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Abstract  In this paper, we design and consider a new digi-
tal signature scheme with an evolving secret key, using random
q-ary lattices as its domain. It is proved that, in addition to offer-
ing classic eu-cma security, the scheme is existentially forward
unforgeable under an adaptive chosen message attack (fu-cma).
We also prove that the secret keys are updated without revealing
anything about any of the keys from the prior periods. There-
fore, we design a polynomial-time reduction and use it to show
that the ability to create a forgery leads to a feasible method of
solving the well-known small integer solution (SIS) problem.
Since the security of the scheme is based on computational hard-
ness of a SIS problem, it turns out to be resistant to both classic
and quantum methods. In addition, the scheme is based on the
“Fiat-Shamir with aborts” approach that foils a transcript at-
tack. As for the key-updating mechanism, it is based on selected
properties of binary trees, with the number of leaves being the
same as the number of time periods in the scheme. Forward se-
curity is gained under the assumption that one out of two hash
functions is modeled as a random oracle.

Keywords  digital signature scheme, forward security, q-ary
lattices, random-oracle model, SIS problem

1. Introduction

This paper shows that the concepts and results from [1] may
be adapted to a post-quantum domain. To this end, we design
and analyze a new quantum-safe key evolving digital signature
scheme and prove its forward security characteristics.
It is well known that the security of asymmetric crypto
schemes is based on two computationally hard problems,
namely factorization and DLP in finite groups of prime order.
However, it should be noticed that the hardness of these prob-
lems is based solely on a classical computational model and,
due to the famous Shor’s algorithm (also the Kaye-Zalka’s
algorithm), both problems turn out to be of polynomial com-
plexity in the quantum model.
These facts, in conjunction with the acceleration of research
leading to the creation of a quantum computer with a suffi-
ciently large quantum register, compelled the US National
Security Agency (NSA) to publish, in 2015, a report indicat-
ing the need to increase the length of all Suite-B scheme keys
and to urgently work out solutions that are resistant to those
threats.

Soon thereafter, the National Institute of Standards and Tech-
nology (NIST) organized a competition to update their stan-
dards to include post-quantum cryptography. NIST pointed
out five domains that were assumed to be a substrate for
quantum-safe problems. All this triggered an immediate re-
sponse of the crypto community and a lot of effort has been
invested into the research on a wide variety of post-quantum
aspects.

After years of intensive research, with a particular focus
being on breaking SIDH and Rainbow, it turned out that
lattices seemed to be the most promising and flexible of all
the suggested domains, serving as a substrate for modern
asymmetric crypto primitives. These are the reasons why we
have focused our considerations on the theory of lattices.

Signature schemes with an evolving private key [2], [3] are
characterized by the fact that the entire lifetime of the public
key is split into a certain number of sub-periods to which
different secret keys are assigned. More precisely, in the first
step, both the public key and the initial secret key are generated
and assigned to the first period, and then the initial key is
updated to the next period and so on, until the last period is
reached.

Natural security requirements associated with these digital
schemes are such that even if the secret key, assigned with
a specific sub-period, has been reveled, then it is impossible
to conduct a forgery for any of the previous sub-periods. This
creates a formal security model known as forward security [2].

It should be noted that for any scheme of this sort, the updating
mechanism is of crucial importance in terms of providing the
required security needs. Therefore, in addition to the obvious
explanation of unforgeability within separated time frames,
it must be proven, above all, that the disclosure of a certain
secret key reveals nothing about the past periods.

In other words, this mechanism must ensure a non-trivial
property that a secret key associated with a given time frame
must store nothing but data required for making current
signatures and for generating a secret key for the next period.

The presented scheme is based on the so-called “Fiat-Shamir
with aborts” approach [4], [5], proposed by Lyubashevsky [5],
and is based on an idea derived from statistics and known as
rejection sampling.
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Despite the fact that the design itself has been inspired by
many papers concerning different aspects of the lattice theo-
ry, [5]–[7] need to be considered as the key sources of the
techniques behind our considerations. We were able to im-
plement these different ideas to create a state-of-the-art and
quantum-safe forward secure digital signature scheme.

2. Preliminaries
For a positive integer k, let [k] := {1, . . . , k}, and [k]0 :=
{0, 1, . . . , k}. Let us denote ℓ2 and ℓ∞ norm by ∥ · ∥ and
∥ · ∥∞, respectively.
Vectors are presented in a column form and are denoted by
lower-case letters in bold print (e.g. x). We view a matrix as
a set of its column vectors and denote it by capital letters in
bold print (e.g.A). The i-th entry of a vector x is denoted by
xi, and the j-th column of a matrixA is denoted aj orA[j].
We identify a matrixAwith an ordered set {aj} of its column
vector and define the norm of matrix A as the norm of its
longest column, i.e., ∥A∥ = maxj ∥aj∥. If the columns of
A = {a1, . . . ,ak} are linearly independent, then A∗ =
{a∗1, . . . ,a∗k} denotes the Gram-Schmidt orthogonalization
of vectors a1, . . . ,ak taken in that order.
ForA ∈ Rn×m1 and B ∈ Rn×m2 , having an equal number
of rows, [A|B] ∈ Rn×(m1+m2) denotes the concatenation of
the columns ofA followed by the columns of B. Likewise,
forA ∈ Rn1×m and B ∈ Rn2×m′ , having an equal number
of columns, [A;B] ∈ R(n1+n2)×m is the concatenation of
the rows ofA and the rows of B.
Let I be a countable set and let {Xn}n∈I , {Yn}n∈I be two
families of random variables, such thatXn, Yn take values in
a finite setRn. We call {Xn}n∈I and {Yn}n∈I statistically
close if their statistical distance is negligible, where the
statistical distance between {Xn}n∈I and {Yn}n∈I is defined
as the following function [8]:

∆(Xn, Yn) =
1
2

∑
r∈Rn

∣∣Pr[Xn = r]− Pr[Yn = r]∣∣ .
We conclude this section with a very useful and nontrivial
result, called the forking lemma. A general version of this
assertion is presented, and the basic forking lemma may be
found in [9].
Lemma 1. General forking lemma [10]. Fix an integer ϱ
and set H of size h  2. Let A a randomized algorithm
returning, based on an input of x, h1, . . . , hϱ a pair, with the
first element thereof being is an integer in the range 0, . . . , ϱ
and the other element being referred to as a side output. Let
IG be a randomized algorithm that may be called an input
generator. The accepting probability of A, denoted acc, is
defined as the probability that J  1 in the experiment.

x
$← IG; h1, . . . , hϱ

$← H; (J, σ) $← A(x, h1, . . . , hϱ) .

The forking algorithm FA associated with A is a randomized
algorithm processes and input x in the following manner:

Algorithm 1. FA.
Input x
1. h1, . . . , hϱ

$← H
2. (I, σ) $← A(x, h1, . . . , hϱ; ρ) ▷ ρ is a tape
3. If I = 0 then
4. Return (0, ε, ε)
5. End If
6. ĥI , . . . , ĥϱ

$← H
7. (Î , σ̂) $← A(x, h1, . . . , hI−1, ĥI , . . . , ĥϱ; ρ)
8. If I = Î and hI ̸= ĥI then
9. Return (1, σ, σ̂)
10. Else
11. Return (0, ε, ε)
12. End If

Let
frk = Pr

[
b = 1 : x $← IG; (b, σ, σ̂)← FA(x)

]
.

Then

frk  acc ·
(
acc
q
− 1
h

)
.

2.1. Lattices

Here, lattices are defined and some of their basic properties
are presented. A comprehensive introduction to this theory
may be found in [11].
Any discrete additive subgroup L of Rm is called an m-
dimensional lattice. By definition, a lattice L ⊂ Rm induces
a quotient group Rm /L of cosets

x+ L = {x+ v | v ∈ L}, x ∈ Rm,

with respect to the addition operation (x+ L) + (y + L) =
(x+ y) + L.
It turns out that for every lattice L, there is a set of linearly
independent vectors B = {b1, . . . ,bk} such that any lattice
point is an integer linear combinations of vectors form B,
i.e.:

L = L(B) =

{
k∑
i=1

αibi | αi ∈ Z

}
.

Set B is called a basis of L, whereas cardinality k = #B
is called the rank of L. If k = m then we say that L is a
full-rank lattice. Lattice basisB is not unique, namely for any
unimodular matrixU ∈ Zm×m (i.e. |detU| = 1), B ·U is
also a basis of L(B).
A fundamental domain of L is a connected set F ⊂ Rm such
that 0 ∈ F and it contains exactly one representative x̄ of
every coset x+L. For a latticeL having basisB, a commonly
used fundamental domain is the origin-centered fundamental
parallelepiped P(B) = B ·

(
− 12 ,

1
2

]m, where a coset x+ L
has a representative x−B · ⌊B−1 · x⌉.
The measure of fundamental parallelepiped can be easily com-
puted as volP(B) = (det(B ·BT ))1/2. Additionally, this
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number does not depend on the choice of bases of the lattice,
i.e. if L = L(B1) = L(B2) then volP(B1) = volP(B2).
Hence, the measure of the fundamental parallelepipeds is in-
variant of the lattice, is called the determinant of the lattice
L and is denoted by detL.
Let Bm(0, r) := {x ∈ Rm | ∥x∥ < r} be m-dimensional
open sphere of radius r centered at 0. For anym-dimensional
lattice L, the i-th minimum λi(L) is the shortest radius r > 0
such that Bm(0, r) contains i linearly independent lattice
vectors:

λi(L) := inf {r > 0 | dim(span(L ∩Bm(0, r)))  i} .

