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Abstract  Fractal antennas are mainly used in multiband appli-
cations. However, these types of arrays suffer from numerous dis-
advantages, such as high sidelobe levels, low directivity, poor ta-
per efficiency, and high design computational complexity. In this
paper, the conventional fractal procedures are redesigned and
efficient clustered subarrays are deployed, such that their multi-
band properties are maintained while simultaneously achieving
significant improvements in radiation characteristics. A genet-
ic optimization algorithm is used to find the optimal clustered
fractal shapes and their associated amplitude distributions, such
that the sidelobe levels are minimized at the narrower beam
width, i.e. maximum feasible directivity. Since the optimization
process is carried out at the clustered level, it can be repre-
sented by merely a few variables, which solves the problem of
time intensity. Simulation results confirm the superiority of the
proposed clustered fractal array, where the sidelobe level has
been reduced to more than –10 dB over a wide range of fre-
quencies. Directivity and taper efficiency have been improved
by more than 6 dB and 50%, respectively, in comparison to the
parameters of conventional, original fractal arrays. Moreover,
the proposed fractal array pattern offers an additional advan-
tage, as it is capable of wide sidelobe nulling at some undesired
directions.

Keywords  array pattern optimization, clustered elements, fractal
array antennas, multiband, Sierpinski carpet fractal array

1. Introduction

Larger antenna arrays play an important role in 5G/6G and be-
yond applications, as each receiver device may accommodate
a larger number of antenna elements operating at mmWave
frequencies. In addition to providing high directivity and
good beamforming capabilities, these large arrays come with
many limitations affecting their implementation. These in-
clude complex feeding networks, high cost, and narrow band
operation. For multiband applications, fractal antenna arrays
were found to be a good alternative [1]–[2]. In general, fractal
antennas are self-similar geometries with the same structure
repeating over different scales. Each scale corresponds to
a specific frequency band.
In the literature, there are many proposals of fractal structures.
The most common one that is widely used in many multiband
applications is the Sierpinski carpet antenna array [3]. Oth-
er structures include cantor [4], hexagonal, pentagonal [5],

Piano-Gosper space-filling curve [6], Minkowski island, and
Koch loop [7]. These conventional fractal arrays contain nu-
merous inactive elements in their design, depending on the
initial array structure known as a generator. Thus, they usu-
ally suffer from the highest sidelobes, lowest directive gain,
and poorer taper efficiency [1]. These undesirable features
are caused by the fact that amplitude distributions of the frac-
tal array elements are only at ones and zeros. Ones mean that
the array elements are in the active state (on), while zeros
mean that the array elements are in the inactive state (off). To
date, the usage of these types of the fractal arrays was limit-
ed solely to multiband applications in which high radiation
characteristics are not of the main concern.
On the other hand, clustered antenna arrays are currently
gaining a lot of interest due to their effectiveness in reduc-
ing complexity of the beamforming network of large antenna
arrays, as well due to the fact that they are capable of main-
taining good radiation characteristics [8]–[13]. In general,
there is need to find, by means of an optimization algorithm,
the optimal clustering/tiling configurations that guarantee
complete coverage of the entire array apertures.
Currently, fractal shapes present in the designs are mostly built
with individual array elements, and many of these elements
are turned off at the final construction stage. Very few studies
attempted to reduce the number of the off-state elements
in the fractal array geometry by means of an optimization
algorithm, in order to improve directivity and lower peak
sidelobes [14]–[16].
In this paper, conventional fractal antenna arrays are re-
designed with efficient clustered shapes used instead of the
individual elements. To the best of the author’s knowledge,
fractal arrays are designed, for the very first time, jointly with
clustered subarrays, thus creating a new array referred to as
a clustered fractal array which may be characterized by high-
ly simplified features. Such clustered shapes are chosen to
make sure that the original fractal shapes and their multiband
operation capabilities are maintained and remain unchanged.
The proposed clustered fractal array not only reduces the
complexity of the array feeding network, but also offers a sig-
nificant improvement in radiation characteristics. A genetic
optimization algorithm is used to find the optimal clustered
fractal shapes and their associated amplitude distributions,
such that an improvement in directivity, sidelobe pattern, and
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taper efficiency may be ensured in comparison to the char-
acteristics of the conventional, original fractal array without
clustered elements.

