
Increasing Parallelism in
Forward-backward Distributed Algorithm

for Finding Strongly Connected
Components of Directed Graphs

Dominik Ryżko

Warsaw University of Technology, Warsaw, Poland

https://doi.org/10.26636/jtit.2024.3.1693

Abstract The paper proposes a modification of the existing
distributed forward-backward algorithm for finding strongly
connected components in directed graphs. The modification
aims at improving the parallelism of the algorithm by increasing
the branching factor while dividing the workload. Instead of
randomly picking the pivot vertex, a heuristic technique is used
which allows more sub-tasks to be generated, on average, for the
subsequent step of the algorithm. The work describes suitable
algorithm modifications and presents empirical results, proving
suitability of the approach in question.

Keywords distributed computation, graph algorithms, strongly
connected components

1. Introduction

Directed graphs are an elegant formalism suitable for repre-
senting several abstract notions and natural phenomena. For
real life problems, such graphs contain a lot of detailed in-
formation, so their size becomes extremely large. Therefore,
there is a need to decompose such structures into meaningful
sub-graphs which can be interpreted and processed indepen-
dently.
One of the most important potential decompositions is the
detection of strongly connected components (SCCs), i.e.
maximal subsets of vertices in which a directed path exists
from each vertex to any other vertex.
SCC detection has several practical applications, including in
telecommunications [1], [2], radiation transport solvers [3],
distributed formal verification [4], distributed reasoning [5],
[6] analysis of citation graphs [7], [8] page rank calculations
[9], and social networks [10]. The number, size and ordering
of SCCs may provide valuable information about the data
represented by the graph. Consequently, one may gain a deeper
insight into the specific phenomenon modeled by the data.
Various SCC detection algorithms have been proposed in lit-
erature so far. Along with the growing availability of parallel
computation architectures, scientific interest has shifted re-
cently towards those algorithms that are able to effectively
utilizing such capabilities. In order to take advantage of the
efficiency of distributed processors, the algorithms have to

split the workload into several sub-tasks which can be com-
puted separately. The degree of such decomposition can be
measured by the branching factor of a tree of tasks generated
at each step of a recursive algorithm.

In the case of several parallel algorithms used for finding
SCCs, selection of a pivot, i.e. vertex from which the decom-
position begins, is an important step impacting the algorithm
branching process. Typically, a random vertex is selected,
with such an approach usually rendering satisfactory results.

In this work, we introduce a heuristic pivot selection method
improving parallelism by increasing the average branching
factor of the algorithms.

The remainder of the paper is structured as follows. Section
2 describes state of the art in the field of SCC detection,
with the emphasis placed on parallel algorithms and pivot
selection strategies. In Section 3, basic concepts used in the
article are defined. A description of heuristics and algorithm
modifications is presented in Section 4. Section 5 presents
empirical results from experiments conducted with the use of
the algorithms in question. Finally, conclusions and future
work are presented in Section 6.

2. Related Work

To date, several algorithms for finding SCCs have been pro-
posed. Classical approaches based on depth-first search [11],
[12] have been proven to work in linear time with respect to
the number of edges. This group of algorithms is difficult to
parallelize and, therefore, is not useful in multi-core archi-
tectures. However, some limited results have been achieved
in this area [13]. Also, several distributed algorithms for
speeding up the process have been proposed and successfully
refined [14]–[18]. The most important of these algorithms
will be described in the subsequent sections.

With the proliferation of GPUs observed in recent years,
multiple algorithms rely on their computational power to
improve efficiency and inherent parallelism [19], [20].

