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Abstract  In this paper, a tight lower bound for the differential
entropy of the Gaussian mixture model is presented. First, the
probability model of mixed Gaussian distribution that is created
by mixing both discrete and continuous random variables is
investigated in order to represent symmetric bimodal Gaussian
distribution using the hyperbolic cosine function, on which
a tighter upper bound is set. Then, this tight upper bound is
used to derive a tight lower bound for the differential entropy of
the Gaussian mixture model introduced. The proposed lower
bound allows to maintain its tightness over the entire range
of the model’s parameters and shows more tightness when
compared with other bounds that lose their tightness over certain
parameter ranges. The presented results are then extended to
introduce a more general tight lower bound for asymmetric
bimodal Gaussian distribution, in which the two modes have
a symmetric mean but differ in terms of their weights.
Keywords  differential entropy, lower bound, mixture random
variable, multimodal Gaussian

1. Introduction
Mixed Gaussian distribution has been an attractive field of
research for many decades, as it represents random variables
used in many fields of science, e.g. in signal processing [1],
machine learning [2], gas mixture in chemistry, thermody-
namics [3], economy, and biology.
In wireless communication systems, mixed Gaussian dis-
tribution is used to represent the output of many stochastic
information sources, such as AWGN channels and index mod-
ulation schemes [5].
Mixed Gaussian distribution is frequently utilized as a noise
model in various signal processing applications. This specific
noise model is employed to describe different communication
problems, such as co-channel interference, in which thermal
noise with a Gaussian distribution is combined with artificial
“clutter”, e.g. signals from communication systems [6].
Mixed Gaussian distribution results from mixing both con-
tinuous and discrete random variables. The mixing can be
performed using the product or summation of two random
variables. The resultant mixture has a number of Gaussian
modes that differ in terms of model parameters, such as mean,
variance, and weights [7].
The number of modes depends on the number of values the
discrete random variable can assume. For example, bimodal
Gaussian distribution is generated from a discrete random
variable with two values and becomes symmetric when the

two modes have the same variance and weight, but their means
are symmetric [7], [8]. A special case of mixed Gaussian
distribution occurs when the discrete random variable is
uniform with two values. Then the resultant mixture will
have symmetric bimodal Gaussian distribution in which the
two Gaussian components have symmetric means and are
identical in terms of weights and variance.
The differential entropy of mixed Gaussian distribution has
gained its significance from the importance of Gaussian mix-
ture distribution. In communication systems, it is necessary to
calculate the differential entropy in order to find the achievable
rate and the rate-distortion for a specific coding scheme [9].
An analytic form of the differential entropy of mixed Gaus-
sian distribution is not available [10], and the integration of
log(cosh(z)) is not possible as shown in Appendix B.
Instead of relying on the analytic form, the differential en-
tropy of a Gaussian mixture may be either estimated [12] or
calculated using an approximation based on numerical cal-
culations [10]. Meanwhile, different researchers are using
bounds on the differential entropy [13] by setting bounds on
log(cosh(z)). In [4], the authors introduced the bounds on
the differential entropy using the Taylor series. However, the
introduced lower bound is not tight to the introduced upper
bound. In this paper, we combine both series expansion, and
a tighter upper bound on the log(cosh(z)) than the one used
in [13] to present a tighter lower bound on the differential
entropy for symmetric bimodal Gaussian distribution.
General bounds on the differential entropy (based on different
principles) provide basic measures which can be used to
compare the results. These bounds are either of the upper
variety, such as the maximum entropy upper bound (MEUB)
based on the principle of maximum entropy [9] and the
separation of upper bound components [10], or of the lower
bound variety, based on the concavity of the differential
entropy [9]. However, these bounds are very lossy and do
not provide an accurate measure of the compared bounds.
However, a comparison of the results with the bounds on
log(cosh(z)) provides more accurate results.
In [19], the authors used the principle of entropy concavi-
ty deficit to introduce bounds on the differential entropy of
a Gaussian mixture. This principle uses the difference between
the differential entropy of the mixture and the weighted sum
of differential entropies of its constituent components. Mean-
while, the tightness of the resultant bounds is conditioned
on variance σ of the Gaussian components of the mixture,
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Fig. 1. Symmetric bimodal Gaussian distribution a) and asymmetric
bimodal Gaussian distribution b).