For any lattice L of rank k, λ1(L) ¬ . . . ¬ λk(L) are
constants, and λ1(L) is the length of the shortest vector in L,
i.e. λ1(L) = minv∈L/{0} ∥v∥.
There are several natural computational problems relating to
lattices, and for an evaluation of the complexity of different
types of lattice problems, see [11], [12] for example. Due
to the overall concept underpinning the paper, we recall the
notion of approximate shortest independent vector problem
(SIVP).
Definition 2. For a given basisB of anm-dimensional lattice
L = L(B) of rank k, the goal of the approximate shortest
independent vector problem (SIVPγ) is to find a set of k
linearly independent lattice vectorsV = {v1, . . . ,vk} ⊂ L,
such that ∥V∥ ¬ γ(m) · λk(L), where the approximation
factor γ = γ(m) is a function of dimensionm.
We point out that the most famous and commonly used version
of SIVPγ problem concerns the case of full-rank lattices, i.e.
when k = m.
A full rank lattice L is called an integer lattice, if L ⊂ Zm,
an integer lattice is called a q-ary lattice, if qZm ⊂ L ⊂ Zm,
where q ∈ Z1. Additionally, Zm /L is a finite group and
|Zm /L| = detL.
Let n,m, q ∈ Zq1, n < m and A ∈ Zn×mq be a full-rank
matrix. Below we define a q-ary lattice that is the main object
of this paper.

L⊥q (A) =
{
x ∈ Zm | Ax ≡ 0 (mod q)

}(
= ker (A : Zm → Znq )

)
.

By definition, L⊥q (A) ⊂ Zm, and for any x ∈ qZm,Ax ≡ 0
(mod q), so we get qZm ⊂ L⊥q (A) ⊂ Zm. This means
that L⊥q (A) is indeed a full-rank q-ary lattice of dimension
m. It is worth mentioning that matrix A which induces
L = L⊥q (A) is called a parity matrix and it is not a base of L.
Moreover, it turns out that if q is a prime, then |detL⊥q (A)| =
|Zm /L⊥q (A)| = qn.

For a given vector u ∈ Znq , a lattice L⊥q (A) is associated
with another lattice that is defined by:

Luq (A) = {x ∈ Zm | Ax ≡ u (mod q)}.

If v ∈ Luq (A), then the lattices Luq (A) and L⊥q (A) are
tailored by the following relation Luq (A) = v + L⊥q (A).

2.2. Discrete Gaussian

For any real s > 0 and c ∈ Rm, the Gaussian function ρs,c
centered on c with parameter s is defined as:

ρs,c(x) = e
− π
s2
∥x−c∥2 , x ∈ Rm,

and

ρs = ρs,0, ρ = ρ1, i.e. ρ(x) = e−π∥x∥
2
.

From the definition, we have ρs(x) = ρ
(
s−1x

)
.

Let L ⊆ Zm be a lattice and let ρs,c(L) =
∑
x∈L
ρs,c(x). Let

us define discrete Gaussian distribution over L with center c,
and parameter s as:

DL,s,c(x) =
ρs,c(x)
ρs,c(L)

, x ∈ L.

For notational convenience:

DL,s = DL,s,0, Dms,c = DZm,s,c, Dms = DZm,s.

We summarize several facts from the literature about discrete
Gaussians over lattices, again if focus to our interest area.
Lemma 3. Let n < m and TA be any basis of L⊥q (A) for
some A ∈ Zn×mq whose columns generate Znq , let u ∈ Znq
and c ∈ Zm be arbitrary, and let s  ∥T∗A∥ · ω

(√
logm

)
,

we have:
• Prx←DLuq (A),s,c

[
∥x− c∥ > s ·

√
m
]
¬ negl(n) [6], [13],

• Prx←DL⊥q (A),s [x = 0] ¬ negl(n) [6], [14].

• A set of O(m2) independent samples from DL⊥q (A),s con-
tains a set ofm linearly independent vectors, except with
negligible probability in n (see [6], [15]).

Theorem 4. There is a probabilistic polynomial-time algo-
rithm SampleD that, given a basisB ofm-dimensional lattice
L = L(B), a parameter s  σ1(B) ·ω

(√
logm

)
, and a cen-

ter c ∈ Rm, outputs a sample from a distribution that is
statistically close to DL,s,c.
The above scheme is an alternative to the SampleD algorithm
given in [17], and it is more efficient and fully parallelizable.
Value σ1(B) is the largest singular value of B, which is
never smaller than ∥B∗∥ but is also not much larger in most
important cases – see [16] for details.
Lemma 5. Let n,m, q ∈ Z>0 with q prime and let m 
2n lg q. Then for all but the q−n fraction of allA ∈ Zn×mq ,
the subset-sums of the columns of A generate Znq ; i.e. for
every syndrome u ∈ Znq there is x ∈ {0, 1}m, such that
u ≡ Ax (mod q) [14], [17], [18].
Lemma 6. Let n,m, q ∈ Z>0 with q prime,m  2n lg q, and
s  ω

(√
logm

)
. If the columns ofA ∈ Zm×nq generate Znq ,

then for fixed u ∈ Znq and an arbitrary solution t ∈ Zm to
At ≡ u (mod q), the conditional distribution of e← Dms ,
givenAe ≡ u (mod q) is exactly t+DL⊥q (A),s,−t [17].
Lemma 7. Let n,m, q ∈ Z>0 with q prime and let m 
2n lg q. Then, for all but the 2q−n fraction of allA ∈ Zn×mq
and for any s  ω

(√
logm

)
, the distribution of the syndrome

u ≡ Ax (mod q) is statistically close to uniform over Znq ,
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where x ← Dms . Besides, the conditional distribution of
x← Dms given u ≡ Ax (mod q) is DLuq (A),s [7], [11].
Now a variant of the rejection sampling algorithm can be
formulated, in which one generates samples from a desired
probability distribution by using samples from another distri-
bution. The use of this method will enable to achieve transcript
security of presenting the signature scheme. We start with
the lemma that allows to bound the success probability of the
algorithm.
Lemma 8. For any c ∈ Zm, if s = α∥c∥, for α ∈ R>0,
then [5]:

Pr
x←Dms

[
Dms (x)
Dmc,s(x)

< exp
(
12
α
+
1
2α2

)]
> 1− 2−100.

Theorem 9 (Rejection sampling). Let V be a subset of Zm
in which all elements have norms less than T , s be some
element in R such that s = ω(T

√
logm), and χ : V ∈ R be

a probability distribution. Then, there exists a constantM =
O(1), such that the distribution of the following algorithm
A [5]:
1) c← χ
2) x← Dmc,s
3) output (x, c) with probability min

(
Dms (x)
MDmc,s(x)

, 1
)

is within statistical distance 1M ·2
−ω(logm) of the distribution

of the following algorithm F :
1) c← χ
2) x← Dms
3) output (x, c) with probability 1/M
Moreover, the probability thatA outputs something is at least
1−2−ω(logm)

M .
More specifically, if s = αT for any α ∈ R>0, then
M = exp

(
12
α +

1
2α2
)
, the output of algorithm A is within

statistical distance 2
−100

M of the output of F , and the proba-
bility that A outputs something is at least 1−2

−100

M .

2.3. Trapdoors for Lattices

Lemma 10. Let δ ∈ R>0 be any fixed constant and q ∈
Z3 be odd. There is a universal constant C ∈ R>0 and a
probabilistic polynomial-time algorithm TrapGen that, on an
input of a uniformly randomA1 ∈ Zn×m1q , for anym1  d =
(1 + δ)n lg q, and any integerm2  (4 + 2δ)n lg q, outputs
matrices U ∈ Zm2×m2 , G,R ∈ Zm1×m2 , P ∈ Zm2×m1 ,
such thatU is nonsingular, and (GP+1m1) ⊂ L⊥q (A1) [19].
Moreover:
• A = [A1 | A2] is (m2 · q−δn/2)-uniform over Zn×mq ,

wherem = m1+m2 andA2 = −A1 ·(R+G) ∈ Zn×m2q ,
• TA ∈ Zm×m, given by the formula:

TA =

[
(G+R)U RP− 1m1

U P

]
,

is a short basis of L⊥q (A) and meets ∥TA∥ ¬ Cn log q =
O(n log q)with a probability of 1−2−Ω(n) over the choice
ofR,

• ∥T∗A∥ ¬ 1 + C
√
d = O(

√
n log q) with probability of

1− 2−Ω(n) over the choice ofR.
Guided by a practical perspective, the above lemma could be
reformulated in the following manner.
Theorem 11. For n ∈ Z1, an odd q ∈ Z3 and integerm 
6n lg q, there is a probabilistic polynomial-time algorithm
TrapGen that, on an input of q, n,m, outputs A ∈ Zn×mq
and TA ∈ Zm×m, where A is (m · q−n/6)-uniform over
Zn×mq , andTA is a short (good) basis of L⊥q (A) except with
negligible probability in n.

