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Abstract  To optimize the functionality of coherent optical
fiber communication (OFC) systems and enhance their capacity
related to long-haul transmissions, wavelength-division multi-
plexing (WDM) and probabilistic constellation shaping (PCS)
techniques have been used. This paper develops an end-to-end
(E2E) deep learning (DL)-based PCS algorithm, i.e., autoen-
coder (AE) for a high-order modulation format WDM system
that minimizes nonlinear effects while ensuring high capacity
and considers system parameters, in particular those relat-
ed to the OFC channel. Only the AE of the central channel is
trained to meet the specified performance objective, as the sys-
tem design employs identical AEs in each WDM channel. The
simulation results show that the architecture should consist of
two hidden layers, with thirty two nodes per hidden layer and
a “32×modulation order” batch size to obtain optimal system
performance, when designing AE using a dense layer neural
network. The behavior of the AE is examined to determine the
optimum launch-power ranges that enhance the system’s per-
formance. The developed AE-based PCS-WDM provides a 0.4
shaping gain and outperforms conventional solutions.
Keywords  autoencoder, coherent optical fiber communication,
end-to-end deep learning, PCS-WDM system

1. Introduction

Due to the developments in coherent detection technologies,
the capacity of standard single-mode fiber (SMF) based trans-
mission systems has been increasing by 20% each year over
the past few decades [1]. To address the escalating require-
ment for data rates in high-speed communication networks,
wavelength-division multiplexing (WDM) has been imple-
mented in nearly all communication networks [2]. The uti-
lization of WDM can potentially enhance the capability of
a single optical fiber to transmit several channels [3]. Be-
cause of the exponential increase in data traffic, high-order
quadrature amplitude modulation (QAM) formats are ac-
knowledged to optimize spectral efficiency within constrained
bandwidths [4].
The effectiveness of transmission rates is limited mainly by
nonlinear fiber optics and transceiver noise. This constraint
becomes conspicuous when modulation formats of higher or-
der are employed, which is generally associated with a greater
rate of symbol error [5]. To optimize data rates in optical

communication systems, an effective strategy is used to im-
prove spectral efficiency by employing constellation shaping
techniques. A shaping gain is achieved by probabilistic and
geometric constellation shaping, compared to conventional
QAM constellations [6], offering a noticeable gap in compar-
ison with Shannon capacity [7].
Currently, numerous researchers are investigating PCS tech-
niques, resulting in a significant reduction in the average con-
stellation power [8]–[10]. This reduction has been achieved
by enhancing the probability of inner constellation point
occurrences while concurrently reducing the likelihood of
occurrences of outer constellation points [11]. Regarding mu-
tual information (MI), PCS can reduce the effects of fiber
nonlinearity and improve system performance [12].
The utilization of machine learning (ML) in OFC systems
has demonstrated its benefits in nonlinear compensation,
performance monitoring, and modulation format recognition
[13]. The use of autoencoders (AEs) and an end-to-end deep
learning (E2EDL) strategy has shown that it is possible to
optimize transceiver performance and simultaneously improve
transmission efficiency [14]. AEs are unsupervised learning
models that use input data as a supervisory signal. It forces
the model output to match the input and the reconstructed
output to match the input data [15].
Many studies have optimized E2EDL by considering the
complex limitations of OFC networks. Studies have used
feed-forward neural networks (FFNN) and sliding window
bidirectional recurrent neural networks (SBRNN) for intensi-
ty modulation/direct detection (IM/DD) systems in AE-based
networks. These efforts have shown potential to improve trans-
mission performance [16]. Several researchers implemented
a coherent OFC system based on E2EDL (i.e. AE), with the
main objective of reducing the nonlinear fiber impacts without
using the PCS technique [17]–[19].
Determining the most effective configuration for modulation
formats and symbol probabilities in OFC remains a significant
challenge and still is an unresolved issue [20]. Conventional
approaches to constellation shaping assume that target dis-
tribution is symmetric to the origin for the additive white
Gaussian noise (AWGN) channel. Nevertheless, symmet-
ric probability distributions do not limit the application of
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E2EDL in constellation shaping. They can rather be seam-
lessly integrated into a different channel model [12].
The authors in [21] addressed AE-shaped constellations prob-
abilistically and provided an information-theoretic frame-
work. This approach enabled learning symbol distributions
and constellations that attained channel capacity with the
AWGN channel. PCS for coded-modulation systems was in-
troduced on the AWGN channel [22]. AE-based E2EDL is
also used to optimize the PCS for multidimensional signals
(PCS 4D-256-QAM) using the AWGN channel [23]. Fur-
ther, an E2EDL-based PCS algorithm was implemented for
a few-mode fiber (FMF) system utilizing the 5-WDM system,
with 64-QAM across ten spans of 100 km each [12].
It is worth noting here that the reported E2EDL-based ap-
proaches have not been utilized for PCS-based high-capacity
WDM systems operating in the presence of nonlinear fiber
optics and using many channels with a high-order modulation
format. PCS was investigated exclusively in single-channel
optical communication, in an AWGN channel [21]–[23]. On
the other hand, OFC used only a limited number of WDM
channels for dual-polarization (DP) 64-QAM signaling [12].
Increased data rates achieved by long-haul coherent OFC sys-
tems require capacity enhancements in present and future
optical communication networks.
This paper develops an E2EDL-based PCS algorithm for high-
order modulation formats that minimize nonlinear effects
while utilizing a high WDM system capacity at maximum
transmission reach (MTR). The paper offers the following
contributions:
1) Developing an E2EDL-based PCS for high-capacity

