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Abstract  This research delves into exploring machine learning
and deep learning techniques relied upon in antenna design pro-
cesses. First, the general concepts of machine learning and deep
learning are introduced. Then, the focus shifts to various anten-
na applications, such as those relying on millimeter waves. The
feasibility of employing antennas in this band is examined and
compared with conventional methods, emphasizing the acceler-
ation of the antenna design process, reduction in the number of
simulations, and improved computational efficiency. The pro-
posed method is a low-complexity approach which avoids the
need for eigenvalue decomposition, the procedure for comput-
ing the entire matrix inversion, as well as incorporating signal
and interference correlation matrices in the weight optimization
process. The experimental results clearly demonstrate that the
proposed method outperforms the compared beamformers by
achieving a better signal-to-interference ratio.

Keywords  adaptive beamforming, antenna arrays, convolutional
neural network

1. Introduction

Machine learning (ML) has revolutionized various research
fields and applications over the past few decades, bringing
about significant progress in automating everyday tasks and
providing valuable insights across various scientific research
and design fields, with design and optimization of anten-
nas and beamforming techniques included. Beamforming is
a signal processing method employed to concentrate elec-
tromagnetic waves by utilizing an array of aerials aimed at
a specific direction. Its application spans diverse engineering
fields, including radar, sonar, acoustics, astronomy, seismolo-
gy, medical imaging, and communications.

The emergence of multi-antenna technologies, particularly in
radar and communication systems, has resulted in consider-
able amounts of research focusing on designing beamformers
by utilizing convex or non-convex optimization techniques.
For example, in [1], to increase the mean data rate of a multi-
antenna wireless system and implement hybrid beamforming
in mmWave frequency bands, the reinforcement learning
(RL) algorithm was used to speed up the process of selecting
spatial beams.

In paper [2], ML techniques were employed to utilize previous
beam training data, including receiver locations, nearest vehi-
cles, and receiver sizes, to learn the optimal beam pair index.
In order to conduct research on mmWave antennas, a dataset
specific to these types of antennas is necessary, and its details
are provided in [3]. In the past, numerous approaches were
proposed to improve robustness against errors/mismatches.
The authors of [4] proposed a hybrid beamforming (BF)
design for the downlink connection in multiuser mmWave
systems, where the number of adaptive elements (AEs) used at
the base station is proportional to the user’s distance, thereby
optimizing the BF benefits per user. They also developed an
ML framework for learning environment-aware beamforming
codebooks for large-scale MIMO systems.
Article [5] presents an overview of mmWave channel con-
cepts and discusses the classification of map-based channels.
In [6], a system for future body-centric communication is in-
troduced, utilizing commonly available non-wearable devices,
such as Wi-Fi routers, network interfaces, and omnidirec-
tional antennas. The authors of [7] provide an overview of
mmWave channel models and discuss the classification of
map-based channels. Papers [8], [9] describe a terahertz DL
computing tomography (CT) system capable of visualizing
hidden objects using various material systems. Article [10]
presents a DL-based path relied upon to simplify feasible
beam hopping (BH) in multibeam satellite systems. It pro-
vides a comprehensive description of ML, collector and relay
designs. A machine learning-based hybrid framework for
propagating both aleatory and epistemic uncertainties in an-
tenna design is proposed in [11].
In paper [12], a neural network based on the delay locked loop
(DLL) is established in GPS receivers to reduce multipath
interference. In the study conducted in [13], the focus was
on addressing the issue of beam squint in reconfigurable
intelligent surface (RIS)-aided wideband millimeter wave
(mmWave) communications. RIS, being inherently passive,
requires uniform phase shifts across all its elements for the
entire spectrum. However, in wideband scenarios, distinct
path phases induced by beam squint necessitate different
phase shifts for different frequencies. This contradiction poses
a significant challenge affecting the system’s performance,
especially considering the large number of elements in RIS
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and the potentially wide bandwidth of wideband mmWave
communications, which can reach several GHz.
To reduce the amount of hardware required and to mitigate
cost, power, and area in mmWave massive MIMO systems,
hybrid (analog and digital) beamforming has been proposed.
Study [14] presents a technique that employs an ML algorithm
for offline training to understand the features of mmWave
channels. This learning aids in online beam selection, thus
resulting in a substantial reduction in overhead without com-
promising beamforming performance. This framework incor-
porates codebook-based beam selection and a local learning-
based clustering algorithm with feature selection (LLC-fs).
Simulation are conducted to validate the performance of the
proposed method across three dimensions: scalability, robust-
ness, and compatibility. The authors of [15] introduce a DL
approach based on ResNeSt for beamforming in 5G massive
multiple-input multiple-output (MIMO) systems. The use of
the ResNeSt-based DL method aims to streamline and en-
hance the beamforming process, thus leading to improved
performance and efficiency in 5G and beyond communication
networks.

