
A Generalized Learning Approach
to Deep Neural Networks

Francesca Ponti1, Fabrizio Frezza1, Patrizio Simeoni2, and Raffaele Parisi1

1“Sapienza” University of Rome, Rome, Italy,
2South East Technological University, Carlow, Ireland

https://doi.org/10.26636/jtit.2024.3.1454

Abstract Optimization of machine learning architectures is
essential in determining the efficacy and the applicability of
any neural architecture to real world problems. In this work a
generalized Newton’s method (GNM) is presented as a powerful
approach to learning in deep neural networks (DNN). This
technique was compared to two popular approaches, namely
the stochastic gradient descent (SGD) and the Adam algorithm,
in two popular classification tasks. The performance of the
proposed approach confirmed it as an attractive alternative to
state-of-the-art first order solutions.
Due to the good results presented in the case of shallow DNN,
in the last part of the article an hybrid optimization method is
presented. This method consists in combining two optimization
algorithms, i.e. GNM and Adam or GNM and SGD, during the
training phase within the layers of the neural network. This
configuration aims to benefit from the strengths of both first-
and second-order algorithms. In this case a convolutional neural
network is considered and its parameters are updated with a
different optimization algorithm. Also in this case, the hybrid
approach returns the best performance with respect to the first
order algorithms.

Keywords deep neural networks, machine learning, optimization

1. Introduction

In recent years, neural deep learning (NDL) [1]–[5] has been
acquiring popularity in many applicative fields of engineering,
such as system identification and control, robotics, commu-
nication systems and signal processing [6]. As a matter of
fact, deep neural networks (DNNs) are able to handle large
amounts of data that would be hard to treat by more traditional
techniques.
A neural network (NN) is generally composed by a set of
parameters (the weights) that are updated iteratively in order
to establish the desired correspondence between the input and
the output. This phase is called training and it is performed
by means of properly selected optimization algorithms.
In general, optimization consists in the minimization or max-
imization of a function subject to specific constraints on its
variables [7]. In the NN context, optimization corresponds
to finding the optimal weights bfw∗ that minimize a given
function E(bfw) (the loss function):

bfw∗ = argmin
bfw

E(bfw) . (1)

Several choices for the objective function E(bfw) are pos-
sible. Due to the high degree of non-linearity of E(bfw),
minimization is performed by employing iterative techniques
and it is not always guaranteed that the obtained minima are
optima (local minima).
Optimization methods can be roughly grouped in two main
classes [8], [9]: first and second-order methods.
First order methods are the most commonly applied in prac-
tice. They involve the use of the first derivative of the objective
function with respect to the weights in order to choose the
direction of movement in the search space.
First-order methods are quite popular in machine learning,
since they have a low computational cost and are usually easy
to implement. However, as highlighted in [10], first-order
methods have several shortcomings, since they depend on
hyper-parameter selection, they are extremely hard to tune
and parallel computing opportunities are often limited.
In order to find a more effective alternative to first-order
methods and to overcome their limitations, second-order
methods [7] have been often employed in traditional shallow
neural networks. They resulted to work well in several ma-
chine learning tasks [10]–[13]. The standard second-order
technique is the Newton’s method, that makes use of the Hes-
sian matrix, formed by the second-order derivatives of the
error functional, and has a quadratic rate of convergence.
However, the Newton’s method requires exact computation
of the Hessian matrix, which is computationally expensive.
For this reason quasi-Newton’s methods have been introduced
[14]. They are based on different approximations of the inverse
of Hessian matrix, with the aim of combining the rate of
convergence of Newton’s method with the scalability typical
of first-order methods.
Moreover, another issue that affects machine learning, and in
particular deep learning algorithms, are saddle points, which
lead to reaching non-optimal minimum points.
Recently, many studies are proving that in many cases second
order methods are more efficient than first order methods
at avoiding saddle points [15], [16] reversing the traditional
hypothesis that proposes as more performing the first order
methods [17].
In this work we propose a general learning framework that be-
longs to the class of quasi-Newton’s methods. This approach
was introduced as a powerful learning algorithm for feedfor-

36
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024

https://doi.org/10.26636/jtit.2024.3.1454
https://creativecommons.org/licenses/by/4.0/

A Generalized Learning Approach to Deep Neural Networks

ward and recurrent NNs [18] and it was shown to belong to
the class of generalized Newton’s methods (GNMs).
We introduce its application to DNNs and compare it to
most common optimization techniques in two deep-learning
benchmark classification tasks. Moreover, due to the good
performances achieved for the classification of a deep shallow
neural network, an hybrid optimization approach is proposed
to train a convolutional neural network (CNN). This method
consists in combining two optimization algorithms, i.e. GNM
and Adam or GNM and SGD, during the training phase within
the layers of the neural network.
The proposed hybrid optimization approach aims to combine
the speed of convergence of the second order optimization
method under examination, i.e. GNM, with the low compu-
tational complexity of first order method that is required to
train convolutional layers.
Indeed, as already stated, the algorithm proposed was tested
in a feed-forward neural networks in the past years, when
deep learning had not yet taken hold.
Then, testing the performance of existing optimization al-
gorithms that have not been previously used on deep neural
networks brings novelty by exploring unexplored territory,
potentially improving performance, enabling comparisons
against state-of-the-art methods, broadening applicability,
and driving methodological advancements.
This paper contains a review of SGD and Adam methods
in Section 2. In the same section, the description of the
generalized Newton method under examination is reported.
The experimental results obtained in two classification tasks,
that consider MNIST and SUSY dataset, are described in
Section 3. Section 4 describes the hybrid approach proposed
and shows its result in case of a CNN. The conclusions are
reported in Section 5.