2.4. Small Integer Solution Problems

The small integer solution (SIS) problem [13], [18] aims
to find a short non-zero, is to find a short nonzero integer
solution x ∈ Zm to the homogeneous linear system Sx = 0
(mod q) for uniformly random S ∈ Zn×mq .
Definition 12. The small integer solution problem SISq,n,m,β
(in the ℓ2 norm) is: given q ∈ Z1, a uniformly random matrix
S $← Zn×mq , and β ∈ R>0, find a nonzero integer vector
x ∈ Zm such that Sx ≡ 0 (mod q) and ∥x∥ ¬ β [5], [13].
Equivalently, the SIS problem asks to find a vector x ∈
L⊥q (S)/{0} with ∥x∥ ¬ β.
It turns out that the distribution given by SIS has decent
properties, so it is convenient to introduce its formal definition.
Definition 13. SISq,n,m,d distribution: choose a uniformly
random matrix:

S $← Zn×mq
and a vector

e $← {−d, . . . , 0, . . . , d}m,

and output (S,Se) [5].
Remark 14. If d≫ qn/m, then the SISq,n,m,d distribution is
actually statistically close to uniform over Zn×mq × Znq (by
the leftover hash lemma) [5].
An homogeneous variant of SIS problem, called ISIS, is
presented below.
Definition 15. The inhomogeneous small integer solution
problem ISISq,n,m,β (in the ℓ2 norm) is: given q ∈ Z1, a
uniformly random matrix S $← Zn×mq , a syndrome u $← Znq ,
and β ∈ R>0, find an integer vector x ∈ Zm, such that
Sx ≡ u (mod q) and ∥x∥ ¬ β [17].
Both problems turn out to be as hard as worst-case SIVP
problem (see subsection 2.1).
Theorem 16. For any positive integers n,m, real β = poly(n)
and prime q  β · ω

(√
n log n

)
, the average-case problem

SISq,n,m,β and ISISq,n,m,β are as hard as the worst-case prob-
lem SIVPγ with γ = β · Õ(

√
n) [13], [17].

The next lemma plays an important role in the proof of the
main result. It is inspired by [15].
Lemma 17. Assume that d ∈ Z9 and

m > 24 +
n lg q

lg (2d+ 1)
.
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Then, for any matrixA ∈ Zn×mq and for uniformly random

e $← (−[d] ∪ [d]0)m, we have:

Pr
[
∃ e′ ∈ (−[d] ∪ [d]0)m : e′ ̸=e,

Ae =Ae′ (mod q)
]

>1− 2−101.

Proof. The matrix A can be viewed as an operator trans-
forming Zm into Znq , therefore#A(Zm) = qn. This means
that in the set (−[d] ∪ [d]0)m ⊂ Zm, there are at most qn
different elements that do not collide with each other. Since
#(−[d] ∪ [d]0)m = (2d + 1)m, probability P of selecting
a non-colliding element from the set (−[d] ∪ [d]0)m can be
estimated as:

qn

(2d+ 1)m
<
(2d+ 1)(n lg q)/lg(2d+1)

(2d+ 1)24+(n lg q)/lg(2d+1)

=
1

(2d+ 1)24
< 2−101.

Consequently, the probability of an event that there are at
least two colliding elements in:(

− [d] ∪ [d]0
)m is 1− P > 1− 2−101 .

2.5. One-way Preimage Sampleable Functions

This subsection presents some important mechanisms that
ensure the high level of security of the proposed work. We start
by reiterating the definition of a one-way preimage sampleable
function.
Definition 18. For a given value n of a security parameter,
a family of preimage sampleable functions (PSFs) is a tu-
ple of PPT algorithms (TrapGen, SampleDom,SamplePre)
satisfying the following conditions [17]:
• Generating a representative with a trapdoor:
TrapGen(q, n,m) outputs (A, T ) with an overwhelming
probability, where A is the description of an efficiently-
computable (representative) function fA : Dn → Rn (for
some efficiently-recognizable domain Dn and range Rn
depending on n), and T is some trapdoor information for
fA.

For the remaining properties, fix some (A, T ) ←
TrapGen(q, n,m).
• Domain sampling with almost uniform output:
SampleDom(1n) samples an x ∈ Dn from some
(possibly non-uniform) distribution overDn, for which the
distribution of fA(x) is statistically close to uniform over
Rn.
• Preimage sampling with trapdoor: for every y ∈ Rn,
SamplePre(T, y) samples from a distribution that is sta-
tistically close to the conditional distribution of x ←
SampleDom(1n), given fA(x) = y.

Definition 19. For a given value n of a security parameter, a
PSFs is called a one-way PSFs, if the additional condition
holds [17]:
• One-way nature, without a trapdoor: for any PPT algorithm
A, the probability that A(1n, A, y) ∈ f−1A (y) ⊆ Dn is

negligible, where the probability is taken over the choice of
A, the target value y ← Rn chosen uniformly at random,
and A’s random coins.

We now show a one-way PSFs design based on the average-
case hardness of ISIS. This is adapted directly from [17] and
plays a key role in the main part of this paper. To this end, let
q ∈ Z3 be odd andm  6n log q be an integer:
1) In order to generate a representative function with trap-

door the TrapGen algorithm from Theorem 11 is used. It
outputsA ∈ Zn×mq and a trapdoor TA ∈ Zm×m, where
A is is statistically close to a uniform matrix in Zn×mq ,
and TA is a short basis of L⊥q (A) except with negligible
probability in n. Let s  ∥T∗A∥ · ω

(√
logm

)
, the func-

tion fA is defined as fA(e) ≡ Ae (mod q), with domain
Dm = {e ∈ Zm | ∥e∥ ¬ s

√
m} and range Rn = Znq .

2) The input distribution is Dms and is sampled using the al-
gorithm SampleD from Theorem 4 with the standard basis
for Zm. Correctness holds because a sample e ← Dms
lands in the Dm domain (except with negligible probabil-
ity), by Lemma 3.1, and for all but an exponentially small
fraction of allA ∈ Zn×mq , fA(e) is statistically close to
uniform over Rn, by Lemma 7.

3) Preimage sampling with trapdoor is conducted by the
trapdoor inversion algorithm called, in this specific case,
SampleISIS, taking A, TA, s, and u ∈ Znq as input and
sampling from f−1A (u) as follows:
• choose an arbitrary t ∈ Zm such thatAt ≡ u (mod q)

(by Lemma 5, such a t exists for all but at most q−1
fractions ofA; such a t, with relatively large norm, can
be efficiently find via elementary linear algebra)
• using SampleD(TA, s,−t) sample v← DL⊥q (A),s,−t
• output e = t+ v.
Because s  ∥T∗A∥·ω

(√
logm

)
, Theorem 4 implies that

SampleD samples from a distribution that is statistically
close to DL⊥q (A),s,−t. Then by Lemma 6 SampleISIS
samples from the appropriate conditional distribution
DLuq (A),s.

It is important to sample the input from the discrete Gaussian
Dms , rather than sampling from a continuous Gaussian over
Rm with parameter s and rounding off each coordinate to the
nearest integer (see [17] for details).
Theorem 20. The algorithms described above gives a family
of one-way PSFs if ISISq,n,m,√m is hard [17].
We summarize the most important ideas of the preceding
discussion in the following theorem.
Theorem 21. Let n,m, q ∈ Z>0 be such that q is a prime, and
m  6n lg q. There is a PPT algorithm – SampleISIS – that,
on inputA ∈ Zn×mq , its associated trapdoorTA ∈ Zm×m, a
Gaussian parameter s  ∥T∗A∥ · ω

(√
logm

)
, and u ∈ Znq ,

outputs e ∈ Dm ⊂ Zm from the distribution DLuq (A),s. Fur-
thermore,Ae ≡ u (mod q) with overwhelming probability.
We conclude this subsection with a useful generalization
of SampleISIS that is quite important both theoretically and
practically. In the notation of Theorem 21, let u1,u2, . . . ,uk
be an ordered set of vectors, which are the columns of a matrix
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U ∈ Zn×kq . Let k-SampleISIS be an algorithm that takes on
input A ∈ Zn×mq , its associated trapdoor TA ∈ Zm×m, a
Gaussian parameter s  ∥T∗A∥ · ω

(√
logm

)
, andU.

It works as follows:

• For subsequent j’s from 1 to k, SampleISIS(A,TA, s,uj)
is run to output ej ∈ Zm from distribution DLujq (A),s.

• Having given the ordered set {ej}j∈[k], matrix E =
{e1, . . . ek} is the output.

As the matrix U induces q-ary lattices Lujq (A) and they,
in turn, induce a set of discrete Gaussian distributions
DLujq (A),s, the k-SampleISIS algorithm outputs E from the

joint distribution of
(
DLujq (A),s

)
j∈[k]

. In order to ease nota-

tion, this distribution will be denoted by Dk,Uq,A,s.