30
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024

https://doi.org/10.26636/jtit.2024.3.1693
https://creativecommons.org/licenses/by/4.0/

Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs

2.1. Forward-backward Algorithm

One of the most popular approaches has the form of the
forward-backward (FW-BW) algorithm proposed originally
by Fleischer et al. [21] and further refined by other researchers
[3], [22]. It is based on the computation of forward and
backward closures of a selected node, referred to as a pivot.
One can prove that the intersection of the closures is a single
SCC and that the algorithm may be recursively called for
three disjointed sets, i.e. vertices in the forward closure, but
not in the backward closure, vertices in the backward closure
but not in the forward closure, and the remaining vertices
which did not belong to any of the closures.
Pivot selection is an important step in the above algorithm,
since it exerts a direct impact on how many sub-problems
can be generated in the subsequent step. To date, in most of
the approaches random pivot detection is used. Several other
methods have been proposed as well.
Barnat and Moravec [23] introduced an approach to prevent
some trivial strongly connected components from being se-
lected as pivots. In this method, the pivot is chosen out of
a set of candidates computed with the use of the back-level
edge concept. A back-level edge in a cycle is an edge that
leads from a vertex with some distance from the initial vertex
to a vertex with an equal or smaller distance from the ini-
tial vertex. The solution is to use destination vertices of the
back-level edges as candidate pivots.
Another approach to pivot selection can be found in [18],
where a multipivot algorithm is proposed. The idea is to
sample s vertices and to start the reachability procedure
simultaneously for each of them. Once this is done, the
following sets are computed:
A = vertices reached from vertex set {1, 2, ..., s− 1},
B = vertices reached from vertex s,
C = vertices that reach and are reached from s.

Finally, we can recursively compute, in parallel, the strongly
connected components of:
V − (A ∪B), A−B, B − (A ∪ C), and (A ∩B)− C.
This paper proposes yet another heuristic pivot selection
technique. The advantage of the proposed approach is that it
involves practically no computational or memory overhead.
Alternative improvements to the FW-BW approach have been
proposed using the idea that a spanning tree can be employed
instead of the breadth first search (BFS) tree. A promising
version of such an approach has been shown by Ji et al. [24],
with a prototype called iSpan, consisting of a parallel, relaxed
synchronization design of spanning trees for detecting large
and small SCCs, combined with fast trims for small SCCs.
The trimming phase is an important improvement to the FW-
BW algorithm and is a subject of a separate field of research
seeking further improvements (e.g. [25]), where FB-AI-Trim,
a parallel SCC algorithm with selective trimming is proposed.

2.2. OBF Algorithm

OBF [23] is another parallel SCC detection algorithm which
identifies a number of independent sub-graphs (called OBF

slices) in O(n+m) time. The slices are then decomposed
using the FW-BW algorithm. The algorithm starts with a com-
plete set of vertices and selection of the initial vertex.
One OBF slice is computed is one step. Then, the identified
slice is decomposed and the remaining part of the graph is
analyzed, in parallel, for extraction of the next slice. The OBF
algorithm has been improved to create the recursive OBF
approach, in which OBF is applied recursively to the extracted
slices [26].

2.3. Coloring Algorithm

Yet another approach to SCC detection is based on the concept
of coloring [27]. Such a technique starts with a set of ordered
colors. Initially, all vertices are assigned different colors.
Then, they are propagated along the edges, so that a higher
color overwrites a smaller one. As the result, all vertices
in a single SCC have the same color. Therefore, the edges
between different colors can be removed and the resulting
sub-graphs can be processed independently.
In contrast to the FW-BW algorithm, the coloring algorithm
allows to split the graph into more parts. However, this implies
a higher overhead.

2.4. Graph Generation

This work shows that the process of generating a graph to test
the performance of an algorithm is of crucial significance.
Ideally, an approach would be preferred which outputs uni-
formly random graphs while controlling the key parameters
of the graph, i.e. its size, density, number of SCCs etc.
G(n, p) and G(n,M), as proposed by Erdos and Renyi [28],
are some of the most widely used graph generation methods
which can be harnessed for non-oriented graphs, as well as
DAGs. Other methods include: layer-by-layer [29], fan-in/fan-
out [30], and random orders [31].
While these algorithms provide some means for predefining
general graph properties, such as the number of vertices and
edges, for the case described in this work we also wanted to
control other parameters, with a particular emphasis placed on
the number of SCCs. To this end, a custom graph generation
method has been employed.