2. Clustered Fractal Array

To generate a fractal array, an iterative procedure is proposed
to replicate the initial structure (usually known as generator)
several times over a variety of scales, with each stage of the
design corresponding to a specific frequency band. Thus, the
final solution is capable of operating in distinct multiband
frequencies. In contrast, standard antenna arrays which are
designed to match a given operation frequency can be tuned
to a single band only.
To show the dependence of frequency on the array pattern, let
us consider a two-dimensional rectangular array made up of
a number of elements equal toN ×M that are symmetrically
distributed around the center of the array, along both x and y
axes, with uniform inter-element spacing dx = dy = λo

2 ,
where λo = c

fo
and fo is the design frequency. Clearly, this

array is frequency dependent and its array factor changes with
frequency as:

AF (u, v, f) =
N∑
n=1

M∑
m=1

anme
jρnmej[(m−1)π

f
fo
u]ej[(n−1)π

f
fo
v]

(1)
where:
anm and ρnm are the amplitudes and phases of the element
distributions,
u = sin θ cosφ,
v = sin θ sinφ,
θ and φ are the elevation and azimuth planes respectively,
f is the frequency band other than the designed value,
f
fo

ratio is the difference from the design frequency.

On the other hand, the general form of a two-dimensional
fractal array factor at any construction stage, p = 1, 2, . . . , P ,
may be written as:

AFfractal(u, v, f) =
P∏
p=1

[ N∑
n=1

M∑
m=1

anme
jρnm

× ej[4
p−1(m−1)π f

fo
u]ej[4

p−1(n−1)π f
fo
v]

]
.

(2)

For the amplitude-only control method, element phase distri-
butions are set to ρnm = 0 and the values of fractal amplitude
distributions anm are at two levels only, namely one and zero,
depending on the initial fractal generator used.
For example, let us assume that the initial linear array gener-
ator at the first stage is 0110, where the number of active and
inactive elements is 2. Then, for the next stages of the fractal
construction process, each 1 is replaced by 0110 and each
0 by 0000 to form a new, larger amplitude distribution of
0000011001100000 at the second stage of the fractal con-
struction, and so on. The number of active elements at the
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Fig. 1. Original Sierpinski carpet fractal array: a) layout and b)
amplitude distribution.

second stage becomes 4, while the number of inactive ele-
ments becomes 12. For the two-dimensional Sierpinski carpet
array, the initial fractal subarray geometry at the first stage
may be given by:

anm =


0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 . (3)

Note that the initial fractal array generator could be of any
form that may be replicated over many design stages, until
the final fractal geometry is obtained. Fractal amplitude
distributions at the second stage of the construction process
may be obtained by the following iterative steps:

1: anm = 0
2: P = 2
3: For k = 1 to P
4:

anm =


anm anm anm anm

anm ones 4(k−1) ones 4(k−1) anm

anm ones 4(k−1) ones 4(k−1) anm

anm anm anm anm

 (4)

5: End for
By applying Eqs. (3) and (4), the amplitude distribution of the
conventional, original Sierpinski carpet fractal array can be
obtained as shown in Fig. 1 for N ×M = 16× 16 elements.
Blue blocks represent active elements that are turned on and
red blocks represent inactive elements that are turned off.
The multiband frequencies of fractal antenna arrays can be
given by [2]:

fp =
fo
δp
, p = 0, 2, . . . , P − 1 , (5)

where δ is the number of elements in the initial linear fractal
generator, here equaling 4. For the first stage of the design
process, the tuned frequency is fo. For other consecutive
stages, the turning frequencies are fo, fo4 ,

fo
16 ,

fo
256 and so on.