In addition, note that if E← (A,TA, s,U) thenA,U and
E are related by the formula AE ≡ U (mod q). Thereby,
we have proven the following theorem.
Theorem 22. Let n, k,m, q ∈ Z>0 be such that q is prime,
and m  6n lg q. There is a PPT k-SampleISIS algorithm
that, on input A ∈ Zn×mq , its associated trapdoor TA ∈
Zm×m, a Gaussian parameter s  ∥T∗A∥ · ω

(√
logm

)
, and

U ∈ Zn×kq , outputs a matrix E ∈ Dkm ⊂ Zm×k from the
distribution Dk,Uq,A,s. Furthermore, matricesA,U and E are
related by theAE ≡ U (mod q) formula with overwhelm-
ing probability.

2.6. Base Extension Mechanism

In subsection 2.3 we proved that a random lattice from our
family of interest can be generated together with a relatively
good (short) basis for the lattice. In this case, we say that
the lattice is under control. The following theorem shows
that we may extend this control of a lattice to an arbitrary
higher-dimensional extension, without any loss of quality in
the resulting basis.
Theorem 23. There is a deterministic polynomial-time algo-
rithm ExtBasis with the following properties: given an arbi-
trary matrixA1 ∈ Zn×m1q whose columns generate the entire
group Znq , an arbitrary basis TA1 ∈ Zm1×m1 of L⊥q (A1),
and an arbitrary A2 ∈ Zn×m2q , ExtBasis(TA1 ,A =
[A1|A2]), outputs a basis TA of L⊥q (A) ⊆ Zm1+m2 , such
that ∥T∗A∥ = ∥T∗A1∥. Moreover, the same holds even for any
given permutation of the columns of A, e.g. if columns of
A2 are both appended and prepended toA [6].

As an immediate conclusion of the last theorem we obtain
the following assertion.
Theorem 24. There is a deterministic polynomial-time al-
gorithm ExtBasis with the following properties: given an
arbitrary A2 ∈ Zn×m2q whose columns generate the en-
tire group Znq , an arbitrary basis TA2 ∈ Zm2×m2 of
L⊥q (A2), and an arbitrary A1 ∈ Zn×m1q ,A3 ∈ Zn×m3q ,
ExtBasis(TA2 ,A = [A1|A2|A3]), outputs a basis TA of
L⊥q (A) ⊆ Zm1+m2+m3 , such that ∥T∗A∥ = ∥T∗A2∥ [20].

3. Forward Security of Schemes with
Evolving Private Key

3.1. Schemes with Evolving Private Key

Forward-secure signature schemes are based on schemes
with an evolving private key, which are defined as a tuple
of PPT algorithms Π = (G ,KGen,KUpd,Sign, Vrfy) along
with a message spaceM, such that they fulfill the following
properties:
• Generation of system parameters G is a PT algorithm

which, on input of a security parameter value of 1n and
with a maximum number of time periods T , outputs the
system parameters params.
• Key generation KGen is a PPT algorithm which, on input

the system parameters params and with a maximum num-
ber of time periods T , outputs a public verification key pk
with an initial secret signing key sk0 for the initial period
t = 0.

• Key update KUpd is a PPT algorithm. It takes on input the
secret key skt for the time period t < T − 1, and outputs
the secret key skt+1 for the subsequent t+ 1.

• Signing Sign is a is a PPT algorithm which takes on input
the current secret key skt and a message m ∈ M and
outputs a signature σ.
• Verification algorithm Vrfy is a DPT algorithm that, on

input a public key pk, a messagem ∈M, the proper time
period t and a (purported) signature σ, outputs a single bit
b, where b = 1 means accepted and b = 0 means rejected.

In addition, we assume that statistical correctness holds, i.e.
that for all messages m ∈ M and periods t ∈ [T − 1]0,
if (sk0, pk) ← KGen(params, T ) and ski+1 ← KUpd(ski)
for i ∈ [t − 1]0, then Vrfypk(t,m,Signskt(m)) = 1 with
overwhelming probability.

3.2. Security Models of Schemes with Evolving Private Key

The presented security model is taken from [2]. Let A be an
adversary and assume that the system parameters have been
generated and they have been revealed to the adversary. Let
us consider the following experiment Expfu-cmaA,Π :
1) Generate params ← G (1n, T ) and (sk0, pk) ←
KGen(params, T ).

2) The adversary A is given pk and granted access to three
oracles: signing oracle Sign, key update oracle KUpd and
break in oracle Break.

3) t← 0.
4) while t < T

4.1. Sign : For current secret key skt the adversary A re-
quests signatures on as many messages as it likes (anal-
ogously to euf-cma it is denoted by ASignskt (·)(pk)).

4.2. KUpd : If t < T − 1 is the current time period, then
A requests update: t← t+ 1, skt+1 ← KUpd(skt).

4.3 If Break then break the loop while.
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Break : If A is intended to move to the forge phase,
then it launches Break. Then the experiment records
the break-in time t̄ = t and sends the current signing
key skt̄ to A. This oracle can only be queried once,
and after it has been queried, the adversary can make
no further queries to the key update or signing oracles.

5) Eventually (t⋆,m⋆, σ⋆)← A(1n, state).
6) If t⋆ < t̄ and Vrfypk (t⋆,m⋆, σ⋆) = 1 and the signing

oracle Signskt⋆ has been never queried aboutm⋆ within
the time period t⋆, then output 1. Otherwise output is 0.

We refer to such an adversary as an fu-cma-adversary. The
advantage of A in attacking the scheme Π is defined as:

Advfu-cmaΠ,n (A) = Pr[Exp
fu-cma
A,Π (1

n, T ) = 1] .

A signature scheme is called to be forward-secure if no
efficient adversary can succeed in the above game with non-
negligible probability.

Definition 25. A signature scheme with an evolving private
key Π = (G ,KGen, KUpd,Sign,Vrfy), is called to be exis-
tentially forward unforgeable under a chosen-message attack
or just forward-secure if for all efficient PPT adversaries A,
their advantageAdvfu-cmaΠ,n (A) is a negligible function of n.

4. Construction of Forward-Secure
Scheme

We start with a high-level description of the key updating
mechanism that is based on some properties of binary-trees.
Let ℓ ∈ Z1 be a fixed height of a tree. Then, the tree consists
of 2ℓ leaves and, in our interpretation, each leaf is associated
with a singular period (and a secret key).
One may see that for every node there is a unique path joining
the root with this node (in particular, a leaf). Let us adopt a
rule that for a given node, 0 is assigned to its left branch and
1 to its right branch (see Fig. 1).
This implies that each of these paths is uniquely represented
by a bit-string (tℓ−1tℓ−2 · · · th)2, where h ∈ [ℓ]0 is the node
height. Furthermore, this bit-string also uniquely indicates
the node itself and, thus, we associate it with this node as
its identifier. In particular, for a time period t ∈ [2ℓ-1]0, the
bit-string (tℓ−1tℓ−2 · · · t0)2 expresses the unique path from
the root to the leaf t, and simultaneously identifies t as its
binary representation.
Let A(tj)j , tj ∈ [1]0 and j ∈ [ℓ-1]0 be cho-
sen uniformly and independently form Zn×mq , and let
(Aℓ,TAℓ)← TrapGen(q, n). We define a node correspond-
ing to the identifier (tℓ-1 · · · th)2 as Node(tℓ-1 · · · th)2 =
[Aℓ|A

(tℓ−1)
ℓ−1 | · · · |A

(th)
h ]. If, additionally, t ∈ [2ℓ-1]0 and

(tℓ-1 · · · t0)2 is its binary representation, then we set
Leaf(t) = Node(tℓ-1 · · · t0)2.
Note that if P is the path connecting the root
with a Leaf(t = (tℓ−1 · · · th1 · · · th2 · · · t0)2), and
Node(tℓ−1 · · · th1)2, Node(tℓ-1 · · · th2)2 ∈ P , then

the following relation holds Node(tℓ-1 · · · th2)2 =[
Node(tℓ-1 · · · th1)2|A

(th1−1)
h1−1 | · · · |A

(th2 )
h2

]
.

As the matricesA(tj)j ,Aℓ are assumed to be publicly known,
anyone can create an arbitrary node. Further, note that any
node Node(tℓ-1 · · · th)2 is from Zn×m·(ℓ−h+1)q and, thus, it
can be viewed as a parity matrix which generates a q-ary
lattice L⊥q (Node(tℓ-1 · · · th)2) with full-rank m · (ℓ − h +
1)×m · (ℓ− h+ 1). The secret related with this lattice is
its short basis, i.e. a trapdoor TNode(tℓ-1···th)2 , which is also a
secret associated with the nodeNode(tℓ-1 · · · th)2. Obviously,
it is computationally hard to derive a trapdoor from a given
node.
However, it turns out that knowledge of the root’s secret, along
with inherent properties of the binary-tree structure, increases
computational efficiency. The role of the tree’s root is played
by the matrix Aℓ, whereas the associated secret is its trapdoor
TAℓ being also a secret master-key for the scheme.
In order to get a secret related to a node Node(tℓ−1),
we use TNode(tℓ−1) ← ExtBasis

(
TAℓ , [Aℓ|A

(tℓ−1)
ℓ−1 ]

)
and further, if TNode(tℓ-1···th)2 is a secret as-
sociated with Node(tℓ-1 · · · th)2 then to de-
rive a secret for Node(tℓ-1 · · · th+1)2, we
do the following: TNode(tℓ-1···th+1)2 ←

ExtBasis
(
TNode(tℓ-1···th)2 ,

[
Node(tℓ-1 · · · th)2|A

(th−1)
h−1

])
.