such that the bounds lose their tightness for σ2 < 0.5, and
the error is growing with σ.
In this paper, we introduce a tight lower bound on the differ-
ential entropy of bimodal Gaussian distribution and compare
the results with [4], [13], by combining the two techniques,
using a more tight upper bound on the log(cosh(z)) than the
ones used in [13], as well as using series expansion.

2. Preliminary Requirements and Setup
In this section, we provide the preliminary requirements and
the probability setup needed to characterize the proposed
model.

2.1. Differential Entropy of a Continuous RV

For a continuous random variableC with a probability density
function (PDF) f(C), the differential entropy of C is the
expectation of the logarithmic function of its PDF, defined
as [9]:

h(C) = −E
[
log(f(C))

]
= −
∫ ∞
−∞
f(C) log (f(C)) dc .

(1)

2.2. Probability Analysis for Mixture Distribution

For the measure space (Ω,F ,P), with probability measureP.
Let (R, BR) represents the measurable space on R with the
Boral σ-algebra. The subset {d1, d2, . . .} of R is countable
when D is an absolutely discrete random variable (RV) with
probability mass function (PMF) pi = P(D = di), such
that
∑
i

pi = 1, and an induced probability measure µD on

(R, BR).
For the continuous RV C, the probability measure µC , in-
duced on (R, BR), is absolutely continuous with respect to
the Lebesgue measure. This probability measure is character-
ized by the PDF f(C), where

∫
R
f(C) dc = 1.

The mixture RV Z = C × D formed by mixing arbitrary
discrete and continuous RVs will have the PDF in the form
of:

f(Z) =
∑
i

pifi(C) . (2)

For a continuous RV with a Gaussian distribution f(C) ∼
N (µc, σ2c ), the mixture RV is a multimodal Gaussian with
PDF:

f(Z) =
∑
i

piN (µi, σ2i ) , (3)

where µi = diµc and σ2i = d2iσ2c .
The number of Gaussian modes of the mixture distribution
depends on the number of values that the discrete RV may
take, such that a bimodal Gaussian RV results when the
discrete RV D ∈ {d1, d2}.
A special case of the bimodal Gaussian distribution occurs
when the discrete random variable is uniform with two values,
such that P (D = d1) = P (D = d2) = 0.5, d1 = −d2.
Then, the resultant mixture distribution is symmetric bimodal
Gaussian, such that Eq. (3) becomes:

fz(Z) = 0.5N (µ, σ2) + 0.5N (−µ, σ2)

= N (µ, σ2)e
−µz
σ2 cosh(

µz

σ2
)

, (4)

in which the two Gaussian components have symmetric means
and are identical in weights and variance, as shown in Fig. 1a.
When the discrete RV is not uniform, such that P (D =
d1) ̸= P (D = d2), the two Gaussian components differ
only in terms of their weights, as shown in Fig. 1b, and the
distribution becomes weighted symmetric bimodal Gaussian
as:
fz(z) = p1N (µ, σ2) + p2N (−µ, σ2)

=
2

(eb + e−b)
N (µ, σ2)e

−µz
σ2 cosh(

µz

σ2
+ b)

=
eb

eb + e−b
N (µ, σ2) + e−b

eb + e−b
N (−µ, σ2)

, (5)

where b = 0.5 log(
p1
p2
). A derivation of the second form of

Eq. (5) is provided in Appendix A.