WDM systems operating with 32, 64, and 96 channels, ac-
cessing the MTR and providing higher MI, using different
symbol rates (20, 40, 60, and 80 Gbps).

2) Enhancing the performance of the E2EDL-based PCS-
WDM by determining the best DL parameters, such as
batch size and the number of hidden layers.

3) Assessing the developed AE by testing various dispersion
values corresponding to each WDM channel.

4) Examining the behavior of the developed AE and iden-
tifying the best signal-to-noise ratio (SNR), MI, and bit
error rate (BER) values that resulted in optimum launch
power ranges for 32-, 64-, and 96- WDM systems.

The next sections are organized as follows. Section 2 presents
the main concepts for the E2EDL-based PCS-WDM in a co-
herent OFC system. The simulation results and discussion are
presented in Section 3. The parameters of the developed AE
and its related DL are explained as well. Also, this section in-
vestigates the developed AE to identify the optimum launch
power, study the effects of modulation formats and symbol
rate on the performance of AE-based PCS-WDM, and to com-
pare the performance of the AE-based PCS-WDM with that
of a conventional system. Finally, conclusions derived from
this study are given in Section 4.
This work has been implemented using the Python program-
ming language and utilizing the TensorFlow framework to
develop the simulation models.
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Fig. 1. Deep learning-based PCS channel transmitter.

2. E2EDL-based PCS-coherent Fiber
WDM System

2.1. DL-based PCS Channel Transmitter

In a WDM system, each channel has its own transmitter and
receiver operating at the channel wavelength and all the chan-
nels share the same transmission SMF link. A block diagram
of the developed E2EDL-based PCS-channel transmitter is
shown in Fig. 1. The transmitter comprises a DL-based PCS
encoder, QAM-mapper, and an in-phase/quadrature (IQ) mod-
ulator with two low-pass filters (LPFs) inserted before it. A
continuous-wave (CW) laser derives the modulator and acts
as an unmodulated optical carrier. The binary encoded in-
put data, produced by a pseudo-random number generator
(PSRNG), is utilized as input for the encoder for the train-
ing process, with the distributed matcher (DM) generating
the probability vectors which are fed to the QAM-mapper.
Then, the output of the QAM-mapper consists of two distinct
components, corresponding to the real and imaginary parts,
each subjected to an LPF inserted to accomplish the pulse
shaping operation. The outputs of the filters are applied to an
optical IQ modulator, and the field of the channel CW laser is
modulated, resulting in a modulated carrier.
A block diagram of the DL-based PCS channel encoder is
shown in Fig. 2. The dense layers are used in an NN-based
sampler NNenS incorporating trainable weights (inclusive
biases) wenS that can be fine-tuned during training to en-
hance the system’s performance. The encoder’s role entails
converting input data into an unnormalized log probability
vector (i.e. logits) en with size (1 to M ), where M repre-
sents the modulation order. The output of the encoder is fed
to a softmax activation function to generate a discrete proba-
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Fig. 2. DL-based PCS channel encoder.
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bility distribution pwenS (sv) ranging from 1 toM , which is,
in turn, applied to the QAM-mapper. At the transmitter, sv
is a one-hot vector that is modulated to constellation point
(symbol) x by using the following function:

x = fwenM (sv) , (1)