The same idea can be iteratively applied to get this
trapdoor directly from the root TNode(tℓ-1···th)2 ←
ExtBasis

(
TAℓ ,

[
Aℓ|A

(tℓ−1)
ℓ−1 | · · · |A

(th)
h

])
. The above im-

plies that if there is a path connecting the root with a leaf,
which contains Node(tℓ-1 · · · th1)2 and Node(tℓ-1 · · · th2)2,
where h1 > h2, and if there is given TNode(tℓ-1···th1 )2

, then
we can efficiently compute TNode(tℓ-1···th2 )2

, by using

ExtBasis
(
TNode(tℓ-1···th1 )2

,
[
Node(tℓ-1 · · · th1)2|A

(th1−1)
h1−1 |

· · · |A(th2 )h2

])
.

0

0

0 0 0 0

0

1

1

1

1

111

Node(010)

Node(0)

mk

Node (01)

Fig. 1. Visualization of some basic ideas standing behind the scheme.

In addition, each secret key must consist of two components,
one to make signatures, and one consisting of the minimal
set of roots that allows to compute leaves associated with all
future periods (see Fig. 2). In this proposal, these nodes are
stored in a stack whose height equals ℓ at most, and the stack
itself is filled in by using the StackFilling function defined
by Algorithm 2 (see subsection 4.2).
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4.1. Generation of System Parameters

Let n be a value of the security parameter. An efficient and
polynomial-time system parameters generator algorithm G ,
on input n and a binary tree height ℓ, outputs params =
(q,m, ηmin, k, r, T, h,H), where:
• q = poly(n), q  3 is a prime,
• m  ⌈6n lg q⌉,
• ηmin is a required minimal entropy of the hash function h,

• k ∈ Z>0 and r ∈ [k]0 are such that 2ηmin ¬
r∑
i=0

(
k
i

)
, as it

guarantees that H(h)  ηmin,
• h : Znq × {0, 1}n → Bkh = {w ∈ Rk | wi ∈
{−1, 0, 1}, ∥w∥ ¬

√
r} is a collision-resistant hash func-

tion,
• H : {0, 1}∗ × {0, 1}n → {0, 1}n is a hash function (not

necessary satisfying any crystallographic requirements),
• T = 2ℓ is the number of periods.

4.2. Key Generation

Before we describe the initial key’s generation process, a very
useful algorithm – StackFilling – is presented, allowing to
obtain a new secret key along with a minimal set of trapdoors
required to get keys for the consecutive periods. This set is
denoted by Stack and, technically speaking, it is a stack that
stores pairs (T, h), where h is the height of a trapdoor T on
the binary tree. Note that h varies in the range of 0 to ℓ and,
in particular, ℓ is the height of the root.
Algorithm 2. StackFilling
Input: T , Stack, t = tℓ−1 · · · t0
Output: Stack, scp
1. (T, h)← Stack.pop() ▷ T = TNode(tℓ-1···th)2 ;

h is the height of T
2. h← h− 1 ▷ After reindexing, T = TNode(tℓ-1···th+1)2
3. While h  0 then
4. tmp← ExtBasis

(
TNode(tℓ-1···th+1)2 ,[

Node(tℓ-1 · · · th+1)2|A
(1)
h

])
▷ i.e. tmp = TNode(tℓ−1···th+11)2

5. Stack.push (tmp, h)
6. T← ExtBasis

(
TNode(tℓ-1···th+1)2 ,[

Node(tℓ-1 · · · th+1)2|A
(0)
h

])
7. h← h− 1
8. End While
9. scp← T
With this ingredient in place, the KGen algorithm could be
described, with security parameter n acting as its input. With
a maximum number of time periods T , it outputs an initial
secret key sk0 along with a long-term public key pk. Once a set
of parameters params has been generated, then the formal
definition of KGen is (Fig. 3):
1) Choose a matrixU uniformly at random from Zn×kq ,

2) Choose matricesA(0)ℓ−1,A
(1)
ℓ−1,A

(0)
ℓ−2,A

(1)
ℓ−2, . . .A

(0)
0 ,A

(1)
0

uniformly at random from Zn×mq ,

0

0

0 0 0 0

0

1

1

1

1

111

Node(011)2

Node(1)2

mk

Stack

On stack

On stack

Sign. comp.
for period t=2

Fig. 2. Content of a secure key associated with a period t.

3) Launch the TrapGen(q, n) algorithm to get (Aℓ,TAℓ),
where Aℓ ∈ Zn×mq is a matrix and TAℓ ∈ Zm×mq its
trapdoor,

4) Fix a tiny ε ∈ R>0. Next, choose s0 ∈ R>0 such that
s0  ∥T∗A∥ · (lg(ℓ+ 1)m)

1
2+ε, and update params ←

(params, s0); s0 is a parameters for discrete Gaussian
distribution,

5) Create an empty stack Stack, and next invoke
Stack.push (TAℓ , ℓ) in order to initialize the stack with
(TAℓ , ℓ),

6) Launch the StackFilling (params, Stack, t = 0) algo-
rithm to be given (scp,Stack) (after making this step,
Stack consists of ℓ elements),

7) KGen outputs the initial secret key sk0 =
(scp,Stack, t = 0) and the public key pk ←
(Aℓ,A

(0)
ℓ−1,A

(1)
ℓ−1,A

(0)
ℓ−2,A

(1)
ℓ−2, . . .A

(0)
0 ,A

(1)
0 ,U).

4.3. Key Update

KUpd takes as an input the secret key skt associated with
t < T − 1, and generates a secret key for the next period
t+ 1. This algorithm works as follows:
1) Parse skt = (scp,Stack, t),
2) Update t← t+ 1, after this step the variable t stores a

value of the new time period,
3) If t ≡ 1 (mod 2), then the following steps are conducted:

3.1 (T, h)← Stack.pop() and scp← T,
3.2 The secret key for the new period is of the form
skt = (scp,Stack, t),

4) If t ≡ 0 (mod 2), then the following steps are performed:
4.1 Run (scp,Stack) ←
StackFilling (params,Stack, t),

0

0

0 0 0 0

0

1

1

1

1

111

Node(001)2

Node(01)2
Node(1)2

mk

Stack

On stack

On stack

On stack

scp

Fig. 3. The initial secret key sk0 = (scp, Stack, t = 0) and output
from StackFilling.
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4.2 The secret key for the new period is of the form
skt = (scp,Stack, t).

4.4. Signing

The signing algorithm Sign uses, as input, the secret key skt
associated with a period t < T and message msg ∈M, and
outputs a value of the signature. As explained in the previous
section, secret keys consist of three components, scp, Stack,
and t. All of them plays a different role in the process of
signing a message. Namely, Stack stores minimal amount of
data required to update the secret key to the next period, while
the signing component is needed only for making signatures
within a current period.
To sign a messagemsg ∈M using skt, the signing algorithm
Sign performs the following steps:
1) Construct matrix At =

[
Aℓ|A

(tℓ−1)
ℓ−1 |A

(tℓ−2)
ℓ−2 | · · ·

|A(t0)0
]
∈ Zn×(ℓ+1)mq associated with period t. Note that

At = Leaf(t), and scp ∈ skt has the form of scp = TAt ,
2) Run k-SampleISIS, with its input being a tuple
(At, scp, s0,U), in order to get a secret ephemeral key
Et ∈ Dk(ℓ+1)m ⊂ Z(ℓ+1)m×k, such that At · Et = U
(mod q),

3) Set α1, α2  12, next choose

s1  max
{
α1
√
r, (lg k)

1
2+ε
}
,

s2  max
{
α2s0(1 + α1

√
k)
√
(ℓ+ 1)mr,(
lg ((ℓ+ 1)m)

) 1
2+ε
}
.

4) Choose b← Dks1 , a← D
(ℓ+1)m
s2 , and r $← {0, 1}n.

5) Compute x1 ← Ata+Ub (mod q), x2 ← H(msg, r),
and derive σ1 ← h(x1,x2).

6) Set σ′1 ← σ1 + b and go to the next step (i.e. output σ′1)

with probability min
(

Dks1 (σ
′
1)

M1Dkσ1,s1 (σ
′
1)
, 1
)

; otherwise Sign

is restarted.
7) Set σ2 ← Etσ′1 + a and output σ2 with probability

min

(
D(ℓ+1)ms2

(σ2)

M2D(ℓ+1)mEtσ
′
1
,s2
(σ2)
, 1

)
; otherwise Sign is restarted.

8) If ∥σ2∥ ¬ s2
√
(ℓ+ 1)m then output σ = (σ1,σ2, r).

