f1,3 = (C1 − P1,xP2,y)mod p− k1,3p = 0,
f1,4 = (D1 − P1,yP2,x)mod p− k1,4p = 0,
f1,5 = (E1 − C1D1)mod p− k1,5p = 0,
f1,6 = (F1 −R1,xE1)mod p− k1,6p = 0,
f1,7 = (G1 −R1,yE1)mod p− k1,7p = 0,
f1,8 = (C1 +D1 −R1,x − F1)mod p− k1,8p = 0,
f1,9 = (A1 +B1 +R1,y −G1)mod p− k1,9p = 0,
. . .

fi,1 = (Ai − Pi+1,yRi−1,y)mod p− ki,1p = 0,
fi,2 = (Bi − Pi+1,xRi−1,x)mod p− ki,2p = 0,
fi,3 = (Ci − Pi+1,xRi−1,y)mod p− ki,3p = 0,
fi,4 = (Di − Pi+1,yRi−1, x)mod p− ki,4p = 0,
fi,5 = (Ei − CiDi)mod p− ki,5p = 0,
fi,6 = (Fi −Ri,xEi)mod p− ki,6p = 0,
fi,7 = (Gi −Ri,yEi)mod p− ki,7p = 0,
fi,8 = (Ci +Di −Ri,x − Fi)mod p− ki,8p = 0,
fi,9 = (Ai +Bi +Ri,y −Gi)mod p− ki,9p = 0,

. . .

fm−2,1 = (Am−2 − Pm,yRm−2,y)mod p− km−2,1p = 0,
fm−2,2 = (Bm−2 − Pm,xRm−2,x)mod p− km−2,2p = 0,
fm−2,3 = (Cm−2 − Pm,xRm−2,y)mod p− km−2,3p = 0,
fm−2,4 = (Dm−2 − Pm,yRm−2,x)mod p− km−2,4p = 0,
fm−2,5 = (Em−2 − Cm−2Dm−2)mod p− km−2,5p = 0,
fm−2,6 = (Fm−2 −QxEm−2)mod p− km−2,6p = 0,
fm−2,7 = (Gm−2 −QyEm−2)mod p− km−2,7p = 0,
fm−2,8 = (Cm−2 +Dm−2 −Qx − Fm−2)mod p
−km−2,8p = 0,
fm−2,9 = (Am−2 +Bm−2 +Qy −Gm−2)mod p
−km−2,9p = 0.

(19)
Let us compute the number of logical variables required to
transform the ECDLP problem on the Edwards curve into
the QUBO problem. We begin by counting the necessary
variables for a single system of equations fi,1, . . . , fi,9, where
1 < i < m − 2. Due to the fact that cases for i = 1 and
i = m− 2 are similar, the analysis for these two scenarios
may be omitted.
Consider fi,1 case in the number of variable context. For
variables Ai, n bits are necessary to represent them because
every Ai is in the set {1, . . . , p − 1}. During the multipli-
cation of Pi+1,y and Ri−1,y, there will be n monomials of
degree 2 (Pi−1,y consists of two terms, but only one Boolean
variable) and n monomials of degree 1. This means that
(−Pi+1,yRi−1,y)mod p will consist, in such a case, of 2n
monomials with coefficients from set {0, . . . , p− 1}. Finally,
it means that the maximum value of polynomial fi,1 is equal
to (2n+ 1)(p− 1), because the value of Ai is also limited
by p− 1. Therefore, ki,1p ¬ (2n+ 1)(p− 1), which means
that ki,1 ¬ (2n+1)(p−1)p < 2n + 1, then ki,1 ¬ 2n and the
bitlength of ki,1 is equal to ⌊log2 (2n)⌋+ 1 at most. Hence,
for equation fi,1, we have:
• n additional variables obtained during linearization of

square monomials,
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• n Boolean variables for variable Ai,
• ⌊log2 (2n)⌋+ 1 Boolean variables necessary for writing