where fwenM (.) is anNNenS based modulation withwenS as
trainable parameters. The NNenS consists of an input layer
containing a single neuron, an output layer containing M
neurons, and two hidden layers. The hidden layer consists of
sixteen neurons, with each neuron using the rectified linear
unit (ReLU) as an activation function. The primary goal of
the DNN-based sampler is to identify the optimal probability
distribution.
The process is executed comprehensively, whereby the chan-
nel condition plays a vital part. The channel condition is
characterized by the nonlinear interference noise (NLIN)
model which exhibits a dependency on the input power [24]–
[26]. The NN-based sampler is trained to optimize the E2EDL
loss function. The loss function incorporates the models of
all the processing components, including the sampler, mod-
ulator, channel, and demodulator. The primary objective of
the training procedure is to identify the optimal parameter
configuration that effectively minimizes the loss function and
improves the system’s overall performance.
The output of the encoder en1, . . . , enM is fed into a dis-
tributed matcher (DM) that includes the Gumbel-softmax
trick and a straight-through estimator [27]. This is used to
overcome the limitation of the Gumbel-softmax trick that the
resultant vectors s̃v1 , . . . , s̃vB merely approximate the actu-
al one-hot vectors sv1 , . . . , svB , where B denotes the batch
size that is used in the training process of AE-based PCS.
The complexity of training the proposed sampling mechanism
for symbol sv from a finite set S presents a challenge when
utilizing ML-based PCS. This matter is resolved by applying
the Gumbel-softmax trick [28], which is an expansion of the
Gumbel-max trick [29]. As shown in [23] and [29], determin-
ing the maximizing argument of the sum of the sample with
the Gumbel distribution gi and log

(
pwenS (sv)

)
is a practi-

cal approach to sampling a discrete distribution pwenS (sv).
The model used to calculate the samples is:

sv = argmax
i=1,...,S

gi + log
(
pwenS (i)

)
. (2)

PCS is trained to utilize the optimization of an end-to-end
loss function, which is predicated on the model encompass-
ing all processing units, including the sampler. To minimize
the loss function, the stochastic gradient descent (SGD) ne-
cessitates differentiable models for the modulator, detector,
and channel [23]. Hence, developing a trainable sampler
that exhibits differentiability regarding the parametric dis-
tribution pwenS (sv) presents a challenge when employing
E2EDL-based algorithms for PCS. This entails excluding
functions, such as max(), |.| and similar operations. Since
the max operator lacks differentiability, the SGD method is
inapplicable [12]. Consequently, the problem is resolved us-
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Fig. 3. Block diagram of a QAM mapper.

ing the Gumbel-softmax trick which approximatesmax with
softmax and generates an N -dimension vector, denoted by
s̃v. The mathematical expression for the Gumbel-softmax
trick is given by [28]:

s̃v =
e
gi+log(pwenS (i))

τ

S∑
j=1
e
gj+log(pwenS (j))

τ

, i = 1, . . . , N , (3)

where τ is a positive parameter representing the softmax
temperature. Note that samples from the Gumbel-softmax
distribution become one-hot as τ approaches zero. By em-
ploying the straight-through estimator, the one-hot vector sv
is produced. This vector is then transformed into the QAM
mapper. The transmitted symbol tx, consisting of real and
imaginary components, is subsequently subjected to separate
processing via an LPF.
In conclusion, the filter outputs are applied to the optical
IQ modulator, which effectively modulates the channel CW
laser field and produces the modulated carrier. However, sv
is mapped into tx based on the using the formula:

tx = fQAM (sv) . (4)

At the QAM mapper, a fixed constellation c̃1, . . . , c̃M is gen-
erated, as illustrated in Fig. 3. Subsequently, the constella-
tion is normalized by employing the probability distribu-
tion vector pwenS (sv) and a transpose operation denoted as
c = [c̃1, . . . , c̃M ]

T . Through the multiplication of a one-hot
vector sv by c, the transmitted constellation points are gener-
ated, each comprising real and imaginary components.
The modulation of these symbols utilizing an IQ modulator
produces a carrier modulated before its transmission through
the OFC channel. Normalization ensures that the anticipated
energy of the constellation is exactly one.

2.2. Fiber Channel Model

The modulated carrier tx is transmitted via the OFC channel
to yield the following output:

y = fNLIN (tx) . (5)

The NLIN channel model fNLIN considers the impact of
nonlinear interference on fiber communication [30], [31].
This model considers the launch power per channel and
the moments of the constellation to capture the nonlinear
effects that degrade the transmitted signal. The NLIN model
simplifies these nonlinear effects as AWGN, with the variance
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Tab. 1. Parameters of the simulated OFC-based PCS-WDM system.