Remark 26. The explanation why the estimates for s1 and s2
are as presented in point 3) is given in subsection 4.6.

4.5. Verification

The verification algorithm Vrfy takes as input t, pk,msg, and
σ, and outputs one out of two values: accepted or rejected.
1) Construct the matrix At =

[
Aℓ|A

(tℓ−1)
ℓ−1 |A

(tℓ−2)
ℓ−2 | · · ·

∥A(t0)0
]
∈ Zn×(ℓ+1)mq associated with period t.

2) Set x̂1 ← Atσ2 −Uσ1 (mod q).
3) If σ1 = h

(
x̂1,H(msg,d)

)
and ∥σ2∥ ¬ s2

√
(ℓ+ 1)m,

then output accepted , otherwise return rejected.

4.6. Correctness

In order to evaluate the correctness of the scheme, let us
suppose that σ = (σ1,σ2, r) is a signature of msg for a
period t. Recall that σ1 = h(x1,x2), where x1 = Ata +
Ub (mod q), x2 = H(msg,d), and that σ2 = Etσ′1 + a
(mod q), where σ′1 = σ1 + b (mod q). Then we have:

Atσ2 −Uσ1 = At(Etσ′1 + a) = Ub+Ata.

This means that:

h
(
Atσ2 −Uσ1 (mod q),H(msg, r)

)
= h
(
Ata+Ub (mod q),H(msg, r)

)
= h(x1,x2) = σ1.

Although vectors σ′1 and σ2 come from the distributions
Dkσ1,s1 and D(ℓ+1)mEtσ′1,s2

, respectively, the target distributions

for them that we will be aiming for are Dks1 and D(ℓ+1)ms2 .
We will apply the rejection sampling, Theorem 9 shows
that for an appropriately-chosen values of M and s (steps
6–7), of Sign will output values whose probabilities equal
approximately 1/M and the statistical distance between the
outputs is statistically close to the distribution in which σ′1
and σ2 are chosen form Dks1 and D(ℓ+1)ms2 , respectively.
Due to this fact and following Lemma 3, the flowing estima-
tion ∥σ2∥ ¬ s2

√
(ℓ+ 1)m is obtained, with overwhelming

probability.
Moreover, according to the assumption, s1, s2  ∥T∗A∥ ·
ω
(√
logm

)
. Therefore, there are α1, α2 ∈ R>0, such that

s1 = α1 · ∥σ1∥ and s2 = α2 · ∥Etσ′1∥. By Lemma 8 the
following conditions hold:

Dks1(x)
M1Dkσ1,s1(x)

<
1
M1
· e
24α1+1

2α2
1

D(ℓ+1)ms2 (x)

M2D(ℓ+1)mEtσ′1,s2
(x)
<
1
M2
· e
24α2+1

2α2
2 ,

with probabilities of at least 1− 2−100. Due to the fact that
Theorem 9 requires:

Dks1(x)
M1Dkσ1,s1(x)

¬ 1 and
D(ℓ+1)ms2 (x)

M2D(ℓ+1)mEtσ′1,s2
(x)
¬ 1 ,

we conclude that:

M1  e
24α1+1

2α2
1 andM2  e

24α2+1

2α2
2 .

It is easily seen that the optimal choice is:

M1 ≈ exp
(
24α1+1
2α21

)
andM2 ≈ exp

(
24α2+1
2α22

)
.

It is instructive to justify the origin and accuracy of the es-
timates of Gaussian parameters s1, s2. Since the parame-
ters s1, s2 are associated with probability distributions Dks1
and D(ℓ+1)ms2 , respectively, from Theorem 4, in order to use
SampleD, the following conditions ought to be satisfied:
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s1  ∥1k∥(lg k)
1
2+ε = (lg k)

1
2+ε; (1)

s2  ∥1(ℓ+1)m∥
(
lg ((ℓ+ 1)m)

) 1
2+ε =

(
lg ((ℓ+ 1)m)

) 1
2+ε.
(2)

The use of identity matrices 1 results from the fact that we
consider lattices Zk and Z(ℓ+1)m with their respective (short)
canonical bases.
On the other hand, b and Et are taken from distributions Dks1
and Dk,Uq,At,s, respectively. Therefore, from Theorem 4, we get
with overwhelming probability, that:

∥b∥ ¬ s1
√
k and ∥Et∥ ¬ s0

√
(ℓ+ 1)m∥. (3)

Furthermore:

∥σ1∥ = ∥h(x1,x2)∥ ¬
√
r . (4)

The estimates (3) and (4) imply that:

∥Etσ′1∥ ¬ ∥Et ∥ · (∥σ1∥+ ∥b∥)

¬ s0
(√
r + s1

√
k
)√
(ℓ+ 1)m . (5)

According to (4) and Lemma 8, the following condition must
hold:

s1 α1 · (the best known upper bound of {∥σ1∥}) (6)
=α1
√
r .

Similarly, conditions (5) – (6) and Lemma 8 imply:

s2  α2 · (the best known upper bound of {∥Etσ′1∥})

= α2s0
(√
r + s1

√
k
)√
(ℓ+ 1)m (7)

 α2s0(1 + α1
√
k)
√
(ℓ+ 1)mr .

In consequence, by combining (1) with (6) and (2) with (7)
the postulated estimates are obtained:

5. Security Proof

Here, we show that the considered key-evolving digital signa-
ture scheme is secure in terms of the forward-security model
defined in Section 3. To this end, we prove that the ability
to obtain a valid forgery leads us to the ability to construct a
non-trivial solution to SIS problem. The proof itself exploits
consequences of the general forking lemma and, due to this
fact, it is conducted in the random oracle model.
Theorem 27. Let n be a value of a security parameter, ℓ ∈
Z>0, and Π = (G ,KGen, KUpd,Sign,Vrfy) be a scheme
considered in Section 4 with the associated message space
M = {0, 1}∗. If A is a fu-cma-adversary attacking Π in the
random oracle model, which makes at most qh queries to
the random oracle, then for β = (2s2 + 2s0

√
r)
√
(ℓ+ 1)m,

there exists a PPT algorithm B attacking SISq,n,(1+2ℓ)m,β

problem with advantage:

AdvSISn (B) 
1

qh · T 2
·
(
Advfu-cmaΠ,n (A)−

1
#(Bkh)

)
·
(
Advfu-cmaΠ,n (A)−

qh + 1
#(Bkh)

)
·
(
1
2
− 1
2101

)
,

(8)

and a running time of O(time(A)).

Proof. Assume that A is an adversary attacking Π, and
suppose that parameters params of Π have been generat-
ed by G (1n, ℓ) as described in subsection 4.1. We will
build an algorithm B which uses A as a subroutine and
which is aimed to attack SISq,n,(1+2ℓ)m,β problem, where
β = (2s2 + 2s0

√
r)
√
(ℓ+ 1)m. To this end, let:

S =
[
Sℓ | S(0)ℓ−1 | S

(1)
ℓ−1 | · · · |S

(0)
0 | S

(1)
0

]
∈ Zn×(1+2ℓ)mq ,

be a random matrix given to B. According to the model and
Definition 12, the challenge here is to find x ∈ Z(1+2ℓ)m as:

S · x ≡ 0 (mod q), ∥x∥ ¬ (2s2 + 2s0
√
r)
√
(ℓ+ 1)m .

Setup. The simulator sets the previously generated params
(see also subsection 4.1) as the parameters. After this step the
adversary B chooses a time frame t∗ according to the uniform
distribution, i.e. t∗ $←

[
T − 1

]
.

A collision-resistant hash function h ∈ params is modeled as
a random oracle andA is able to send at most q := qh queries
to this oracle. In order to appropriately simulate the oracle’s
random behavior, vectorsw1,w2, . . . ,wqh are chosen uni-
formly at random from {w ∈ Rk | wi ∈ {−1, 0, 1}, ∥w∥ ¬√
r}. Next, there an ordered setWh = {w1,w2, . . . ,wqh},

is designed, where the ordering relation “≼” is defined as
follow wi ≼ wj if i < j.
Let t∗ = (t∗ℓ−1, t∗ℓ−2, . . . , t∗0)2 be a binary representation of
t∗. B sets the public key, such that:

pk←
(
Aℓ,A

(b=0)
ℓ−1 ,A

(b=1)
ℓ−1 ,A

(b=0)
ℓ−2 ,A

(b=1)
ℓ−2 , . . . ,A

(b=0)
0 ,

A(b=1)0 ,U
)
,

in the manner shown below:
• Aℓ = Sℓ;
and for every i ∈ [ℓ− 1]0:
• if b = t∗i thenA(b)i = S

(t∗i )
i ,

• else, i.e. if b ̸= t∗i then the algorithm TrapGen(q, n,m) is
run to getA(b)i ∈ Zn×mq along with its trapdoor TA(b)

i

∈
Zm×m.

Having done this, B puts
Tmax := maxi∈[ℓ−1]0

{
∥T∗
A(b)
i

∥ | b ̸= t∗i
}

.