3. Tight Lower Bound on the Differential
Entropy of Symmetric Bimodal Gaussian

Distribution
Theorem 1. A tight lower bound on the differential entropy
for the symmetric bimodal Gaussian distribution is:

h(Z) ⩾ h(C) + α2 +
2
3
− 6α√
2π
e
−α2
2 − α2erf( α√

2
)

− 2β
N∑
k=1

(
Mk1Vk1
2
erfc(
−Vk1
σ
√
2
) +
Mk2Vk2
2
erfc(
−Vk2
σ
√
2
)) ,

(6)
where α =

µ

σ
, β =

α

σ
,

Mk1 = e
−(6kα2−9k2α2)

2 ,

Vk1 = µ− 3kµ ,
Mk2 = e

6kα2+9k2α2

2σ2

Vk2 = −µ− 3kµ .

The proof is outlined in Appendix B. Below, we provide
a description of the main axioms on which our proof is based.
We shall start by applying the differential entropy definition
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Fig. 2. Comparison of the upper bound on log(cosh(βz)) for dif-
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from Eq. (1) to the symmetric bimodal Gaussian distribution
given by Eq. (4). The resulting integration of log cosh(βz)
in Eq. (16) and Eq. (18) cannot be solved in a closed form.
Instead, many inequalities are used to set lower bounds on

log(cosh(βz)), such as eβz,
βz2

2
and z tgh

(βz
2

)
[14].

In order to calculate the differential entropy of bimodal Gaus-
sian distribution, the authors in [13] used βz as an upper
bound on log(cosh(βz)). Meanwhile, the relationship be-
tween log cosh(βz) and ctgh in [15] shows more tightness
as an upper bound such that:

log(cosh(βz)) ⩽ βz ctgh
(3βz
2

)
− 2
3
. (7)

Therefore, we use Eq. (7) as an upper bound on log(cosh(βz))
due to its tightness, which leads to a tight lower bound on the
differential entropy. Moving forward, we use series expansion
from Eq. (24) to expand ctgh( 3βz2 ) [16] in order to avoid
difficulties in solving the integration in a closed form.
A comparison between different upper bounds on
log(cosh(βz)) is shown in Fig. 2, with the zoom-in portion
indicating that βz ctgh( 3βz2 ) −

2
3 is the most tight upper

bound over the entire range of model parameter Z.

4. Tight Lower Bound on the Differential
Entropy of Weighted Symmetric Bimodal

Gaussian Distribution

Representing bimodal Gaussian distribution with the hyper-
bolic cosine, Eq. (5) offers the advantage of controlling the
weights of the two Gaussian modes by shifting the hyperbol-
ic cosine on the x-axis which, in turn, changes the weights of
the two modes, thus resulting in weighted symmetric bimodal
Gaussian distribution. Meanwhile, the use of the symmet-
ric Hyperbolic cosine (shift = 0) results in the symmetric
bimodal Eq. (4). Therefore, in this section, we use the advan-
tages of the hyperbolic cosine in order to present a tight lower
bound on the differential entropy of weighted symmetric
bimodal Gaussian distribution.

Theorem 2. For the weighted symmetric bimodal Gaussian
distribution, the lower bound on the differential entropy is:

h(Z) ⩾ (A+B)h(C) + (A+B)
µ2

σ2
+
2(A+B)
3

+ 2(A−B)erf( µ
σ
√
2
)− 2(AIb12 +BIb22)

, (8)

where b is the x-axis shift of the hyperbolic cosine used in
modeling weighted symmetric bimodal Gaussian distribution
and:

A = eb

eb+e−b and B = e−b

eb+e−b .

Both Ib12 and Ib22 are defined in Appendix C.
The proof is outlined in Appendix C with an analogy to the
proof of Theorem 1.
By calculating the differential entropy based on its basic
definition, we substitute the PDF of the weighted bimodal
Gaussian Eq. (5) in Eq. (1), and then apply the tight upper
bound of the shifted version of Eq. (7):

log (cosh(β(z + b))) ⩽ β(z + b) ctgh
(3β(z + b)

2

)
− 2
3

(9)
on log(cosh(βz + b)), which leads to a tight lower bound on
the differential entropy of the proposed mixture model.
Then, we expand ctgh( 3β(z+b)2 ) using the series expansion
technique, such that:

ctgh(
3βz
2
) = 1 + 2

N∑
k=1

e−2k
3βz
2 . (10)

In order to get a closed-form solution for the presented lower
bound, the exponential term in Eq. (10) inside the integration
Eq. (29) is used to form a Gaussian function whose integration
can be found using the error function.