3. Basic Concepts

We start with the definition of a directed graph:
Definition 1. A directed graph G is a pair (V,E), where V
is a set of vertices, and E ⊆ V × V is a set of directed edges.
If (u, v) ∈ E, then v is called immediate successor of u, and
u is called immediate predecessor of v.
Definition 2. A directed path in a digraph is a sequence of
vertices in which there is a (directed) edge pointing from each
vertex in the sequence towards its successor in the sequence.
A simple path is the one with no repeated vertices.
A strongly connected component (SCC) of a directed graph
G is defined in the following way:

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024 31

Dominik Ryżko

Algorithm 1 DetectSCCs
1: if G has no more then one vertex then return
2: TRIM G in forward direction
3: if G is not empty then
4: TRIM G in backward direction
5: select vertex v from G
6: MARK Pred (G, v) and Desc (G, v) in G
7: SCC(G, v) = Pred (G, v) ∩Desc (G, v)
8: Do in parallel
9: detectSCCs(Pred (G, v)− SCC(G, v))

10: detectSCCs(Desc (G, v)− SCC(G, v))
11: detectSCCs(Rem (G, v))
12: end if
13: end if

Definition 3. A strongly connected component of a directed
graph G is a maximal set of vertices C ⊆ V such that for
every pair of vertices u and v, there is a directed path from u
to v and a directed path from v to u.
A back-level edge is a concept used by one of the pivot
selection algorithms presented in Section 2.
Definition 4. Let G = (V,E) be a graph with the source
vertex s. An edge (u, v) ∈ E is called the back-level edge
if and only if d(u) >= d(v), where d(u) and d(v) are the
distances from s to u and s to v, respectively. Vertex u is
called the start vertex of the back-level edge, while v is called
destination vertex.

4. Increasing Parallelism in FW-BW SCC
Detection Algorithm

This section presents improvements to the SCC detection
algorithms. We start with a description of the standard FW-
BW algorithm and then discuss the pivot selection problem.

4.1. FW-BW Algorithm

Let us assume that we intend to discover all strongly con-
nected components in a graph by means of computations
performed asynchronously by a set of nodes. Following the
work performed by McLendon [3], we can apply, to this end,
a distributed algorithm performed at each node participating
in the process (Algorithm 1).
The trim operations are performed in order to remove those
vertices which do not belong to the SCC. The forward trim
begins with all vertices that have no ancestors and removes
them together with all their edges. After the removal, some
other vertices may have no ancestors as well, and they are
removed too. The process continues until no more vertices
can be removed. More formally, the trim iteratively removes
vertices whose in-degree is non-zero and whose out-degree
is zero.
By analogy, the reverse trim performs the same operation in
the other direction.

4.2. Pivot Selection

The problem of pivot selection is important for the described
algorithm. Ideally, such a pivot should be picked each time
that produces four sub-graphs at the end of the algorithm step,
allowing for the highest possible branching of the recursion.
However, if no ancestors or predecessors exist (or there are
a few of them and all belong to the intersection of closures)
for the particular SCC detected at the current step, then the
branching factor will be smaller and fewer sub-processes will
be started.
In most of the algorithms proposed so far, the pivot was
selected randomly. The argument was that the optimal pivot
selection process requires depth-first search post-ordering,
which is rather difficult to perform in parallel. In this paper,
we bring forward the observation that a useful heuristic may
be applied by using the information already computed as one
of the algorithm steps.
First, the reachability procedure is performed for two out of
three sets generated by the FW-BW algorithm. This returns
us the breadth first partial ordering over the vertices in these
sub-graphs. This information can be used to avoid selecting,
as pivots, those vertices which are likely to belong to an SCC
with no descendants or predecessors. These will most likely
be the vertices reached at the beginning or at the end of the
process.
Let us analyze the example presented in Fig. 1. The sub-graph
represents all vertices reachable from v2. The possible order
of visiting the vertices by the breadth-first search algorithm is
shown in Fig. 2.
Since some of these vertices will belong to the SCC (darker
color), they will be excluded from the set passed on to the
next algorithm step, meaning they should not be considered
for the pivot selection process.

v1

v2 v3

v7

v6

v10

v11

v4

v9

v5

v8

v12

v1

Fig. 1. Example graph.