Remark 28. Although matricesAi is generated by TrapGen
are not truly random, Theorem 11 shows that they are (m ·
q−n/6)-uniform over Zn×mq . According to the assumed form
of m (subsection 4.1), we get m · q−n/6 → 0 as n → 0,
and this convergence is very fast. Moreover, note that for any
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c ∈ Z>0, we have (ncm) · q−n/6 → 0 as n→ 0. Therefore,
there exists a positive n0, such that (ncm) · q−n/6 < 1 and
equivalentlym · q−n/6 < n−c, for n > n0. This means that
m · q−n/6 = negl(n), i.e. the matricesAi are chosen from a
distribution, whose statistical distance to the being uniform is
negligible.

Further, B chooses ε ∈ R>0. The best estimation is obtained
when ε is a tiny number and puts d = s0

√
(1 + ℓ)m, where

a Gaussian distribution parameter s0 is chosen in such a way,
that the following two conditions hold:

– s0  Tmax · (lg((ℓ+ 1)m))
1
2+ε (see Lemma 7, Theorem

4 and, for further application, Theorem 22),
– (ℓ+ 1)m > 24 + (n lg q)/lg (2d+ 1) (see Lemma 17).
Further, it launches k-times the SampleD algorithm with the
canonical basis {|i⟩}m−1i=0 , the Gaussian parameter s0 and
c = 0 (see Theorem 4) being its input values in order to get
E∗ ← D(1+ℓ)m×ks0 . Note that:

∥E∗∥ = max {∥e∗,1∥, . . . , ∥e∗,k∥} ¬ d ,

with overwhelming probability, by Lemma 3. After
this step, B sets U = At∗ · E∗, where At∗ =

[Aℓ|A
(t∗ℓ−1)
ℓ−1 |A

(t∗ℓ−2)
ℓ−2 | · · · |A

(t∗0)
0 ] ∈ Zn×(ℓ+1)mq .

Remark 29. SinceAt∗ is a representative of a family of one-
way PSFs (subsection 2.5) and E∗ ← D(1+ℓ)m×ks , due to
Lemma 7, the distribution of U = At∗ · E∗ is statistically
close to the uniform distribution over Zn×kq .

Finally,B updates params← (params, s0) and sends params
along with pk to the adversary A.

h-Query. In this phase, adversary A makes hash queries. B
prepares a hash list L to record all queries and responses as
follows:
1) At the beginning, list L is empty,
2) Let (x1,x2) ∈ Znq × {0, 1}n be a k-th query to h:

a) If A has already asked about (x1,x2) then list L
consists of a pair

(
(x1,x2), h(x1,x2)

)
and, in this

case, B outputs h(x1,x2),
b) Otherwise, the first element w ∈ Wh which has

not yet been used is taken (i.e. if w′ ∈ Wh is
such that w′ ≼ w, then w′ has been already used),
a pair ((x1,x2),w) is appended to the list L and
h(x1,x2) = w is given as the output.

Queries. According to the security model given by
Expfu-cmaA,Π (subsection 3.2), adversary A has access to three
oracles: signing oracle, key update oracle, and break in oracle.
Key update KUpd. Let t ̸= t∗, then there exists at least one
i ∈ [ℓ] such that ti ̸= t∗i . Set i0 := max{i ∈ [ℓ− 1]0 | ti ̸=
t∗i }. If only i0 ̸= ℓ, then it is obvious that ti = t∗i for every
i > i0. Since the adversary B knows A(tio )i0

∈ Zn×mq and
its associated trapdoor T

A
(ti0

)

i0

∈ Zm×m, it uses ExtBasis to

get:

TAt ← ExtBasis
(
T
A
(ti0

)

i0

,
[
Aℓ|A

(t∗ℓ−1)
ℓ−1 |A

(t∗ℓ−2)
ℓ−2 | · · ·

|A
(t∗i0−1)
i0−1 |A

(ti0 )
i0
| · · · |A(t0)0

])
.

Signing Sign. In order to simulate a signature on a given
message msg, B acts depending on the value of a time frame.
• If t ̸= t∗, then B runs k-SampleISIS that takes as input

a tuple (TAt ,At, s0,U) and outputs an ephemeral key
Et ∈ Dk(ℓ+1)m from the distribution Dk,Uq,A,s. Having done
this, a signature is affixed tomsg as described in subsection
4.4,

• If t = t∗, then B assigns Et∗ ← E∗ .
Remark 30. It must be emphasized that if t = t∗, then
Et∗ ← E∗ is not generated by k-SampleISIS, which rises a
query whether B properly simulates the signing algorithm of
the scheme.
Fortunately, due to the use of rejection sampling, the dis-
tribution of σ2 is statistically close to D(ℓ+1)ms2 and, in con-
sequence, σ2 is independent of E∗. Therefore, simulation
conducted by A, as for choosing ephemeral keys E, is indis-
tinguishable from any real instantiation of Sign.

Break in Break. If the adversary A runs the break-in oracle,
the current time period t̄ is saved and the adversary is given the
proper secret key skt̄ (associated with t̄). This key consists of
two components, namely scp and Stack. In order to generate
scp, B proceeds in the same way as in KUpd.
When it comes to the Stack component, B launches
StackFillingID (Algorithm 3) which, based on an empty
stackID stack and t̄, returns (filled in stack) stackID con-
sisting of the identifiers of nodes from Stack.

Algorithm 3. StackFillingID
Input: stackID, t = (tℓ−1 · · · t0)2
Output: stackID
1: (nodeID, h)← stackID.pop() ▷ nodeID = tℓ−1 · · · th;
2: h← h− 1 ▷ After reindexing, nodeID = tℓ−1 · · · th+1
3: While h  0 then
4: tmp← tℓ−1 · · · th+11 ▷ i.e. th = 1
5: stackID.push ((tmp, h))
6: End While

After that B is able to derive nodes corresponding to these
identifiers. At first, it takes an identifier (tℓ-1 · · · th)2 ∈
StackFillingID and indicates i0 := max{i ∈ [ℓ− 1]0 | ti ̸=
t∗i }. Such i0 exists, since there is not node in Stack that lies
on the branch linking the root with Leaf(t∗). B knows a pair(
A(tio )i0

,T
A
(ti0

)

i0

)
, hence it runs ExtBasis in order to obtain:

TNode(tℓ-1···th)2 ← ExtBasis
(
T
A
(ti0

)

i0

, [Node(tℓ-1 · · · th)2]
)
,

where Node(tℓ-1 · · · th)2 has the following form
Aℓ|A

(t∗ℓ−1)
ℓ−1 | · · · |A

(t∗i0−1)
i0−1 |A

(ti0 )
i0
| · · · |A(th)h .
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Forgery. By Remarks 28, 29, and 30,B is statistically indistin-
guishable from a real challenger in the experimentExpfu-cmaA,Π ,
for the considered scheme denoted herein by Π. So for A,
the interaction with B is the same as while conducting the
real experiment. Therefore, the adversary A eventually out-
puts a forgery for a time-frame t̂∗. In the case that t̂∗ ̸= t∗,
B aborts. Otherwise, B accepts the forgery, which is of the
form (t∗,msg∗, σ∗), where σ∗ = (σ∗1,σ∗2, r∗) and
• ∥σ∗2∥ ¬ s2

√
(ℓ+ 1)m,

• σ∗1 = h (At∗σ∗2 −Uσ∗1 (mod q),H(msg∗, r∗)),

• At∗ = [Aℓ|A
(t∗ℓ−1)
ℓ−1 |A

(t∗ℓ−2)
ℓ−2 | · · · |A

(t∗0)
0 ] ∈ Zn×(ℓ+1)mq .

Let wi ∈ Wh be such that σ∗1 = wi. Recall that answers
to the successive h-queries are taken successively formWh
and in accordance with the ”≼” relation. This means that just
before A sent the h-query for a value of σ∗1, all of the vectors
wj ≼ wi had already been used. In order to take advantage
of the general forking lemma (Lemma 1), B picks vectors
ŵi, ŵi+1, . . . , ŵqh independently and uniformly at random
from Bkh = {w ∈ Rk | wi ∈ {−1, 0, 1}, ∥w∥ ¬

√
r} and

modifiesWh in such a way that the vectorsw1,w2, . . . ,wi−1
are kept, whereas q−i+1 of the remaining vectors are replaced
by the newly-generated vectors ŵ’s.
After this update, the set of answers to h-queries is of the
following form Ŵh = {w1, . . . ,wi−1, ŵi, ŵi+1, . . . , ŵqh}.
Further, B runs the subroutine A again with the same
parameters (params) and the same random tape ρ as in
the first run, but it uses Ŵh instead of Wh to answer
A’s h-queries. By Lemma 1, A outputs a new forgery(
t̂∗, m̂sg∗, σ̂∗ = (σ̂∗1, σ̂

∗
2, r̂∗)

)
using the same h-queries. If

t̂∗ ̸= t∗, B aborts. Otherwise B accepts the forgery and then
this means that ∥σ̂∗2∥ ¬ s2

√
(ℓ+ 1)m and ŵi = σ̂∗1 =

h
(
At∗σ̂∗2 −Uσ̂∗1 (mod q),H(m̂sg∗, r̂∗)

)
. In addition, the

probability P1 that satisfies ŵi ̸= wi is:

P1 
(
τ − 1
#(Bkh)

)
·
(
τ − 1/#(Bkh)

qh
− 1
#(Bkh)

)
, (9)

where τ = Advfu-cmaΠ,n (A).
Before asking the i-th h-query,B uses the same inputs, random
tape ρ and w1, . . . ,wi−1 to generate A’s inputs, random
tape and responses to h-queries. This implies that the two
executions of A are identical up to the i-th h-query which, in
turn means that the arguments of both i-th h-queries must be
the same. Therefore:

At∗σ∗2 −Uσ∗1 ≡ At∗σ̂∗2 −Uσ̂∗1 (mod q) and

H(msg∗, r∗) = H(m̂sg∗, r̂∗) .