5. Simulation Results

In this section, we provide through simulations comparing
our lower bound on the differential entropy of mixed Gaussian
distribution and different lower bounds. The simulations use
different model parameters, such as variance and mean of the
Gaussian modes and series approximation order N = 3.
Many authors, for instance in [4], compare their results with
general bounds that rely on different principles providing
basic measures, such as the maximum entropy upper bound
(MEUB) based on the principle of maximum entropy [9],
separation of components upper bound (SCUB) [10], and
concavity of differential entropy [9], as a lower bound. These
bounds, however, are very lossy and do not provide an accurate
measure of the compared bounds.
Meanwhile, bounds on the differential entropy that are derived
from the bounds on log(cosh(z)) are tighter than general
bounds, such as MEUB and SCUB, which provide an accurate
and clear comparison. Therefore, we use the upper bound
obtained from inequality [13]:

log(cosh(βz)) ⩾ βz − log(2) , (11)

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2024 25



Abdelrahman Marconi, Ahmed H. Elghandour, Ashraf D. Elbayoumy, and Amr Abdelaziz

2

2.5

3

3.5

h
(Z

)

lower bound [13]
lower bound [4]
upper bound [13]
proposed lower bound

1 2 3 4 51.5 2.5 3.5 4.5
2σ

Fig. 3. Plots of different lower bounds on the differential entropy for
symmetric bimodal Gaussian distribution in terms of σ2.

instead of SCUB and MEUB to compare the different lower
bounds, because of its tightness.
In Fig. 3, the proposed lower bound on the differential entropy
of symmetric bimodal Gaussian distribution is compared with
the lower bounds presented in [13] and [4] and the upper
bound in [13] is set as an upper rather than SCUB and MEUB
limit due to its tightness.
The comparison shows that the proposed lower bounds achieve
more tightness over the entire range of variance than the lower
bound proposed in [13], as they rely on the inequality given by
Eq. (11) instead of βz. Therefore, more tightness is achieved
over a high degree of variance than in the case of the lower
bound presented in [4].
Figure 4 shows the effect of changing the mean of the Gaus-
sian modes on the differential entropy of symmetric bimodal
Gaussian distribution. The proposed lower bound is tighter
to the upper bound than the solution proposed in [13], with
a large gain over the low range of the model parameter µ
compared to the lower bound presented in [4]. In addition to
achieving more tightness over the entire range of the same
model parameter is used rather than in [13]. Furthermore,
a SCUB simulation shows that the use of a general bound is
very lossy, which does not facilitate an accurate comparison
with the lower bounds. The use of the upper bound of [13],
meanwhile, provides an accurate and clear measure for a com-
parison between different lower bounds.

6. Application

In this section, we apply the bounds proposed in Theorems
1 and 2 on the differential entropy of the channel output to
study channel capacity with a peak power constraint. For an
AWGN channel, the output Y is:

Y = X + Z ,

whereX is the channel input signal with a finite number of
mass points constrained in the interval [√ρ : √ρ] and Z is
the additive Gaussian noise, such that Z ∼ N (0, σ2n). Both
X and Z are independent variables.

h
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Fig. 4. Plots of different bounds on the differential entropy for
symmetric bimodal Gaussian distribution in terms of µ.