variable ki,1.
Therefore, for equation fi,1, 2n+ ⌊log2 (2n)⌋+ 1 additional
variables are necessary. The same applies to equation fi,4.
Let us focus on equation fi,2. For variables Bi, n bits
are required to represent them, because every Bi is in set
{1, . . . , p− 1}. On the other hand, during the multiplication
of terms Pi+1,xRi−1,x there will be n monomials of degree
2, because Pi−1,x consists of one term and only one Boolean
variable. This means that (−Pi+1,xRi−1,x)mod p will con-
sist, in such a case, of n monomials with coefficients from set
{0, . . . , p− 1}. It means that the maximum value of polyno-
mial fi,2 is equal to (n+ 1)(p− 1), because the value of Bi
is also limited by p− 1.
Therefore, ki,2p ¬ (n+ 1)(p− 1), which means that ki,2 ¬
(n+1)(p−1)

p < n + 1, so ki,2 ¬ n and the bitlength of ki,2
is equal to ⌊log2 (n)⌋+ 1 at most. So, for equation fi,2, we
have:
• n additional variables obtained during linearization of

square monomials,
• n Boolean variables for variable Bi,
• ⌊log2 (2n)⌋+ 1 Boolean variables necessary for writing

variable ki,1.
Therefore, for equation fi,2, 2n+ ⌊log2 (n)⌋+ 1 additional
variables are necessary. The same results apply to equation
fi,3.
As far as equation fi,5 is concerned, n bits are necessary to
represent variables Ei, because every Ei is in set {1, . . . , p−
1}. On the other hand, during the multiplication of terms
Ci and Di, there will be n2 monomials of degree 2 (both
Ci, Di consist of n Boolean variables). This means that
(−CiDi)mod pwill consist, in such a case, of n2 monomials
with coefficients from set {0, . . . , p− 1}. Finally, it means
that the maximum value of polynomial fi,5 is (n2+1)(p−1),
because the value of Ei is also limited by p− 1.
Therefore, ki,5p ¬ (n2 + 1)(p − 1), which means that
ki,5 ¬ (n

2+1)(p−1)
p < n2+1, so ki,5 ¬ n2 and the bitlength

of ki,5 is equal to ⌊log2 (n2)⌋+ 1 at most. So, for equation
fi,5, we have:
– n2 additional variables obtained during linearization of

square monomials,
– n Boolean variables for variable Ei,
– ⌊log2 (n2)⌋+ 1 Boolean variables necessary for writing

variable ki,5.
This proves that, for equation ki,5, n2 + n+ ⌊log2 (n2)⌋+ 1
additional variables are necessary.
The same applies to equations fi,6 and fi,7, but in each of
these cases n bits are necessary for representation of Ri,x
and Ri,y, so for fi,6 and fi,7, n2 + 2n + ⌊log2 (n2)⌋ + 1
additional variables are necessary for each equation.
The case concerned with equation fi,8 is the simplest. There
are no necessary additional Boolean variables for linearizing
square monomials and new variables from a finite field. The
only additional variables are necessary for ki,8. Let us note

that (−Ri,x − Fi)mod p will consist, in such a case, of
2n monomials with coefficients from set {0, . . . , p − 1}.
Finally, it means that the maximum value of polynomial fi,8
is (2n+ 2)(p− 1), because the values of Ci and Di are also
limited by p− 1.
Therefore, ki,8p ¬ (2n + 2)(p − 1), which means that
ki,8 ¬ (2n+2)(p−1)

p < 2n + 2, so ki,8 ¬ 2n + 1 and the
bitlength of ki,8 is equal to ⌊log2 (2n+ 1)⌋+ 1 at most.

Similar considerations apply to equation fi,9. There are no
necessary additional Boolean variables for linearizing square
monomials and new variables from a finite field. The only
additional variables are necessary for fi,9. Let us note that
(−Gi)mod p will consist, in such a case, of n monomials
with coefficients from set {0, . . . , p− 1}. Finally, it means
that the maximum value of polynomial fi,9 is equal to (n+
3)(p − 1), because the values of Ai, Bi and Ri,y are also
limited by p− 1.

Hence, ki,9p ¬ (n+3)(p−1), because ki,9 ¬ (n+3)(p−1)p <
n + 3, so ki,9 ¬ n + 2 and the bitlength of ki,9 is
⌊log2 (n+ 2)⌋+ 1 at most.