System parameter Value

Modulation format DP 64-QAM
Number of WDM channels Nch 32, 64, and 96

Symbol rate Rs 40 Gbps
Central channel frequency fc 193.41 THz

Frequency channel spacing ∆f 50 GHz
Number of link spans Nsp MTR

Span length L 100 km
Fiber nonlinear coefficient Υ 1.3 (W·km)–1

Fiber group velocity dispersionD at
1550 nm 16.5 ps/(nm·km)

Fiber dispersion slope S ≡ dDdλ 0.08 ps/(nm2·km)
Fiber attenuation α 0.2 dB/km

Optical amplifier gain G 20 dB
Optical amplifier noise figure 5 dB

determined by the parameters of the fiber communication
channel. Consequently, the impairments in the channel are
influenced by the amplified spontaneous emission (ASE)
noise, which is governed by the amplifier noise figure Fn, the
average launch power per channel and the high order moments
of the constellation [32] are:

µ4 =
E[|X|4]
(E[|X|2])2 , µ6 =

E[|X|6]
(E[|X|2])3 . (6)

The noise variance can be calculated as:

σ2n = σ
2
ASE Fn + σ

2
NLIN , (7)

where σ2ASE Fn is the ASE noise variance and σ2NLIN is
the nonlinear interference variance which is a function PL,
µ4, and µ6. Other parameters of the OFC-based PCS-WDM
system are not included in Eq. (7) and are listed in Tab. 1.

2.3. DL-based Channel Receiver

The operation of the DL-based channel receiver is illustrated
in Fig. 4. The received channel signal y is applied to the
IQ demodulator, which utilizes a CW local laser to perform
coherent demodulation. The demodulator generates an output
ỹ comprising two components, namely real and imaginary.
These two components are then subjected to a decoder for
training purposes, with the ultimate goal of recovering the
data that was initially transmitted. The recovered symbol de
is obtained by passing ỹ through the decoder for training to
recover the transmitted symbol according to:

de = fwdeD (ỹ) , (8)

where fwdeD (.) is a NNwdeD based receiver with wdeD as
trainable parameters of the decoder.
Figure 5 shows the structure of the decoder located on the
channel receiver side. The DNN-based sampler consists of
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Fig. 4. DL-based PCS channel receiver.
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an input layer containing two neurons, an output layer con-
tainingm neurons, and two hidden layers, each with sixteen
hidden neurons, and uses ReLU as an activation function.
The output layer uses the softmax activation function. The
probability vector generated by the softmax function repre-
sents the anticipated probability of each element from the
input message that has been transmitted.
The mapping should be learned by the decoder, expressed
as p̃wdeD (sv|y), which is approximately the true posterior
distribution pwenS (sv|y) [12]:

L(w) = Esv ,y
(
− log(p̃wdeD (sv|y))

)
= −

M∑
sv=1
pwenS (sv)

∫
y
p(y|fQAM (sv)) log

(
p̃wdeD (sv|y)

)
dy

= −
∫
tx
pwenS (tx)

∫
y
p(y|tx) log

(
p̃wdeD (tx|y)

)
dydx

=
∫
tx

∫
y
pwenS (tx,y) log

(
p̃wdeD (tx|y)

)
dydx

= −
∫
tx
pwenS (tx) log

(
pwenS (tx)

)
dx

−
∫
tx

∫
y
pwenS (tx|y)× log

p̃w(tx,y)
pwenS

(y)pwenS (tx)
dydx ,

(9)

where w = wenS +wdeD .
Equation (9) applies according to:
pwenS (tx,y) = pwenS (tx)p(y|tx) and to
pwenS (y) =

∫
tx
pwenS (tx|y) and

p̃w(tx,y) = p̃wdeD (tx|y)pwenS (y).
Here, pwenS (tx,y) is a distribution of a true joint of (tx, y)
and p̃w(tx,y) considers joint distribution in accordance with
p̃wdeD (tx|y). To get the optimumw, iteratively minimizing
the loss function as stated in Eq. (9) based on the stochastic
gradient descent (SGD) method according to:

w(j+1) = wj − η∇wL̃
(
wj
)
, (10)

where η denotes the learning rate, j is the iteration number
and∇wL̃(wj) is an estimated gradient of the loss function.
Accordingly, Eq. (9) can be stated as:
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L(w) = HwenS (tx)− IwenS (tx,y)

+Ey
[
DKL(pwenS (tx|y)|| × p̃wdeD (tx|y))

]
,

(11)

where HwenS (tx) is the entropy of sv = (sv1 , . . . , svB ).
MI between the input of the OFC channel (tx1, . . . , txB)
and its output (y1, . . . , yB) is denoted by IwenS (tx,y),

DKL

[
pwenS (tx|y)|| × p̃wdeD (tx|y)

]
is the Koulback-Liber

(KL) divergence between true pwenS (tx|y) and approximated
p̃wdeD (tx|y) posterior distributions.