In this case, the channel is constrained to peak power ρ and
the corresponding constrained channel capacity is:

Cρ(ρ) ≜ SUP
X∈[√ρ:√ρ]

I(X;X + Z) . (12)

In [17], it has been proven that for an amplitude-constrained
signal with a maximum amplitude of √ρ ⩽ 1.05, channel
capacity is achievable when X is equiprobable with {−√ρ :√
ρ} values. In this case, channel output Y has a bimodal

Gaussian distribution.
We conversely verify the constrained channel capacity pre-
sented in [17] by showing that this capacity is achieved when
the distribution of channel output Y is of symmetric bimodal
Gaussian distribution that results from an equiprobable input
signal X with PMF p(X = −√ρ) = p(X = √ρ) = 0.5.
The variations in the achievable rate I(X;X+Z) are studied
according to the changes in the weights of the two Gaussian
modes of the channel output distribution. The weights of the
two modes follow the probability of the two values of input
signal X .
Then, the lower bound from Theorem 2 is applied on the
differential entropy of the channel output and the value of
parameter b in Eq. (9) controlling the weights of the Gaussian
modes 13, is varied. We show via the simulation presented
in Fig. 5, that the maximum achievable rate occurs at b = 0,
which results in equiprobable modes. Additionally, Theorem
2 converges to Theorem 1.

7. Conclusion

By relying on the advantage of representing bimodal Gaus-
sian distribution using the hyperbolic cosine, we proposed
tighter lower bounds on the differential entropy of bimodal
Gaussian distribution, rather than the previously used lower
bounds in both cases (symmetric/weighted symmetric) using
a tight upper bound on the log(cosh(z)). The proposed lower
bound shows more tightness over the entire range of model
parameters, with more gain in the lower range of the mean of
the Gaussian modes.
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Appendix A: Weighted symmetric
bimodal Gaussian Distribution

fz(z) =
2

eb + e−b
N (µ, σ2)e

−µz
σ2 cosh

(µz
σ2
+ b
)

=
2

eb + e−b
N (−µ, σ2)e

µz

σ2 cosh
(µz
σ2
+ b
)

=
eb

eb + e−b
N (µ, σ2)2e−(

µz

σ2
+b) cosh

(µz
σ2
+ b
)

=
eb

eb + e−b
N (µ, σ2)

[
1 + e−2(

µz

σ2
+b)

]
=

eb

eb + e−b
N (µ, σ2)

[
1 + e−2be

−(z+µ)2+(z−µ)2

2σ2

]
=

1
eb + e−b

N (µ, σ2)e
−µz
σ2

[
e
µz

σ2
+b + e

−µz
σ2
−b
]

=
1

eb + e−b

[
ebN (µ, σ2) + e−bN (−µ, σ2)

]
=

eb

eb + e−b
N (µ, σ2) + e−b

eb + e−b
N (−µ, σ2)

(13)

Appendix B: Proof of Theorem 1

The differential entropy of the bimodal Gaussian RV Z is:

h(Z) = −0.5
∫ ∞
−∞

[
N (µ, σ2) +N (−µ, σ2)

]
log
(
fz(Z)

)
dz

= −0.5
∫ ∞
−∞
N (µ, σ2) log

(
fz(Z)

)
dz

− 0.5
∫ ∞
−∞
N (−µ, σ2) log

(
fz(Z)

)
dz

= −0.5
(I1 + I2

)
(14)

I1 =
∫ ∞
−∞
N (µ, σ2) log

[
N (µ, σ2)e

−µz
σ2 cosh

(µz
σ2
)]
dz

=
∫ ∞
−∞
N (µ, σ2) logN (µ, σ2)dz

− µ
σ2

∫ ∞
−∞
zN (µ, σ2)dz

+
∫ ∞
−∞
N (µ, σ2) log cosh

(µz
σ2
)
dz

= log
1

σ
√
2π
− 1
2σ2

∫ ∞
−∞
z2N (µ, σ2)dz

− µ
2

2σ2
+
∫ ∞
−∞
N (µ, σ2) log cosh

(µz
σ2
)
dz

= log
1
σ
√
2π
− 1
2σ2
(σ2 + µ2)− µ

2

2σ2

+

∫ ∞
−∞
N (µ, σ2) log cosh

(µz
σ2

)
dz

= log
1
σ
√
2π
− 1
2
− µ

2

σ2

+

∫ ∞
−∞
N (µ, σ2) log cosh

(µz
σ2

)
dz

= −0.5 log(2πσ2)− 0.5− µ
2

σ2

+

∫ ∞
−∞
N (µ, σ2) log cosh

(µz
σ2

)
dz

= −0.5 log(2πeσ2)− µ
2

σ2

+ 2

∫ ∞
0

N (µ, σ2) log cosh
(µz
σ2

)
dz

= −h(C)− µ
2

σ2
+ 2 I11

(15)