32
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024

Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs

v12v11v8v10v9v6v5v7v1v4v3v2

Fig. 2. Order of vertices visited by the breadth-first search algorithm.

Vertices located in the middle of the graph (after exclusion of
SCC vertices), after breadth-first search layering, are most
likely to have a sizable set of predecessors and ancestors. This
layer is marked in Fig. 1. On the other hand, picking a vertex
from the top or bottom layers (e.g. v4 or v12) leaves us with
one sub-task empty.
Following the observation described above, we should ideally
compute the middle layer of the relevant sub-graph and pick
a vertex out of it. However, since a precise identification of
these vertices can introduce some computational overhead,
we have tested a simplified solution.
We assign sequential numbers to the vertices during the
reachability procedure and then the index of the pivot is
calculated as:

idx =
(
size(ForwardClosure)− size(SCC)

)
div 2

or

idx =
(
size(BackwardClosure)− size(SCC)

)
div 2,

respectively.
If the index points to a vertex which belongs to the SCC,
which is possible with such a simplification, a random vertex
is chosen.
Algorithm 2 presents the final version of the SCC detection
including the improvements described above.

5. Experimental Results

To test the usability of the heuristic technique described in
the Section 4, a specific test environment has been created.
The standard FW-BW algorithm has been implemented using
the Scala Akka library for parallel computations [32]. Then,
the modification of pivot selection has been added. The test
environment has been run on a multi-core workstation. It is
important to note that the branching factor can be measured
independently of the physical computational environment. It
impacts the execution times only.

5.1. Graph Generation

To analyze the performance of the algorithm on graphs with
different numbers and sizes of the SCCs, a dedicated method
for test graph generation has been adopted. First, a spanning
tree is generated over the initial set of vertices. Then, the
vertices are divided equally (if possible) into a predefined
number of sets and a predefined number of vertices is added
within each set only. Finally, some extra edges are added
between the sets.
Such an approach allows us to control the graph size, its
density, as well as the number and size of SCCs. Due to the

random character of some of the generation algorithm steps,
some of the graph parameters, e.g. number of SCCs, may
vary when given the same algorithm parameters. However,
these variations are very small and do not affect the results of
the experiments.

5.2. Experiments

In order to test the modified algorithm, it has been run for
graphs of various sizes and SCC counts. It has been bench-
marked against the standard algorithm. Figure 3 shows a com-
parison of the average branching factor for a graph containing
100k vertices, 400k edges and various SCC counts.
The scalability of the new algorithm that may be adapted to
the growing graph size has been tested and is shown in Fig. 4.
Figure 5 shows the run time (in log scale) as a function of the
graph size (vertices/SCCs), when run on a 4-core computer
system. While the branching factor is independent of the
environment, the run time still shows some improvement
potential when a system with more cores is used. But the
improvement is visible even on a 4-core system.

5.3. Experiment Outcomes

Next, the algorithm has been run for various graph sizes
and various number of SCCs within the graph. The results
prove the initial assumption that it is capable of increasing
the branching factor. It scales according to graph size and the
number of SCCs for a fixed number of vertices. As practically
no additional computational overhead is present, the execution
times are also consistently better.

B
ra

nc
h

in
g

fa
ct

o
r

SCCs

500 1000 2000 4000 8000 16000

1.68

1.64

1.60

1.56

1.52

Random

Choose

Fig. 3. Branching factor as a function of the number of SCCs.

B
ra

nc
hi

ng
 f

ac
to

r

1.64

1.62

1.60

1.58

1.56

1.54

Random

Choose

25000/
1000

50000/
2000

100000/
4000

200000/
8000

400000/
16000

Size/SCCs

Fig. 4. Branching factor as a function of the size of the graph.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024 33

Dominik Ryżko

Algorithm 2 ImprovedDetectSCCs
Input: pivot

1: if G has no more then one vertex then return
2: TRIM G in forward direction
3: if G is not empty then
4: TRIM G in backward direction
5: if pivot = ∅ then select random vertex v from G
6: MARK Pred (G, v) and Desc (G, v) in G
7: SCC(G, v) = Pred (G, v) ∩Desc (G, v)
8: FwdPivot = Desc