To join the fractal principles with the clustered subarrays
mechanism, first we divide the inactive elements of the origi-
nal fractal array into multiple square ring subarrays, starting
with the elements on the array’s perimeter, all the way to the

92
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 1/2024



Optimizing Performance of Antenna Arrays with Clustered Fractal Shapes for Multiband Applications

1 3 5 7 9 11 13 15

2

4

6

8

10

12

14

16

Element no. along x axis

E
le

m
en

t 
no

. a
lo

ng
 y

 a
xi

s

0

5
10

15

0.5

1

1
5

10
15

0

0.2

0.4

0.6

0.8

1

x axis
y axis

Amplitude
distributions

a) b)

Fig. 2. Proposed clustered fractal array: a) square ring layout and b)
amplitude distributions.

center of the array, as shown in Fig. 2, where each square-ring
has been highlighted with different colors. The exact number
of the elements in each square ring,Kr, can be determined
by:

Kr = 2
[
2r(N − r)

]
− 2
[
2(r − 1)(N − r + 1)

]
,

r = 1, 2, . . . , R ,
(6)

where R is the total number of square rings available in the
considered array.
Then, a new common adjustable amplitude weight is attached
to each clustered square-ring. Thus, amplitude distributions
will be computed at the clustered level, rather than at the level
of individual elements.
Next, the amplitude distribution of each clustered square ring
is optimized, such that its corresponding array factor obeys
a specific constraint mask with the desired sidelobe level
and main beamwidth. To keep the original fractal geometry
unchanged, amplitude distributions of the active elements (i.e.
those elements whose magnitude equals one) of the original
Sierpinski carpet array are left unchanged, i.e. remain at one
(see Figs. 1–2). As none of the elements remain inactive after
the process of optimizing the clustered fractal array, taper
efficiency and directivity are expected to be improved when
compared to those of the original Sierpinski carpet array. The
genetic algorithm is used to optimize clustered amplitude
distributions of the proposed fractal square ring elements,
according to the following cost function:

cost =
S∑
s=1

∣∣AFfractal(us)− constraint_mask(us)∣∣2 , (7)

where the constraint mask is given by:

constraint_mask(u) =


SLL, − 1 ¬ u ¬ −BW2

BW
2 ¬ u ¬ 1

0, − BW2 ¬ u ¬ BW

, (8)

where BW and SLL represent the desired beamwidth and
the sidelobe level.

3. Simulation Results

In this section, several simulation results are presented and
discussed to assess the validity, efficiency, and reliability of
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Fig. 3. Amplitude distributions: a) original Sierpinski carpet fractal
array and b) optimized clustered fractal array.
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Fig. 4. Three-dimensional radiation patterns of the original Sierpin-
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the proposed clustered fractal array. In all the representative
examples, the following specifications of the genetic algorithm
were used:
• initial population size of 50,
• number of iterations set to 1000,
• selection is roulette,
• number of crossovers is 2,
• mutation probability is 0.04,
• mating pool is chosen to be 4.
In the first example, the performance of the proposed array
with N ×N = 4× 4 elements at the first stage of the fractal
design is presented. The amplitude distribution of the original
Sierpinski carpet array was given in Eq. (3). To find the
optimized value of the clustered amplitude distribution of
each subarrayed square ring Ar its minimum and maximum
values are bound according to the following limits:

0 ¬ Ar ¬ 1, r = 1, 2, . . . , R . (9)