I11 =
∫ ∞
0

N (µ, σ2) log cosh
(µz
σ2

)
dz (16)

Similarly:

I2 = −h(C)− µ
2

σ2
+ 2 I21 (17)

I21 =
∫ ∞
0

N (−µ, σ2) log cosh
(µz
σ2

)
dz (18)

Then:

h(Z) = −0.5
(
− 2h(C)− 2µ

2

σ2
+ 2 I11 + 2 I21

)
= h(C) +

µ2

σ2
−
(I11 + I21

) (19)

Applying the inequality Eq. (11):

I11 =
∫ ∞
0

N (µ, σ2) log
(
cosh
(
βz)
)
dz

⩽

∫ ∞
0

N (µ, σ2)βz ctgh
(3βz
2

)
dz

−
∫ ∞
0

2
3
N (µ, σ2)dz

= I12 − 13
(
1 + erf(

µ

σ
√
2
)
)

(20)
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Where erf is the error function [18],

I21 ⩽
∫ ∞
0

N (−µ, σ2)βz ctgh
(3βz
2

)
dz

z −
∫ ∞
0

2
3
N (−µ, σ2)dz

= I22 − 13
(
1− erf( µ

σ
√
2
)
) (21)

I11 + I21 = I12 + I22 − 13
(
1 + erf(

µ

σ
√
2
)
)

− 1
3

(
1− erf( µ

σ
√
2
)
)

= I12 + I22 − 13 −
1
3
erf
( µ
σ
√
2

)
− 1
3

+
1
3
erf
( µ
σ
√
2

)
= I12 + I22 − 23

(22)

h(Z) ⩾ h(C) +
µ2

σ2
+
2
3
−
(I12 + I22

)
(23)

Using series expansion [16]:

ctgh
(3βz
2

)
= 1 + 2

N∑
k=1

e−2k
3βz
2 (24)

Where N is the order approximation of the series expansion.

I12 =
∫ ∞
0

N (µ, σ2)βz ctgh
(3βz
2

)
dz

=

∫ ∞
0

N (µ, σ2)βz
(
1 + 2

N∑
k=1

e−2k
3βz
2
)
dz

= β

∫ ∞
0

zN (µ, σ2)dz + 2β
N∑
k=1

∫ ∞
0

zN (µ, σ2)e−3kβzdz

= β
σ√
2π
e
−µ2

2σ2 +
βµ

2
erfc
( −µ
σ
√
2

)
+ 2β

N∑
k=1

I13

=
α√
2π
e
−α2
2 +

α2

2
erfc
(−α√
2

)
+ 2β

N∑
k=1

I13
(25)

I22 =
∫ ∞
0

N (−µ, σ2)βz ctgh
(3βz
2

)
dz

= β

∫ ∞
0

zN (−µ, σ2)dz

+ 2β
N∑
k=1

∫ ∞
0

zN (−µ, σ2)e−3kβzdz

=
α√
2π
e
−α2
2 − α

2

2
erfc
( α√
2

)
+ 2β

N∑
k=1

I23

(26)

I12 + I22 = α√
2π
e
−α2
2 +

α2

2
erfc
(−α√
2

)
+ 2β

N∑
k=1

I13

+
α√
2π
e
−α2
2 − α

2

2
erfc
( α√
2

)
+ 2β

N∑
k=1

I23

=
2α√
2π
e
−α2
2 − α2

(
1− erfc(−α√

2
)
)

+ 2β
N∑
k=1

(I13 + I23
)

=
2α√
2π
e
−α2
2 + α2erf

( α√
2

)
+ 2β

N∑
k=1

(I13 + I23
)