[(
size(Desc)− size(SCC)

)
div 2

]
9: if FwdPivot ∈ SCC then FwdPivot = ∅

10: BckPivot = Pred
[(
size(Pred)− size(SCC)

)
div 2

]
11: if BckPivot ∈ SCC then BckPivot = ∅
12: Do in parallel
13: detectSCCs (Pred(G, v)− SCC(G, v), BckP ivot)
14: detectSCCs (Desc(G, v)− SCC(G, v), FwdPivot)
15: detectSCCs (Rem(G, v))
16: end if
17: end if
18: end if
19: end if
20: end if

Random

Choose

25000/
1000

50000/
2000

100000/
4000

200000/
8000

400000/
16000

Size/SCCs

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0

R
un

 t
im

e

[l
og

(s
)]

Fig. 5. Run time as a function of the size of the graph.

6. Conclusions

This paper presents a potential improvement to the pivot se-
lection process being part of the FW-BW algorithm used for
SCC decomposition. It has been shown that the branching
factor of the algorithm may be increased based on the in-
formation already computed in the previous algorithm step,
hence without introducing significant overhead.

Future work should involve blending this approach with other
pivot selection techniques, such as the multipivot or degree-
based methods which are also mentioned herein. It could be
also interesting to find out if the heuristic introduced here
may be relied upon to solve other problems involving pivot
selection e.g. clique enumeration etc.

References

[1] B. Sandeep and A. Ferreira, “Complexity of Connected Components in
Evolving Graphs and the Computation of Multicast Trees in Dynamic
Networks”, Second International Conference, ADHOC-NOW2003,
Montreal, Canada, 2003 (https://doi.org/10.1007/978-3-
540-39611-6_23).

[2] S. Raghavan, “Twinless Strongly Connected Components”, in: Per-
spectives in Operations Research, pp. 285–304, 2006 (https:
//doi.org/10.1007/978-0-387-39934-8_17).

[3] W. McLendon III, B. Hendrickson, S.J. Plimpton, and L. Rauchwerger,
“Finding Strongly Connected Components in Distributed Graphs”,
Journal of Parallel and Distributed Computing, vol. 65, no. 8, pp. 901–
910, 2005 (https://doi.org/10.1016/j.jpdc.2005.03.007).

[4] H. Garavel, R. Mateescu, and I.M. Smarandache, “Parallel State Space
Construction for Model-checking”, Proc. of the 8th International SPIN
Workshop on Model Checking of Software (SPIN’01), vol. 2057, pp.
200–216, 2001 (https://doi.org/10.1007/3-540-45139-0_1
4).

[5] D. Ryzko, “Reasoning in Multi-agent Systems with Random Knowl-
edge Distribution”, in: Advances in Databases and Information Sys-
tems, pp. 310–317, 2012 (https://doi.org/10.1007/978-3-
642-33074-2_23).

[6] P. Cholewinski, “Reasoning with Stratified Default Theories”, Proc.
of Third International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’95), pp. 273–286, 1995 (https:
//dl.acm.org/doi/10.5555/646397.691152).

[7] V. Batagelj, “Efficient Algorithms for Citation Network Analy-
sis”, ArXiv, 2003 (https://doi.org/10.48550/arXiv.cs/030
9023).

[8] Y. Kajikawa et al., “Creating an Academic Landscape of Sustainability
Science: An Analysis of the Citation Network”, Sustainability Science,
vol. 2, pp. 221–231, 2007 (https://doi.org/0.1007/s11625-
007-0027-8).

[9] H. Yang et al., “Strongly Connected Components Based Efficient PPR
Algorithms”, Jisuanji Xuebao/Chinese Journal of Computers, vol.
40, pp. 584–600, 2017.

[10] N.P. Hummon and P. Doreian, “Computational Methods for Social
Network Analysis”, Social Networks, vol. 12, no. 4, pp. 273–288,
1990 (https://doi.org/10.1016/0378-8733(90)90011-W).