Optimizing MI and minimizing KL divergence are related
to minimizing the loss function. Reducing divergence by
approximating the true posterior distribution, the DNN-based
detector approximates the maximizer of MI.

Each channel receiver uses a DP coherent detection scheme
to extract the data from the received modulated optical carrier
corresponding to that channel. The receiver operates with
a 45-degree polarized CW local laser, with the frequency
matching that of the unmodulated carrier at the channel
transmitter. The local laser output goes through a polarization
splitter to yield two equal-power orthogonal components
acting as the local fields for the two polarization versions of
the constellation shaping-channel receivers.

Further, each channel receiver has its own DSP to estimate the
BER and MI of that channel. This DSP does not go through
complicated computations to compensate for the linear and
nonlinear effects of the fiber channel, since this job is already
done during the ANN-training operation.

The SNR is a metric that incorporates various sources of noise,
including amplification noise, nonlinear effects, and other
defects in the transmitter. In this work, an ideal transmitter is
assumed. The expression for SNR is:

SNR =
σ2s
σ2n
=

σ2s
σ2ASE + σ

2
NLI

, (12)

where σ2s and σ2n denote the transmitted (i.e. launch) and
the total noise power, respectively. σ2ASE is the variance of
the noise generated by the amplification stages of the EDFA
and σ2NLI represents the noise variance caused by nonlinear
interference (NLI), which includes both the intra- and the
inter-channel distortions.

BER is a performance metric that quantifies the likelihood
of an error by the number of incorrect bits per transmitted
bit [34]. The BER ofM order modulation format is calculated
by [35]:

BER =
2
m

(
1− 1√

M
erfc

√
3m(SNR)
2(M − 1)

)
, (13)

whereM is the number of discrete symbols involved in the
modulation (i.e. modulation order),m is the number of bits
per transmitted symbol (m = log2M ), and erfc denotes the
complementary error function.
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3. Simulation Results and Discussion

An analysis of transmission-related performance is conducted
to determine the MTR, SNR, MI, and BER for various DP-
QAM signaling andRs values. The optical link comprises 100
km SMF spans. To mitigate OFC loss, an optical amplifier
is inserted after each span. ITU wavelength grid standard
dictates that when Rs = 20, 40, 60, and 80 Gbps, ∆f can
be set to 25, 50, 75, and 100 GHz, respectively. A threshold
BER of 3.8×10–3 is considered, corresponding to 7% hard
decision FEC coding.
In this study, the AE is trained using predetermined values for
modulation format, channel launch power PL, and transmis-
sion distance. The effectiveness of the learned constellations
is then evaluated utilizing the NLIN model. The simulation is
executed within TensorFlow to train the AE. The simulated
AE utilizes the WDM system parameters detailed in Tab. 1.

3.1. Effect of DL Parameters on AE Performance

With batch size serving as an independent parameter, Fig.
6 illustrates the variation of the accuracy of the developed
AE. For DP 64-QAM signaling (M = 64), the outcomes are
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WDM system operating with Nsp = 21, PL = –1 dBm, and Rs =
40 Gbps: a) Nch = 32, b) Nch = 64, and c) Nch = 96.
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acquired for a WDM system functioning with the number
of WDM channels Nch = 32, symbol rate Rs = 40 Gbps,
launch powerPL = −1 dBm, number of link spansNsp = 22
for DP 64-QAM signaling. Figure 6 shows an integer value
x of modulation orderM for batch size B. The AE training
procedure incorporates a range of epochs and diverse batch
sizes to identify the batch size that optimizes accuracy, thereby
minimizing losses. When training the AE with batch sizes
of 32×M and 64×M , as illustrated in Fig. 6, the accuracy
attains its peak value at epoch 200.

The best number of hidden layers Nhl that results in the low-
est BER for DP 64-QAM is determined based on the results
provided in Fig. 7. The considered scenarios are Nch =32,
64, 96, with Nsp = 21 and PL = –1 dBm. The primary
conclusions drawn from the data suggest that utilizing a struc-
ture with two hidden layers and a learning rate of 0.01 in the
AE platform results in a minimum BER of 3.61×10–3 and
3.64×10–3 for Nch =32 and 64, respectively. Additionally,
a structure with four hidden layers yields a BER of 3.61×10–3

forNch = 96. All these BERs are below 3.8×10–3 which cor-
responds to the threshold value BERth, associated with the
7%-HD FEC. Therefore, this study confirms the appropriate-
ness of the chosen Nhl for the system under investigation.

It is worth mentioning that there is practically not much
difference in performance depending on the number of hidden
layers applied. In a low-complexity design, one may go with
1-2 layers, as suggested by the reviewer.