Summing up, for the system of equations fi,1, . . . , fi,9 there
are:

2 · (2n+ ⌊log2 (2n)⌋+ 1) + 2 · (2n+ ⌊log2 (n)⌋+ 1)
+
(
n2 + n+ ⌊log2 (n2)⌋+ 1

)
+2 ·
(
n2 + 2n+ ⌊log2 (n2)⌋+ 1

)
+ (⌊log2 (2n+ 1)⌋+ 1)

+ (⌊log2 (n+ 2)⌋+ 1) = 3n2 + 13n+O(log2 n)

necessary logical variables.

In the case of the f1,1, . . . , f1,9 system of equations and the
fm−2,1, . . . , fm−2,9 system, the number of necessary binary
variables is lower. However, it does not influence the overall
number of necessary variables much, so we use the same
estimations as for 1 < i < m− 2.
Finally, we can estimate the overall number of
Boolean variables for the f1,1, . . . , fm−2,9 as
(m− 2) ·

(
3n2 + 13n+O(log2 n)

)
. If m ≈ n, which often

holds in cryptographic applications, it is approximately 3n3.

4. Practical Example and Results

Consider the following Edwards curve EEd/F7 : x2 + y2 =
1 + 6x2y2. The order of the group of points of this curve is
equal to 8, and the group is cyclic. The generator of this group
is point P = (3, 3) and ECDLP with Q = (4, 3) = [y]P . We
aim to break this ECDLP by finding proper y. First, we show
how to transform this problem into the QUBO problem.

In the case of small problems, the transformation of entire
equations may be more efficient than a separate transformation
of each multiplication. Since we know that the order of P is 8
and Q is not the neutral point, y ∈ {1, . . . , 7}. Using binary
variables u1, u2, u3, we can write y as y = u1 + 2u2 + 4u3
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and, hence:

[y]P = [u1 + 2u2 + 4u3]P = [u1]P + [2u2]P + [4u3]P

= [u1]P + [u2] ([2]P ) + [u3] ([4]P ) .
(20)

with P1 = P, P2 = [2]P and P3 = [4]P , we obtain:

[u1]P1 + [u2]P2 + [u3]P3 = Q. (21)

Let us note that according to Eq. (18) and knowing that
P1 = (3, 3), P2 = (1, 0) and P3 = (0, 6), we can write
(x1, y1) = [u1]P1, (x2, y2) = [u2]P2, (x3, y3) = [u1]P1 +
[u2]P2, (x4, y4) = [u3]P3, (x5, y5) = Q and then:

x1 = u1 (P1,x) = 3u1,

y1 = 1 + u1 (P1,y − 1) = 2u1 + 1,
x2 = u2 (P2,x) = u2,

y2 = 1 + u2 (P2,y − 1) = 6u2 + 1,
x3 = u3 + 2u4 + 4u5,

y3 = u6 + 2u7 + 4u8,

x4 = u3 (P4,x) = 0,

y4 = 1 + u3 (P4,y − 1) = 5u9 + 1,
x5 = 4,

y5 = 3.

(22)

Using equations for point addition, because (x3, y3) =
(x1, y1) + (x2, y2), the following equations hold:{

F1 = (1 + dx1x2y1y2)x3 + 6(x1y2 + y1x2) = 0,

F2 = (1− dx1x2y1y2)y3 + 6(y1y2 − x1x2) = 0.
(23)

Similarly, because (x5, y5) = (x3, y3)+ (x4, y4), the follow-
ing equations hold:{

F3 = (1 + dx3x4y3y4)x5 + 6(x3y4 + y3x4) = 0,

F4 = (1− dx3x4y3y4)y5 + 6(y3y4 − x3x4) = 0.
(24)

The equations above will then be equal to:



F1 = 6u21u
2
2u3 + 5u

2
1u
2
2u4 + 3u

2
1u
2
2u5 + u

2
1u2u3

+2u21u2u4 + 4u
2
1u2u5 + 3u1u

2
2u3 + 6u1u

2
2u4

+5u1u22u5 + 4u1u2u3 + u1u2u4 + 2u1u2u5

+u1u2 + 4u1 + 6u2 + u3 + 2u4 + 4u5,

F2 = u21u
2
2u6 + 2u

2
1u
2
2u7 + 4u

2
1u
2
2u8 + 6u

2
1u2u6

+5u21u2u7 + 3u
2
1u2u8 + 4u1u

2
2u6 + u1u

2
2u7

+2u1u22u8 + 3u1u2u6 + 6u1u2u7 + 5u1u2u8

+5u1u2 + 5u1 + u2 + u6 + 2u7 + 4u8 + 6,

F3 = 2u3u9 + 4u4u9 + u5u9 + 6u3 + 5u4 + 3u5 + 4,

F4 = 2u6u9 + 4u7u9 + u8u9 + 6u6 + 5u7 + 3u8 + 3.
(25)

Next, the squares have to be reduced using properties of
binary variables such that, for any binary variable u, uk = u.
Then, each equation is transformed from the pseudo-Boolean
function over F7 to the pseudo-Boolean function over integers
[9]. Then, the square of each equation is computed and the
sum of all squared equations is determined.