34
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024

https://doi.org/10.1007/978-3-540-39611-6_23
https://doi.org/10.1007/978-3-540-39611-6_23
https://doi.org/10.1007/978-0-387-39934-8_17
https://doi.org/10.1007/978-0-387-39934-8_17
https://doi.org/10.1016/j.jpdc.2005.03.007
https://doi.org/10.1007/3-540-45139-0_14
https://doi.org/10.1007/3-540-45139-0_14
https://doi.org/10.1007/978-3-642-33074-2_23
https://doi.org/10.1007/978-3-642-33074-2_23
https://dl.acm.org/doi/10.5555/646397.691152
https://dl.acm.org/doi/10.5555/646397.691152
https://doi.org/10.48550/arXiv.cs/0309023
https://doi.org/10.48550/arXiv.cs/0309023
https://doi.org/0.1007/s11625-007-0027-8
https://doi.org/0.1007/s11625-007-0027-8
https://doi.org/10.1016/0378-8733(90)90011-W

Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs

[11] R. Tarjan, “Depth First Search and Linear Graph Algorithms”, SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972 (https:
//doi.org/10.1137/0201010).

[12] H.N. Gabow, “Path-based Depth First Search Strong and Biconnected
Components”, Information Processing Letters, vol. 74, no. 3–4, pp.
107–114, 2000 (https://doi.org/10.1016/S0020-0190(00)0
0051-X).

[13] E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud, “Parallel
Explicit Model Checking for Generalized Buchi Automata”, in: Tools
and Algorithms for the Construction and Analysis of Systems, pp.
613–627, 2015 (https://doi.org/10.1007/978-3-662-4668
1-0_56).

[14] H. Gazit and G.L. Miller, “An Improved Parallel Algorithm that
Computes the BFS Numbering of a Directed Graph”, Information
Processing Letters, vol. 28, no. 2, pp. 61–65, 1988 (https://doi.
org/10.1016/0020-0190(88)90164-0).

[15] R. Cole and U. Vishkin, “Faster Optimal Parallel Prefix Sums and List
Ranking”, Information and Computation, vol. 81, no. 3, pp. 334–352,
1989 (https://doi.org/10.1016/0890-5401(89)90036-9).

[16] J. Barnat, J. Chaloupka, and J. van de Pol, “Improved Distributed
Algorithms for SCC Decomposition”, Electronic Notes in Theoretical
Computer Science, vol. 198, no. 1, pp. 63–77, 2008 (https://doi.
org/10.1016/j.entcs.2008.02.001).

[17] W. Schudy, “Randomized Algorithms for Graph Problems”, 2007.
[18] W. Schudy, “Finding Strongly Connected Components in Parallel

Using O(log2n) Reachability Queries”, Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and Architectures,
pp. 146–151, 2008 (https://doi.org/10.1145/1378533.1378
560).

[19] J. Jaiganesh and M. Burtscher, “A High-performance Connected
Components Implementation for GPUs”, Proceedings of the 27th
International Symposium on High-Performance Parallel and Dis-
tributed Computing, pp. 92–104, 2018 (https://doi.org/10.1
145/3208040.3208041).

[20] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An Asyn-
chronous Multi-GPU Programming Model for Irregular Compu-
tations”, Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 235–248, 2017
(https://doi.org/10.1145/3018743.3018756).

[21] L. Fleischer, B. Hendrickson, and A. Pinar, “On Identifying Strongly
Connected Components in Parallel”, Proceedings of Parallel and
Distributed Processing Symposium, pp. 505–511, 2000 (https:
//doi.org/10.1007/3-540-45591-4_68).

[22] S. Hong, N.C. Rodia, and K. Olukotun, “On Fast Parallel Detection
of Strongly Connected Components (SCC) in Small-world Graphs”,
Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, 2013 (https://doi.
org/10.1145/2503210.2503246).

[23] J. Barnat and P. Moravec, “Parallel Algorithms for Finding SCCs
in Implicitly Given Graphs”, in: Formal Methods: Applications and
Technology, pp. 316–330, 2007 (https://doi.org/10.1007/97
8-3-540-70952-7_22).

[24] Y. Ji, H. Liu, and H.H. Huang, “iSpan: Parallel Identification of
Strongly Connected Components with Spanning Trees”, SC18: Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, Dallas, USA, 2022 (https://doi.org/10.1
109/SC.2018.00061).