(27)

h(Z) ⩾ h(C) + α2 +
2
3
− 2α√
2π
e
−α2
2 − α2erf

( α√
2

)
− 2β

N∑
k=1

(I13 + I23
) (28)

I13 =
∫ ∞
0

zN (µ, σ2)e−3kβzdz

=
1
σ
√
2π

∫ ∞
0

ze
−(z−µ)2

2σ2 e−3kβzdz

= e
−(6µkσ2β−9k2σ4β2)

2σ2

∫ ∞
0

z
1
σ
√
2π
e
−(z−(µ−3kσ2β))2

2σ2 dz

= e
−(6µkσ2β−9k2σ4β2)

2σ2

∫ ∞
0

z
1
σ
√
2π
e
−(z−Vk1)

2

2σ2 dz

=Mk1

∫ ∞
0

zN (Vk1, σ2)dz

=Mk1
( σ√
2π
e
−V 2
k1

2σ2 +
Vk1
2
erfc(
−Vk1
σ
√
2
)
)

=
σ√
2π
e−
α2
2 +
Mk1Vk1
2
erfc
(−Vk1
σ
√
2

)
(29)

I23 =
∫ ∞
0

zN (−µ, σ2)e−3kβzdz

=Mk2

∫ ∞
0

zN (Vk2, σ2)dz

=
σ√
2π
e−
α2
2 +
Mk2Vk2
2
erfc
(−Vk2
σ
√
2

) (30)

I13 + I23 = σ√
2π
e−
α2
2 +
Mk1Vk1
2
erfc
(−Vk1
σ
√
2

)
+
σ√
2π
e−
α2
2 +
Mk2Vk2
2
erfc
(−Vk2
σ
√
2

)
=
Mk1Vk1
2
erfc
(−Vk1
σ
√
2

)
+
Mk2Vk2
2
erfc
(−Vk2
σ
√
2

)
+
2σ√
2π
e−
α2
2

(31)
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Then, the lower bound on the differential entropy of the
symmetric bimodal Gaussian is:

h(Z) ⩾ h(C) + α2 +
2
3
− 2α√
2π
e
−α2
2 − α2erf

( α√
2

)
− 2β

N∑
k=1

(Mk1Vk1
2
erfc(
−Vk1
σ
√
2
)
)
+
Mk2Vk2
2
erfc
(−Vk2
σ
√
2

)
− 2β 2σ√

2π
e−
α2
2

= h(C) + α2 +
2
3
− 2α√
2π
e
−α2
2 − α2erf

( α√
2

)
− 2β

N∑
k=1

(Mk1Vk1
2
erfc(
−Vk1
σ
√
2
)
)
+
Mk2Vk2
2
erfc
(−Vk2
σ
√
2

)
− 4α√
2π
e−
α2
2

= h(C) + α2 +
2
3
− 6α√
2π
e
−α2
2 − α2erf

( α√
2

)
− 2β

N∑
k=1

(Mk1Vk1
2
erfc(
−Vk1
σ
√
2

)
+
Mk2Vk2
2
erfc
(−Vk2
σ
√
2

)
(32)

Appendix C: Proof of Theorem 2

h(Z) = −
∫ ∞
−∞
fz(Z) log(fz(Z))dz

= − eb

eb + e−b

∫ ∞
−∞
N (µ, σ2) log(fz(Z))dz

− e−b

eb + e−b

∫ ∞
−∞
N (−µ, σ2) log(fz(Z))dz

= −
( eb

eb + e−b
)
log
( 2
eb + e−b

)
−
( eb

eb + e−b
)Ib1

−
( e−b
eb + e−b

)
log
( 2
eb + e−b

)
−
( e−b
eb + e−b

)Ib2
= −A log

( 2
eb + e−b

)
−AIb1 −B log

( 2
eb + e−b

)
−BIb2

= − log
( 2
eb + e−b

)
(A+B)−AIb1 −BIb2

(33)