For an array with N ×N = 4× 4 elements, R = 1. To keep
the original fractal geometry, the amplitude distribution of
the central elements should remain, according to Eq. (3), at
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one, while optimizing the clustered amplitude distribution of
the first square ring A1 as:

anm =


A1 A1 A1 A1

A1 1 1 A1

A1 1 1 A1

A1 A1 A1 A1

 .
Note that the optimization process contains only one variable
at the clustered level which can be easily optimized according
to the required constraint mask given in Eq. (7). Figure 2
shows the amplitude distributions of the original and the
optimized clustered Sierpinski carpet fractal arrays at the
first stage of the construction process, while Figs. 4–5 show
their corresponding three- and two-dimensional radiation
patterns. From Fig. 3, the optimized value of the clustered
amplitude distribution of the first square ring was A1 =
0.4981. From Figs. 4–5, it can be seen that directivity and
the sidelobe pattern of the proposed clustered array are much
better than those of the original Sierpinski carpet fractal array,
with directivity improvement exceeding 9.5 dB and sidelobe
reduction being higher than –10 dB.
Other outcomes of the performance comparison process
are shown in Tab. 1, while the frequency responses of the
proposed clustered array and the original fractal array, both
at stage P = 1, are shown in Fig. 6. Here, the designed
frequency was 30 GHz and the tested range was from 1 GHz to
30 GHz. It can be seen that the proposed fractal array pattern
performs very well within the majority of the frequency range.
In the second example, the plots of Figs. 7–8 show the results
of the original and the optimized clustered Sierpinski carpet
fractal arrays at the second stage of the fractal construction
process. Here, 4 different clustered square rings are present.
Their optimized values are A1 = 0.8505, A2 = 0.7857,
A3 = 0.6451,A4 = 0.6182. It can be seen that, as the design
stage progresses, performance of the proposed clustered frac-
tal array becomes better due to the availability of more square
rings around the array center, which directly contributes to
an increase in the number of the clustered amplitude distribu-
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tions or the number of degrees of freedom in the optimization
algorithm.
In the next example, the capability of placing a wide side-
lobe nulling capability at the elevation plane from the range
of u = ±0.3 to ±0.4 is investigated with the depth depressed
to more than –60 dB. In this case, the amplitude distribution
of each inactive element of the original Sierpinski carpet ar-
ray is optimized individually. The optimized and the original
radiation patterns of the Sierpinski carpet fractal arrays at
second stage of construction are shown in Fig. 9. The corre-
sponding optimized amplitude distribution is also shown in
this figure.
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Finally, a simple model of the proposed fractal array is de-
signed with the operating frequency of 3.5 GHz and is exam-
ined for second-stage multiband operation capability at 3.5
GHz, 1.5 GHz, and 0.4 GHz frequencies, where the radiated
power as well as the reflection coefficient are calculated with-

in the frequency of 0.1 to 8 GHz, as shown in Fig. 10. One
may notice that the designed fractal array has 3 resonance
frequencies, where the radiated power is at its maximum and
the reflection coefficient is at its minimum. The first reso-
nance is at the designed frequency of 3.5 GHz. The second
resonance is at 1.5 GHz, which corresponds to the first stage
of the fractal design process, while the third resonance is at
0.4 GHz, which corresponds to the second stage of the fractal
design process.

4. Conclusions
In this paper, a novel clustering configuration for rearranging
the array elements of Sierpinski carpet fractal planar arrays is
proposed. The method is based on the formation of clustered
amplitude weights, rather than on dealing with the individual
elements. Since the fractal geometry was retained after clus-
tering, the multiband operation capability was maintained as
well, and many other desired characteristics, such as direc-
tivity improvement, better sidelobe reduction, and efficient
taper efficiency, could be achieved. To obtain such desired
radiation patterns, the amplitude distributions of the fractal
square-rings are elegantly clustered and optimized.
It has been shown that the proposed clustered fractal array with
optimized square ring amplitude distributions achieves lower
sidelobe levels, higher directivity and better taper efficiency
compared with the parameters of conventional fractal arrays
without clustered elements. Moreover, the proposed method
can be applied to other fractal antenna arrays in order to
simplify their construction process, while achieving good
radiation characteristics.
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