Fig. 3. Embedding of a problem equivalent to the problem of finding
elliptic curve discrete logarithm over F7 on Edwards curve to the
D-Wave Advantage. The number of physical qubits is larger than the
number of necessary logical qubits. Because the Pegasus topology
graph is incompatible with the graph problem (QUBO problems
define graph representation of the problem), chains are necessary to
embed the problem graph to the Pegasus topology.

After this step, we have to make quadratization and then add
penalties. The other method is first to make linearization of
each of the equations and then square each of them, compute
their sum, and add penalties [15]. The latter method allows
to compute the number of necessary variables more easily,
while the former method may result in a smaller number of
variables after problem reduction.
Based on these considerations, the first method has been
selected, and the final problem in the BQM has been obtained.
To make all transformations, the Magma Computational
Algebra System (http://magma.maths.usyd.edu.au/ma
gma/) has been used. The task was solved using quantum
annealing, with the minimal energy criterion.
The proper solution was found, which is y = 7, because
u1, u2, u3 = 1. The values of parameters used in solving this
QUBO problem are shown in Tab. 2 and the embedding of
the problem to the D-Wave Advantage is illustrated in Fig. 3.
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Tab. 2. D-Wave Advantage solver parameters used in solving QUBO
problem equivalent to the problem of finding elliptic curve discrete
logarithm over F7 on Edwards curve in a subgroup of size 8.

Parameter Value

Name (chip ID) Advantage_system
6.1

Available qubits 5 760
Topology Pegasus

Number of reads 10 000
Annealing time 20 µs
Anneal schedule [[0,0], [20,1]]
H gain schedule [[0,0], [20,1]]

Programming thermalization 1000 µs
Number of source variables 58
Number of target variables 112

Maximum chain length 6
Chain strength 15 000

QPU access time 639 633.56 µs
QPU programming time 15 233.56 µs

QPU sampling time 624 400 µs
Total post processing time 10 454 µs

Post processing overhead time 1 784 µs

Tab. 3. Estimated number of logical variables of equivalent QUBO
problem for real-world problems.

Bitlength of the basefield Estimated number of the
logical variables

128 6.29 ·106

192 2.12 ·107

256 5.03 ·107

384 1.70 ·108

512 4.03 ·108

5. Conclusion

This paper presents methods for transforming the elliptic
curve discrete logarithm problem over prime fields to the
QUBO problem. We showed how to efficiently perform such
a transformation using approximately 3n3 logical variables
(logical qubits) in the case of the Edwards curve. The discrete
logarithm problem in the multiplicative subgroup over a finite
field requires approximately 2n2 variables.

Table 3 presents the estimated number of logical variables of
equivalent QUBO problems for real-world parameters. From
Tab. 3 we can conclude that the number of logical variables
(qubits) necessary to run appropriate QUBO problems for
real-world parameters is very high. We show that the proposed
approach, unlike Shor’s algorithm, may be run in practice.

Even though small instances were solved only, they were run
on the D-Wave computer remotely, via the D-Wave Leap cloud
(https://cloud.dwavesys.com/leap/).
The elliptic curve discrete logarithm problem on the Edwards
curve over F7 has been solved using the D-Wave Advantage
QPU, with 112 physical qubits being used. Because the pre-
sented approach requires approximately 3n3 logical qubits
for the reduction of ECDLP over Fp, where the bitlength of p
is equal to n, the number of variables for real-size problems
will be very large. For example, for a 256-bit prime field,
approximately 50 300 000 logical variables will be necessary.
Even though the problem we have solved is small, according
to our knowledge, this is the first instance anyone has ever
reported a solution to a discrete logarithm problem over prime
fields using direct quantum methods.
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