This implies that:

0 ≡ At∗(σ∗2 − σ̂∗2)−U(σ∗1 − σ̂∗1)

≡ At∗
(
σ∗2 − σ̂∗2 −E∗(σ∗1 − σ̂∗1)

)
(mod q) . (10)

Now, B sets x0 = σ∗2 − σ̂∗2 − E∗(σ∗1 − σ̂∗1), then ∥x0∥ ¬
(2s2 + 2s0

√
r)
√
(ℓ+ 1)m. Therefore by (10), if x0 ̸= 0

then it is a solution of the following SISq,n,(1+ℓ)m,β problem

At∗x0 ≡ 0 (mod q) with ∥x0∥ ¬ β .

This means that the probability that σ∗2 − σ̂∗2 − E∗(σ∗1 −
σ̂∗1) ̸= 0 still remains to be estimated. To this end, let
j0 = min

{
j ∈ [k] | σ∗1,j ̸= σ̂∗1,j

}
, hence the existence of

this index is a consequence of the condition σ∗1 = wi ̸=
ŵi = σ̂∗1. Let e = E∗[j0]. Then, since d  9 and (ℓ +
1)m > 24 + (n lg q)/lg (2d+ 1), Lemma 17 concludes that
the probability of existence of another e′ ∈ (−[d] ∪ [d]0)m
such that e′ ̸= e and At∗e′ = At∗e is at least 1 − 2−101.
Having done this, matrix E′∗ may be created, such that all
its columns, except for the column j0, are the same as E∗,
i.e. E′∗ = {e′j}, where e′j = E∗[j], for j ̸= j0 and e′j0 = e

′.
Now, one may see that with this definition of E′∗ if:

σ∗2 − σ̂∗2 −E∗(σ∗1 − σ̂∗1) = 0 , (11)

then

σ∗2 − σ̂∗2 −E′∗(σ∗1 − σ̂∗1) ̸= 0 . (12)

In other words, we have showed that for every matrix E∗
satisfying (11), with probability at least 1− 2−101, it holds
that there exists an another matrix E′∗ which differs form E∗
only in column j0, and such that (12) is satisfied and that
At∗E∗ = At∗E′∗. These, in turn, mean that the likelihood of
choosing between E∗ and E′∗ is at least 1/2. Obviously, both
these matrices are statistically indistinguishable to adversary
A.
To recapitulate, the probability P2 that x0 ̸= 0 satisfies the
following condition:

P2 
1
2
− 1
2101
. (13)

Having obtained x0, B creates a vector:

x =
[
x(1+2ℓ)m−1, . . . , x0

]
∈ Z(1+2ℓ)mq ,

in the following way:

xj =


x0,j for 2ℓm ¬ j < (1 + 2ℓ)m,
x0,j for j < 2ℓm and ⌊ jm⌋ (mod 2) = 1− t∗⌊ j2m ⌋

,

0 elsewhere.

Eventually, B outputs vector x. Note that:

S · x = At∗x0 ≡ 0 (mod q) ,

where ∥x0∥ ¬ β = (2s2 + 2s0
√
r)
√
(ℓ+ 1)m. This leads

to the conclusion that the probability of getting a solution to
SISq,n,(1+2ℓ)m,β is the same as the probability of an event
that x ̸= 0.
From inequalities (9), (13) and the fact that the probability of
B not aborting is exactly equal to 1/T 2, we have:
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Pr [x ̸= 0]  1
T 2
·
(
τ − 1/#(Bkh)

qh
− 1
#(Bkh)

)
·
(
τ − 1
#(Bkh)

)
·
(
1
2
− 1
2101

)
,

where τ = Advfu-cmaΠ,n (A). This finishes the proof.

Remark 31. It is easy to see that the left-hand
side of the inequality (8) can be approximated by(
Advfu-cmaΠ,n (A)

)2 /
2qhT 2. This shows that the wording of

Theorem 27 can be reformulated in such a way that if A is a
fu-cma-adversary attacking Π in the random oracle model,
which makes at most qh queries to the random oracle, then
there exists a PPT algorithm B attacking SISq,n,(1+2ℓ)m,β
problem with the following advantage:

AdvSISn (B) ≈
1
2qhT 2

·
(
Advfu-cmaΠ,n (A)

)2
.

6. Parameters

In Table 1 summarizes the parameters of the proposed
forward-secure digital signature scheme. The three inde-
pendent values n, k, q need to be chosen in such a way to
guarantee that the SIS problem is computationally infeasi-
ble. The basic idea of solving SIS problem is to define a
random q-ary lattice L⊥q (A) and use lattice reduction algo-
rithms to find short vectors in this lattice. Paper [21] shows
that the length of the vector obtained by running the best
known algorithms on a randomm-dimensional q-ary lattice
L⊥q (A) is close to min

{
q,
(
det
(
L⊥q (A)

)1/m · δm)} =
min

{
q, qn/m · δm

}
, where the equality holds with over-

whelming probability. Parameter δ, called a Hermite factor,
depends on the quality of the lattice-reduction algorithm be-
ing used. It is conjectured in [22] that δ = 1.007 may be
outside our reach for the foreseeable future.
It is worth noticing that although article [22] was published
in 2011, the research still seems to be valid.
Based on the results from [22], Micciancio and Regev ob-
served, in [23], that since 22·

√
n lg q lg δ is the minimum of a

functionm 7→ qn/m · δm form =
√
n lg q/ lg δ, lattice re-

duction algorithms can output the shortest vectors of L⊥q (A)
when m ≈

√
n lg q/ lg δ. For lower m, the lattice is too

sparse and does not contain short enough vectors. For larg-
er m values, the high dimension prevents lattice reduction
algorithms from finding short vectors.
To sum up, the authors concluded that the length of the
shortest vector one can find in L⊥q (A) for a random A ∈
Zn×mq using lattice reduction algorithms is of length at least
min

{
q, 22·

√
n lg q lg δ

}
.

We wish to emphasize that the s0 depends on T∗Aℓ and it is
chosen after getting (Aℓ,TAℓ)← TrapGen(q, n). As far as
parameters s1 and s2 are concerned, two options are available.

Tab. 1. Parameters of the proposed forward secure signature scheme.

Param. Definition

n Security parameter value

q Prime number greater than or equal to 3

ℓ Number of levels in a binary tree, ℓ ∈ Z>0

T Number of periods (leaves in a binary tree), T = 2ℓ

ηmin Min. entropy of the hash function (random oracle) h

k, r k ∈ Z>0, r ∈ [k]0,
r∑
i=0

(
k
i

)
 2ηmin

α1, α2 Real numbers greater than or equal to 12

Tmax maxi∈[ℓ−1]0{∥T
∗
A(b)
i

∥ | b ̸= t∗i }

ε Tiny positive real number

s0 At least Tmax · (lg((ℓ+ 1)m))
1
2+ε

s1 At leastmax
{
α1
√
r, (lg k)

1
2+ε
}

s2

At leastmax
{
α2s0(1 + α1

√
k)
√
(ℓ+ 1)mr

· (lg ((ℓ+ 1)m))
1
2+ε
}

d s0
√
(1 + ℓ)m

m max
{
⌈6n lg q⌉ ,

⌈
1
ℓ+1 ·

(
24 + (n lg q)

lg (2d+1)

)⌉}
β (2s2 + 2s0

√
r)
√
(ℓ+ 1)m

M1,M2 M1 =M2 = exp
(
24α1+1
2α21

)

They may either be set together with s0, or they may play the
role of one-time parameters and be renewed while creating
a new signature. The same remark applies to a parameter d
which depends on s0.

This can be a bit confusing, since due to the definition
of m, a value of d ought to be known in advance, be-
fore setting the value of m. To be more precise, in addi-
tion to the primary assumption concerning m, according
to which it must be at least ⌈6n lg q⌉, Lemma 17 enforces
m >

⌈
1
ℓ+1 ·

(
24 + (n lg q)

lg (2d+1)

)⌉
.

However, the left-hand side of the latter condition can exceed
the value of ⌈6n lg q⌉ only for very small n, q and d, meaning
that, in real instances of the scheme, we always have that
max

{
⌈6n lg q⌉ ,

⌈
1
ℓ+1 ·

(
24 + (n lg q)

lg (2d+1)

)⌉}
= ⌈6n lg q⌉.

Therefore, the dependence of m on d is only of theoreti-
cal importance and it can be neglected while determining
a set of parameters.
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