Note that the training of AE is implemented on the central
channel of the WDM system in this work. The acquired AE
parameters are subsequently applied to the AEs of other
channels. This approach simplifies and accelerates the training
process for AEs and, at the same time, guarantees that all
channels satisfy BER performance prerequisites.

Alternatively, in a time-consuming approach, one may go to
train the AE at each channel index for DP 64-QAM, Nch =
32, 64, and 96, with Nsp = 22, 22, and 21, respectively, and
PL = –1 dBm. The fiber group velocity dispersion value D
is then computed for each channel using:

D(λi) ≡ Di = D(λref ) + (λi − λref )S , (14)

where λi is the wavelength of the required channel, λref =
1549.71 nm is the wavelength of the reference (central) chan-
nel, where D = 16.5 ps × (nm·km)–1, and s ≡ dD/dλ
represents the dispersion slope = 0.08 ps × (nm2 km)–1.

AE training using the two approaches renders almost the same
results regarding SNR, MI, and BER. Figures 8 and 9 show
the variation of BER and (SNR, MI) with channel index,
respectively, using the same parameters from Fig. 7. The gain
of the EDFA is assumed to be constant among C-band WDM
channels, which is a reasonable assumption for the C-band
system. Going to a multi-band WDM system incorporating
more bands beside the C-band, more realistic scenarios could
include the EDFA gain spectrum. These results demonstrate
the consistency and dependability of the designed AE in both
approaches.
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3.2. Power Considerations

The performance of a DP 64-QAM PCS-WDM system is
investigated with Nch values of 32, 64, and 96, after a trans-
mission over 20 spans, assuming Rs = 40 Gbps. To train the
AE efficiently, it is essential to determine the range of PL
that yields favorable performance metrics. This range should
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guarantee that the AE is instructed to use launch powers that
yield SNR and MI values within the dedicated power range
by satisfying the BER requirement of 7% HD FEC or less.
Figure 10 shows the variation of SNR, MI and BER with
channel launch power PL and taking Nch as an independent
parameter. The figure contains six parts, with parts a–b, c–d,
and e–f corresponding to Nch = 32, 64, and 96, respectively.
The AE is trained at various power levels PL within the –8 to
6 dBm range individually.

This work trains the AE with varying launch powers PL and
the number of channels Nch, in order to achieve better SNR
and MI ratios within a specific range of launch powers that
renders BER below the threshold of 3.8×10–3. In all instances
where the AE is trained with Nch = 32, 64, and 96, it is
found that the optimum launch power range, which yields the
highest SNR and MI values, is between –4 and 1 dBm.

Subsequently, the SNR and MI ratios are computed for launch
power values of –4, –1, and 1 dBm for Nch = 32, 64, and
96. These ratios yield optimal values of SNR and MI when
the AE is trained within this specific range of launch power.
The computed ratios of SNR are 0.90 and 0.91, and for MI,
are 0.90 and 0.92 when Nch = 32 is utilized to train the AE.
However, for Nch = 64 and 96, the computed ratio is similar
and equals 0.90 for SNR in all instances, while for MI is 0.90
and 0.91.

Based on our findings, it appears that the developed AE is
consistent and robust against different numbers of WDM
channels utilized for training the AE-based PCS within a spe-
cific launch power range that satisfies the BER requirement
of BERth (i.e. 7% HD FEC). Based on the training results
depicted in Fig. 10, it is essential to note that during the AE
training phase, the highest possible SNR and MI values with
the lowest possible BER are obtained at a PL –1 dBm. Conse-
quently, –1 dBm is regarded as the launch power for training
the AE in this work.
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Fig. 11. Impact of transmission distance and DP modulation formats
on BER of an AE-based PCS-WDM system operating with Nch =
32, Rs = 40 Gbps, and PL = −1 dBm.