2. Deep Learning-based Beamforming
Smart antennas are arrays of radiators that are able to steer
their beams and utilize signal processing algorithms to sep-
arate signals coming from multiple sources. One of their
key features consists in implementing adaptive beamform-
ing (ABF) techniques [16] which enable them to achieve the
highest signal-to-interference-plus-noise ratio (SINR). When
dealing with signals with a fixed direction of arrival (DOA),
fixed array weights are used (referred to as fixed beamform-
ing). However, in dynamic environments, where the DOAs of
incoming signals change over time, the array weights need to
be recalculated continuously (these are referred to as ABF).
Figure 1 illustrates the general structure of a beamformer,
assuming that multiple signals are received by the antenna
array from different DOAs.
In the theoretical framework of the beamforming (BF) prob-
lem, a linear array composed of m ideal point sources
(wherem > N ) is utilized to receive a desired signal (DIS)
denoted as s0 and N undesired interfering signals (UISs)
represented as sn (n = 1, . . . , N ) at a specific frequency
f , corresponding to a wavelength λ [1], [2]. Each signal sn
(n = 0, 1, . . . , N ) possesses a DoA characterized by a po-
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Fig. 1. Beamforming duality techniques using per-antenna power
constraints for a fully connected array.

lar angle θn (n = 0, 1, . . . , N ), indicating the angle between
the signal’s DoA and the z-axis, commonly known as the
angle of arrival (AoA). The point sources are uniformly po-
sitioned along the z-axis with a separation distance d (Fig.
2). Importantly, each source emits an omnidirectional radia-
tion pattern and there is no interaction or coupling between
any two sources. The radiation pattern of such an array is
expressed by means of the antenna array factor [17]:

AF (θ) =
M∑
m=0

W ∗me
jβZm cos θ =WHa(θ) . (1)

In this scenario, Im (m = 1, . . . ,M ) denotes the currents
applied to the point sources, β represents the wavenumber
in free space (β = 2π/λ), Zm (m = 1, . . . ,M ) indicates the
positions of the sources along the z-axis, and θ is the polar
angle that determines the direction of observation.

As the array operates in receiving mode, currents Im act as
multipliers of signals xm generated by the point sources, due
to the reception of the desired signal (DIS) and N unwanted
interfering signals (UISs). To simplify calculations in the
complex frequency domain, it is convenient to use a matrix
notation by considering Im = W ∗m, whereWm represents
the weight associated with the complex conjugate value of
them-th current. Therefore, Eq. (1) can be transformed into
the following form:

W = [W1,W2, . . . ,WM ]
T . (2)

Now, steering vector [17], in form of θ, can be written as:

a(θ) =
[
ejβZ1 cos θ, . . . , ejβZm cos θ

]T
. (3)

An example of beamforming technique using deep learning
is illustrated by Algorithm 1.
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Fig. 2. Antenna system consisting ofM radiators, withN separation
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Algorithm 1. Beam index optimization using deep learning
Input: Eigen-beam set A, pre-defined codebook W , and
parameters of search: ε1, ε2, ε3, ε4, α, β, γ
Output: Optimal beam index Z
Start