2. Existing Optimization Algorithms

2.1. Stochastic Gradient Descent

Gradient descent (GD) [19] is a very popular iterative first-
order method. At the generic k-th iteration it is represented
by the following equation:

bfwk+1 = bfwk − η∇bfwkE , (2)

where the gradient of the error functional with respect to the
weights∇bfwkE is employed to compute the movement in
the weight space. η (the step length or learning rate) is usually
selected empirically and determines the rate of convergence
of the loss function. This parameter represents how much
the innovation term ∇bfwE influences the new weights with
respect to the old ones.
The stochastic gradient descent (SGD) [20] is a modification
of the GD based on an approximation of the actual gradient.
Application of the SGD to NNs led to the well-known back-
propagaton algorithm [21], [22]. One of the main advantages
of SGD is its computational efficiency. It processes training
data in small batches, making it well-suited for large datasets.

SGD also has a low memory footprint since it only requires
storing a small batch of data at a time. Additionally, SGD
can converge faster compared to batch gradient descent as it
quickly updates the model parameters using each batch of
data.
However, SGD has some limitations that need to be consid-
ered. One major drawback is its susceptibility to getting stuck
in local minima due to the high variance in the stochastic
gradients. This can lead to suboptimal solutions.
SGD also requires careful tuning of the learning rate, as a
too high learning rate can cause divergence and a too low
learning rate can result in slow convergence. Additionally,
SGD may struggle with handling noisy or sparse gradients,
requiring the use of additional techniques such as learning
rate schedules or momentum.

2.2. Adam Optimizer

One of the most popular first-order optimization algorithms
in DNNs is the Adam optimizer [23]. Adam is an adaptive
learning rate method, in the sense that it adapts the learning
rate for different parameters by computing the first and second
moments of the weight gradients.
The Adam weight update formula is expressed as follows:

wk = wk−1 − η
m̂k+1√
v̂k + ϵ

(3)

where wk is the weight at the k-th iteration and m̂k and v̂k
the bias corrected estimators of the moving averages.
The advantages of the Adam optimizer lie in its adaptive
learning rate, efficiency in handling sparse gradients, momen-
tum optimization, robustness to hyperparameters, and wide
applicability. These features contribute to its effectiveness
and popularity in the field of deep learning.
However, there are some drawbacks to consider. Adam re-
quires additional memory and computation resources due to
its storage and update of past gradients and squared gradi-
ents. It can be sensitive to the choice of learning rate, and
setting it improperly may lead to convergence issues.

2.3. Generalized Newton’s Method

Here we briefly recall the main concepts related with the
GNM presented in [18]. As stated in [18], a feedforward NN
is a sequence of layers, each one composed by a linear and
non-linear block [2], [4], [5] (see Fig. 1).

In
pu
ts

Bias
Bias

f

f

f

f

f

O
ut
pu
ts

W1 W2

Σ

Σ

Σ

Σ

Σ

X1 Y1 X2 Y2 X3

Fig. 1. Neural network representation.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024 37

Francesca Ponti, Fabrizio Frezza, Patrizio Simeoni, and Raffaele Parisi

At the k-th iteration of the learning procedure, in the forward
propagation phase the output of the linear block of the generic
n-th layer (n = 1, . . . , L) is computed with the following
equation:

Ynk = XnkWnk (4)

In Eq. (4) each row of matrices Xnk and Ynk refers to the
generic learning pattern, while the generic column of matrix
Wnk contains the weights leading to the generic output neuron.

The non-linear block computes the output of the non-linear
part, that is the input to the next (n+ 1)-th layer:

Xn+1k = [f{Ynk} 1] , (5)

where f represents the activation function and 1 is the column
of the bias inputs. XL+1k is the global output of the network.

Considering the generic n-th layer (n = 1, . . . , L) of the NN,
the GNM employs the following formula to compute the new
weights at the next (k + 1)-th iteration:

Wnk+1 =Wnk − η(Xnk)+∇Yn
k
E, (6)

where (Xnk)+ is the pseudoinverse of matrix Xnk .