3.3. Impact of Modulation Formats and Symbol Rate on
Performance

The impact of modulation format and symbol rate on the
transmission efficacy of an AE-based coherent PCS-WDM
system is examined. Consideration is given to three DP mod-
ulation formats (16-, 64-, and 256-QAM) and four Rs values
(20, 40, 60, and 80 Gbps) with channel spacing ∆f set to
25, 50, 75, and 100 GHz, respectively. It is assumed that the
parameters of each channel’s AE are identical, and these pa-
rameters are acquired through the training process of the
central channel’s AE. The training procedure is executed for
every pair of Rs and modulation formats.
The relationship between transmission distance and the cor-
responding received channel BER for various modulation for-
mats is presented in Fig. 11 forNch = 32,Rs = 40Gbps, and
PL = −1 dBm. This figure is useful for determining the MTR
where BER is maintained at or below BERth =3.8×10–3.
The results demonstrate that the MTR differs depending on
the modulation format. For a 16-QAM format, the MTR is
26 spans. In contrast, the MTR diminishes as the modula-
tion order goes up. Beyond that, the MTR for the 64-QAM
format is reduced to 22 spans, while it is reduced to 6 spans
for the 256-QAM format. The presented results indicate that
an increase in modulation order leads to a reduction in the
maximum distance.
The results shown in Fig. 12 illustrate how the MTR of 32-,
64-, and 96-channel PCS-WDM systems with DP 64- and
256-QAM signaling and a PL of –1 dBm depends on the
symbol rate. Training is conducted at four different values of
Rs: 20, 40, 60, and 80 Gbps, with frequency channel spacings
∆f of 25, 50, 75, and 100 GHz, respectively.
The objective is to ascertain the MTR at which the AE
produces an appropriate response for every value of Rs. In
the case of DP 64-QAM and 256-QAM signaling, the inquiry
demonstrates that AE training using an Rs = 20 Gbps and
Nch = 32, 64, and 96 channels achieves MTR of 28, 28,
and 27 spans for DP 64-QAM signaling, respectively, while
DP 256-QAM achieves six spans for Nch = 32, 64, and 96
channels. Recall that each span corresponds to a distance of
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100 kilometers. Similarly, at Rs of 40 Gbps, for DP 64-QAM
signaling, the MTR is 22, 22, and 21 spans forNch = 32, 64,
and 96 channels, respectively.
In contrast, DP 256-QAM yields 6, 5, and 5 spans. At Rs
60 Gbps, the MTR reduces to 16, 16, and 15 spans for DP
64-QAM signaling, and DP 256-QAM achieves five spans
for Nch = 32, 64, and 96 channels. Finally, at Rs 80 Gbps,
the MTR reduces to 12, 11, and 10 spans for DP 64-QAM
signaling, and DP 256-QAM achieves 5, 4, and 4 spans for
Nch = 32, 64, and 96 channels, respectively. A comparative
analysis of the performance of the AE when trained with
identical system parameters as stated previously is presented
in Tab. 2 detailing SNR, MI, and BER for various values of
Rs.
The findings indicate that the response of the AE to using
two modulation formats (DP 64- and 256-QAM) remains
consistent when considering varied maximum reach distances
and Rs values. This is achieved due to the method used (i.e.,
AE), involving integrating the transmitter (TX), the fiber
channel, and the receiver (RX) into a single neural network
(NN) supported by PCS. Then, the AE is jointly trained to
replicate TX inputs using RX outputs. Thus, the structure of
the AE is both flexible and consistent.

3.4. Performance Comparison

This subsection presents a performance comparison between
the developed AE-based PCS-WDM system and a convention-
al system, with respect to Shannon limits. The performance
of both systems is evaluated in terms of BER as a function of
SNR. Furthermore, the comparison is extended to cover the
dependence of SNR and MI with the number of spans.
The Shannon capacity theorem establishes the upper limit on
the quantity of data that can be transmitted through a given
medium or channel [36]:
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C = B log2(1 +
S

N
), (15)

where C is the channel’s capacity in [bps], B represents
the bandwidth available for data transmission in [Hz], s is
the detected signal power, and the total channel noise power
across bandwidth B is denoted by N .
Figure 13 shows the dependence of MI on SNR for both
systems, as a function of the number of link spans. The pa-
rameters used in the investigation are DP 64-QAM signaling
with Nch = 32, Rs = 40 Gbps, and PL = −1 dBm. The
developed AE-based WDM system outperforms the conven-
tional solution. The values of MI of the conventional and AE
systems at SNR = 18 dB are 10.57 and 10.94 bits/symbol,
respectively. This provides a 0.4 shaping gain. Thus, the per-
formance of the developed AE-based PCS-WDM is better.
Figure 14 shows a comparison between AE-based PCS-WDM
and conventional systems in terms of BER and SNR, as
a function of the number of link spans. BERs of conventional
and AE-based WDM systems at SNR = 18 dB are 3.75×10–4

and 3.25×10–4, respectively. This provides an improvement
in BER 0.5×10–4 and this enhancement signifies that the
developed AE offers performance gains compared to the
conventional system.
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Tab. 2. Comparison of SNR, MI, and BER for AE-based PCS-WDM.