[25] D. Niewenhuis and A.L. Varbanescu, “Efficient Trimming for Strongly
Connected Components Calculation”, Proceedings of the 19th ACM
International Conference on Computing Frontiers, pp. 131–140, 2022
(https://doi.org/10.1145/3528416.3530247).

[26] J. Barnat, J. Chaloupka, and J. van de Pol, “Distributed Algorithms
for SCC Decomposition”, Journal of Logic and Computation, vol.
21, no. 1, pp. 23–44, 2011 (https://doi.org/10.1093/logcom/
exp003).

[27] S. Orzan, “On Distributed Verification and Verified Distri-
bution”, Ph.D. thesis, Free University of Amsterdam, 2004
(https://research.vu.nl/en/publications/on-distrib
uted-verification-and-verified-distribution).

[28] P. Erdos and A. Renyi, “On Random Graphs I”, Publicationes Mathe-
maticae Debrecen, vol. 6, pp. 290–297, 1959

[29] T. Tobita and H. Kasahara, “A Standard Task Graph Set for Fair
Evaluation of Multiprocessor Scheduling Algorithms”, Journal of
Scheduling, vol. 5, no. 5, pp. 379–394, 2002 (https://doi.org/
10.1002/jos.116).

[30] R.P. Dick, D.L. Rhodes, and W. Wolf, “TGFF: Task Graphs for Free”,
Proceedings of the 6th International Workshop on Hardware/Software
Codesign, pp. 97–101, 1998 (https://doi.org/10.1109/HSC.
1998.666245).

[31] P. Winkler, “Random Orders”, Order, vol. 1, pp. 317–331, 1985
(https://doi.org/10.1007/BF00582738).

[32] Akka, (http://akka.io).

Dominik Ryżko, Ph.D.
Institute of Computer Science
https://orcid.org/0000-0001-5632-0861

E-mail: dominik.ryzko@pw.edu.pl
Warsaw University of Technology, Warsaw, Poland
https://eng.pw.edu.pl/

https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1007/978-3-662-46681-0_56
https://doi.org/10.1007/978-3-662-46681-0_56
https://doi.org/10.1016/0020-0190(88)90164-0
https://doi.org/10.1016/0020-0190(88)90164-0
https://doi.org/10.1016/0890-5401(89)90036-9
https://doi.org/10.1016/j.entcs.2008.02.001
https://doi.org/10.1016/j.entcs.2008.02.001
https://doi.org/10.1145/1378533.1378560
https://doi.org/10.1145/1378533.1378560
https://doi.org/10.1145/3208040.3208041
https://doi.org/10.1145/3208040.3208041
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1145/2503210.2503246
https://doi.org/10.1145/2503210.2503246
https://doi.org/10.1007/978-3-540-70952-7_22
https://doi.org/10.1007/978-3-540-70952-7_22
https://doi.org/10.1109/SC.2018.00061
https://doi.org/10.1109/SC.2018.00061
https://doi.org/10.1145/3528416.3530247
https://doi.org/10.1093/logcom/exp003
https://doi.org/10.1093/logcom/exp003
https://research.vu.nl/en/publications/on-distributed-verification-and-verified-distribution
https://research.vu.nl/en/publications/on-distributed-verification-and-verified-distribution
https://doi.org/10.1002/jos.116
https://doi.org/10.1002/jos.116
https://doi.org/10.1109/HSC.1998.666245
https://doi.org/10.1109/HSC.1998.666245
https://doi.org/10.1007/BF00582738
http://akka.io
https://orcid.org/0000-0001-5632-0861
https://eng.pw.edu.pl/

	Introduction
	Related Work
	Forward-backward Algorithm
	OBF Algorithm
	Coloring Algorithm
	Graph Generation

	Basic Concepts
	Increasing Parallelism in FW-BW SCC Detection Algorithm
	FW-BW Algorithm
	Pivot Selection

	Experimental Results
	Graph Generation
	Experiments
	Experiment Outcomes

	Conclusions