1: Create a beam space map based on codebookW to define
the operating region of the Rosenbrock search

2: Capture the received power by utilizing beams from the
eigen-beam set and record it onto the beam space map

3: Perform a search for local optima in the map (clocal)
4: Use the location indices of the clocal optima as the initial

solutions s(c) = [h(c), v(c)], for c ∈ 1, 2, . . . , clocal
5: for each local optimal c from 1 to clocal do
6: Set the start point y(1) = s(c) and initialize

the Rosenbrock search
7: Perform the Rosenbrock search to obtain temporary

solution sc
8: end for
9: Determine the solution with the maximum value of the

objective function f(sc), denoted as sopt, among all the
temporary solutions sc for c ∈ 1, 2, . . . , clocal. Opera-
tion f(·) maps the location indices to the received power
collected by the corresponding beams

10: Optimal beam index popt corresponds to the location
index of sopt in the beam space map

11: Return the optimal beam index popt
End

2.1. Deep Mask-based Beamforming

In such applications as automatic speech recognizers (ASRs)
[16], where the signal-to-noise ratio (SNR) is low, conven-
tional adaptive beamforming (ABF) algorithms fall short in
terms of their effectiveness when compared with a deep neural
network-based mask estimator. Although ABF is commonly
used as a preprocessor for speech recognition [18], it cannot
match the capabilities of a DNN-based mask estimator.
To address this, a solution is presented in [19] which com-
bines a deep feedforward neural network (FNN) with the
MVDR beamforming algorithm. This approach utilizes the
ideal ratio mask (IRM) followed by the ideal binary mask
(IBM). Thanks to this, the performance of the MVDR beam-
former is improved. Effectiveness of the proposed algorithm
is evaluated using the sentence error rate (SER) metric, which
demonstrates its usefulness in low SNR scenarios.

2.2. Massive MIMO Beamforming Using Deep Neural
Networks

Integration of deep neural networks (DNNs) with massive
MIMO systems has shown significant advantages. For exam-
ple, in [8], a deep adversarial reinforcement learning model
is introduced which greatly enhances the performance and
capacity of massive MIMO beamforming. This is achieved
by determining the amplitude and phase shift of each anten-
na element through a small set of training data. However, as
the number of antennas increases and the potential number of
users becomes variable, the training complexity in massive

MIMO beamforming grows as well. This limits the ability of
DNNs to achieve optimal performance.
To address this challenge, paper [19] introduces a combined
supervised and unsupervised learning-based convolutional
multilayer neural network (CMBNN). This approach mini-
mizes training complexity and achieves systematic risk mini-
mization (SRM) with high speed and efficiency, accommo-
dating varying user numbers. Additionally, convolutional
neural networks (CNNs) have made significant contributions
to massive MIMO. A deep CNN is utilized for beam space
separation (BSS), effectively classifying narrow and high-
ly focused beams with high reliability and low complexity
characteristics.
The two CNNs enable accurate and efficient specification of
transceiver locations, outperforming deterministic methods
in terms of time and accuracy, as shown in Fig. 2. CNNs
have also proved to be successful in power allocation, uplink
beam forming prediction, and SRM, offering performance
comparable to that of conventional methods. Moreover, DL-
assisted calibration state diagnosis of massive antenna arrays
is conducted to prevent potential deviations and enhance
the downlink pilot matrix. Then, the deep residual learning
approach is adopted to implicitly learn the residual noise for
recovering channel coefficients from the noisy pilot-based
observations.