Ib1 =
∫ ∞
−∞
N (µ, σ2) log

[
N (µ, σ2)e

−µz
σ2 cosh

(µz
σ2
+ b
)]
dz

=

∫ ∞
−∞
N (µ, σ2) logN (µ, σ2)dz − µ

σ2

∫ ∞
−∞
zN (µ, σ2)dz

+

∫ ∞
−∞
N (µ, σ2) log cosh

(µz
σ2
+ b
)
dz

= −0.5 log(2πeσ2)− µ
2

σ2

+ 2

∫ ∞
0

N (µ, σ2) log cosh
(µz
σ2
+ b
)
dz

= −h(C)− µ
2

σ2
+ 2Ib11

(34)

Ib11 =
∫ ∞
0

N (µ, σ2) log cosh
(µz
σ2
+ b
)
dz (35)

Ib2 =
∫ ∞
−∞
N (−µ, σ2) log

[
N (−µ, σ2)e

µz

σ2 cosh
(µz
σ2
+ b
)]
dz

=

∫ ∞
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N (−µ, σ2) logN (−µ, σ2)dz

+
µ

σ2

∫ ∞
−∞
zN (−µ, σ2)dz

+

∫ ∞
−∞
N (−µ, σ2) log cosh

(µz
σ2
+ b
)
dz

= −0.5 log(2πeσ2)− µ
2

σ2

+ 2

∫ ∞
0

N (−µ, σ2) log cosh
(µz
σ2
+ b
)
dz

= −h(C)− µ
2

σ2
+ 2Ib21

(36)

Ib21 =
∫ ∞
0

N (−µ, σ2) log cosh
(µz
σ2
+ b
)
dz (37)

h(Z) = − log
( 2
eb + e−b

)
(A+B) + (A+B)h(C)

+ (A+B)
µ2

σ2
− 2
(
AIb11 +BIb21

)
= (A+B)

[
− log

( 2
eb + e−b

)
+ h(C) +

µ2

σ2

]
− 2
(
AIb11 +BIb21

)
(38)

Ib11 =
∫ ∞
0

N (µ, σ2) log(cosh(βz + b))dz

⩽

∫ ∞
0

N (µ, σ2)
[
(βz + b) ctgh

(3(βz + b)
2

)
− 2
3

]
=

∫ ∞
0

N (µ, σ2)(βz + b) ctgh
(3(βz + b)

2

)
dz

−
∫ ∞
0

2
3
N (µ, σ2)dz

= Ib12 − 13
(
1 + erf(

µ

σ
√
2
)
)

(39)

Ib12 =
∫ ∞
0

N (µ, σ2)(βz + b) ctgh
(3(βz + b)

2

)
dz (40)

Ib21 =
∫ ∞
0

N (−µ, σ2) log
(
cosh(βz + b)

)
dz

⩽

∫ ∞
0

N (−µ, σ2)
[
(βz + b) ctgh

(3(βz + b)
2

)
− 2
3

]
=

∫ ∞
0

N (−µ, σ2)(βz + b) ctgh
(3(βz + b)

2

)
dz

−
∫ ∞
0

2
3
N (−µ, σ2)dz

= Ib22 − 13
(
1− erf( µ

σ
√
2
)
)

(41)

Ib22 =
∫ ∞
0

N (−µ, σ2)(βz + b) ctgh
(3(βz + b)

2

)
dz (42)

AIb11 +BIb21 = AIb12 +BIb22 − 13(A+B)
− (A−B)erf

( µ
σ
√
2

) (43)
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h(Z) ⩾ (A+B)

[
− log

( 2
eb + e−b

)
+ h(C) +

µ2

σ2
+
2
3

]
+ 2(A−B)erf

( µ
σ
√
2

)
− 2
(
AIb12 +BIb22

)
(44)

ctgh
(3(βz + b)

2

)
= 1 + 2

N∑
k=1

e−3k(βz+b) (45)
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∫ ∞
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= β
σ√
2π
e
−µ2
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2
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√
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)
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√
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)
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e
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AIb12 +BIb22 = (A+B)α√
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Using Eq. (31)
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e
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