Modulation Performance
Symbol rate [Gbps]

20 40 60 80

DP 64-QAM, Nch = 32
SNR [dB] 10.94 10.95 10.94 11.05

MI [bits/sym] 7.04 7.04 7.04 7.09
BER [×10–3] 3.62 3.61 3.62 3.64

DP 256-QAM, Nch = 32
SNR [dB] 18.24 16.70 16.02 14.86

MI [bits/sym] 11.42 10.48 10.07 9.37
BER [×10–3] 3.75 3.79 3.76 3.79

DP 64-QAM, Nch = 64
SNR [dB] 10.83 10.92 10.93 11.15

MI [bits/sym] 6.97 7.03 7.03 7.29
BER [×10–3] 3.75 3.64 3.63 3.58

DP 256-QAM, Nch = 64
SNR [dB] 18.13 17.48 16.01 15.83

MI [bits/sym] 11.37 10.97 10.07 9.96
BER [×10–3] 3.77 3.73 3.78 3.57

DP 64-QAM, Nch = 96
SNR [dB] 10.94 11.31 11.01 11.32

MI [bits/sym] 7.06 7.56 7.12 7.24
BER [×10–3] 3.61 3.57 3.58 3.62

DP 256-QAM, Nch = 96
SNR [dB] 18.07 17.47 16.03 15.83

MI [bits/sym] 11.33 10.96 10.07 9.96
BER [×10–3] 3.77 3.73 3.75 3.78
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Rs = 40 Gbps, and PL = −1 dBm, for DP 64-QAM.

Figure 15a-b shows a comparison between the conventional
system and the AE-based PCS-WDM system at Nch = 32,
Rs = 40 Gbps, and PL = −1 dBm in terms of SNR and
MI as a function of the number of link spans, respectively. It
is evident from this figure that the SNR and MI of the two

systems are comparable for one and two spans. The developed
AE-based PCS-WDM system exhibits better SNR and MI
performance compared to the conventional system, as the
number of spans increases.

3.5. Constellation Comparison of AE for Different Number
of Spans

Figure 16 displays the learned constellation at different num-
bers of spans for the developed AE-based PCS-WDM system,
using Nch = 32, Rs = 40 Gbps, and PL = −1 dBm for DP
64-QAM. The color of the constellation points represents
their occurrence probabilities and the color map – ranging
from blue to red – represents values ranging from low to high.
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Fig. 16. Learned constellation at: a) 1, b) 5, and c) 10 spans for
AE-based PCS-WDM system, assumingNch = 32,Rs = 40 Gbps,
and PL = −1 dBm for DP 64-QAM.
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Red represents the highest probability of occurrence, and blue
is the lowest probability of occurrence.
At one span, the learned constellation demonstrates a high
probability for each of its points, in addition to a uniform
distribution and a low BER of 4.07×10–5. When the number
of spans is increased to five and ten, however, BER increases
to 3.78×10–4, and 1.01×10–3, respectively. Based on these
results, it can be inferred that as the number of spans increases,
the occurrence probabilities of points within the learned
constellation diminish, leading to a greater BER. Furthermore,
it has been observed that the constellation that has been
learned to tolerate NLI noise.

4. Conclusion

In the course of the work described in this paper, an E2EDL-
based PCS for M-QAM signaling (M=16, 64 and 256) that
minimizes the effects of nonlinear fiber optics while utilizing
a high-capacity coherent WDM system has been developed.
The simulation results show that optimal system performance
can be obtained when the AE consists of 2 hidden layers,
32 neurons per hidden layer, and a “32×M” batch size to
obtain. The simulation results show that training the AE of
each channel for DP 64-QAM, Nch = 32, 64, and 96, with
Nsp = 22, 22, 21, respectively, and PL = −1 dBm gives
approximately the same performance predictions compared
to the case when all the channels use the same central channel
trained AE. This observation demonstrates the consistency
and dependability of the developed AE. Training has been
conducted at four different values of Rs: 20, 40, 60, and 80
Gbps, with frequency channel spacings∆f of 25, 50, 75, and
100 GHz. The objective is to ascertain the MTR at which the
AE produces an appropriate response for every value of Rs.
The AE has been trained with different launch power PL
values and the numbers of channelsNch to assess SNR and MI
within a specific range of PL that renders a below-threshold
BER. For Nch = 32, 64, and 96, the PL range is from –4 to
1 dBm, and the optimum PL value that yields a minimum
BER is –1 dBm. SNR and MI reach their maximum levels
at the optimum value of PL and reduce to about 90% when
PL = −4 and 1 dBm. The developed AE-based PCS-WDM
provides a 0.4 shaping gain and outperforms the conventional
system. In the future, additional progress is expected with
adequate extensions of the system. It is important to assess the
efficacy of the developed AE regarding other NLIN models
or use other fiber models. In addition, it enhances system
performance by joint geometric constellation shaping and
PCS to optimize both the position and probability of the
symbols in the constellation.
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