3. Proposed Approach

An antenna withM elements with N desired signal inter-
ference signals architecture with an adaptive algorithm is
proposed (Fig. 3). Optimization of a microstrip linear ar-
ray is performed for the resonant frequency of 60 GHz and
an 850 MHz bandwidth, utilizing 16 microstrip rectangular
patches (M = 16) that are uniformly spaced at a fixed dis-
tance of d = λ/2, where λ represents the wavelength. The
microstrip patches are fabricated on the Rogers RT/Duroid
5880 substrate with a thickness of h = 1.65 mm and an elec-
tric permittivity of εr = 2.2. The thickness of the copper
cladding employed in the CST simulation for modeling the
microstrip patches and the ground plane on both sides of the
substrate is assumed to be 40 µm.
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Fig. 3. Antenna elements with desired and interference signals.
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Fig. 4. Reflection coefficient of the proposed antenna featuring
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Figure 3 shows antenna elements with the desired signal
and D interference signals. In practical applications, antenna
arrays are often designed to fulfill specific requirements, such
as impedance matching. Therefore, it is desirable to design
an array with microstrip elements that are matched to 50 Ω –
a value similar to that of off-the-shelf microstrip arrays. To
achieve this, the inset-feeding technique is applied while
designing the microstrip elements. This technique facilitates
impedance matching for the array’s elements.
In practice, antenna arrays can have more elements, may form
different shapes (e.g. planar arrays) and may utilize more
complex beamforming techniques. The goal is to optimize the
array’s performance for specific applications, such as radar
or satellite tracking. Visualizing antenna arrays is often done
through radiation pattern plots, which show the directionality
and gain of the antenna system. The design is specifically
tailored to operate at a resonant frequency of 60 GHz, as
depicted in Fig. 4, which shows the S11 reflection coefficient
of the proposed antenna against the frequency band.
The deviation observed in Fig. 5 pertains to an extra lower
shoulder lobe which appears in positive delay. This additional
lobe is likely a result of the absence of gain flatness within
the spectrum analyzer’s receive bandwidth.
Efficiency of the wireless communication link and overall
system quality are significantly influenced by the performance
of the sensor/antenna in the front-end stage. Therefore, in the
proposed design, a patch antenna with a circular shape and
resonant frequency of 60 GHz has been developed.
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The simulation of 2D radiation patterns of the proposed
antenna is visualized in Fig. 6. The realized gain process
good performance of the system. The design features low
back lobes and achieves a directivity of 6.82 dBi. Figure 7
illustrates the average beamformer output transmit power
constraint versus consumption power for θ = [45°, 57°] and
T = 110.

4. Results and Discussion

In order to validate the effectiveness of the proposed method,
the weight vectors are calculated using various signal recep-
tion scenarios. Each scenario involves a desired signal (DIS)
and a predetermined number N of undesired interfering sig-
nals (UISs), all simultaneously received by the antenna array
from different DoAs. It is worth noting that the N of UISs
corresponds to the sequential number of the scenario.
The selection of the AoAs is limited to the angular sector
[30°, 150°] as the assumption Eθ , Eφ holds true within this
sector. To analyze the spatial distribution of the incoming
signals, the angular distance ∆θ between any two adjacent
signals, i.e. between UISs or between the DIS and any UIS,
is not randomly chosen but is assigned a specific value of 6°,
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8°, or 10°. Consequently, in each N -th scenario, a multitude
of combinations consisting ofN +1 AoAs may be generated.

5. Conclusion
By implementing the proposed AI modification outlined in
this article, it becomes possible to integrate the distinctive
non-isotropic radiation pattern generated by the specific type
of elements comprising the antenna array, simultaneously
accounting for the mutual coupling between these array ele-
ments, into traditional beamformers. AI-based methods are
characterized by impressive performance, especially in sce-
narios where traditional techniques may fall short. An inher-
ent advantage of AI approaches lies in their ability to tackle
large-scale, non-linear problems that involve a multitude of
variables.
In contrast, traditional signal processing algorithms tend to
excel in local contexts with a limited number of variables.
Moreover, AI ensures robust performance even in the presence
of noise and multipath effects, which may be a source of
difficulties for traditional methods, preventing them from
achieving satisfactory SNR or bit error rate performance
levels.
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