Introducing the estimated correlation matrix of the inputs
to the n-th layer Φnk = (X

n
k)
TXnk and relating the gradient

matrix in the neuron space∇Yn
k
E with the gradient matrix

in the weight space∇Wn
k
E it can be shown that:

Wnk+1 =Wnk − η(Φnk)+∇Wn
k
E. (7)

Equation (7) represents a modified Newton’s method applied
to the generic n-th layer. In [18] it is shown that, extending
the previous formula to the whole network and comparing to
the Newton’s formula, the local Hessian matrixHk (that is
the Hessian related with the single layer) is approximated by
diag(Φk). Since Φk is a diagonal matrix, this approximation
assumes that the second-order partial derivatives with respect
to the weights belonging to different layers are zero, that is
neurons with respect to different layers are decoupled.

Moreover, it is well known that the Hessian matrix may not
satisfy the property of positive definiteness. In contrast, the
matrix Φk satisfies always the property of semipositive defi-
niteness and almost always the property of positive definite-
ness.

This feature is important as it ensures that the algorithm
assumes a descent direction. Indeed, it represents one of the
main advantages of the considered algorithm. However, as
it will be described in Section 4, the weights update Eq. (6)
depends on the pseudoinverse of the input vector of each
layer of the neural network. This type of operation could be
computationally expensive in case of convolutional neural
networks, in which tensors are involved.

This limitation is overcomed by the proposal of a hybrid
optimization approach that combines the benefits and poten-
tial of both first and second-order methods to achieve higher
performance.

..
.

... ..
.

Flatten 784

Dense 128
Dense 10

Softmax

ReLU

MNIST
input

(28, 28)

Fig. 2. Neural network architecture for MNIST classification.

3. Experimental Results

In this section we describe the results obtained in two typical
experimental tasks considering two shallow NNs.

3.1. MNIST Dataset Classification Task

The first classification task used the MNIST dataset [24].
MNIST is a dataset of 60 000 squared 28×28 pixel grayscale
images of handwritten single digits between 0 and 9 [25]. The
aim of the network is to classify an image of a handwritten
digit into one of 10 classes corresponding to the integer values
from 0 to 9. A neural network with three layers was considered
(Fig. 2).
The first layer in this network, called flatten layer, transforms
the images from a two-dimensional array (28×28 pixels) to a
one-dimensional array (28×28 = 784 pixels). This layer has
no parameters to learn, it only reshapes the data.
In cascade with the flatten layer, the network is made of a se-
quence of two dense or fully connected layers. The first dense
layer has 128 nodes (or neurons), with activation function
ReLU. The last layer returns a logit array of length 10 and us-
es the activation function softmax. Each node of the last layer
returns the probability that the current image belongs to one
of the 10 classes.
The problem taken into account is an example of multi-class
classification task. In order to evaluate the performance, the
categorical cross entropy loss function has been considered:

E = −
10∑
i=1

yilog(ŷi), (8)

where ŷi is s the i-th output of the network while yi is the
corresponding target value.
The generalized Newton’s method (GNM) [18] was compared
to the SGD and the Adam optimizer. The training process
was iterated 20 times, considering a batch size of different
lengths. Figure 3 shows the results obtained with batches of
length 32, 64, and 128 in the case of the GNM optimizer.
The batch size of 32 reached the lowest loss value and was
selected in all subsequent tests. Same results were obtained
with the SGD [19], [20] and Adam [23] optimizers.
In all cases weights were initialized by using a random uni-
form distribution between –1 and 1. The learning rate η was
empirically selected. In particular, η was set to 0.001 for the

38
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024

A Generalized Learning Approach to Deep Neural Networks

010

–110

–210

0 10 20 30 40 50

Epoch

L
os

s
 [

en
tr

o
py

]

GNM batch=128

GNM batch=64GNM batch=32

Fig. 3. MNIST dataset: GNM loss function comparison with respect
to batch size.

Adam and SGD algorithms, while for the GNM approach η =
16 was considered. All simulations were carried out using the
TensorFlow library [26]. Of course, since the GNM optimiz-
er is not included in the default library, it has been defined
and integrated into the eager execution. In eager execution
TensorFlow does not build graphs, and each operation is exe-
cuted by Python immediately. This feature makes it adapt to
research and experimentation.

Conversely, the graph execution builds graph as representation
of tensor computation and evaluates the model. The selection
of the number of epochs, for the current case and all the
other cases under examination, was established basing on
two main factors: the convergence, and computational speed.
In particular, the number of epochs are selected based on
observing when the loss performance metric stabilizes in
terms of convergence, with the goal to ensure that the model
has converged and reached its optimal performance.

Figure 4 shows the loss function as a function of the number
of epochs in a semilogaritmic scale.

As expected, the GNM loss curve has a faster convergence
with respect to the first order optimizers, i.e. Adam and SGD.

010

110

–110

–210

–310
0 10 20 30 40 50

Epoch

L
os

s
 [

en
tr

op
y

]

GNM

SGD

Adam

Fig. 4. MNIST dataset: GNM, SGD, and Adam loss function com-
parison with respect to epochs in semilogarithmic scale.

–1×10

0 20 40 60 80 100

Epoch

GNM

SGD

Adam

L
os
s

5

6

7

Fig. 5. SUSY dataset: GNM, SGD, and Adam loss function com-
parison with respect to epochs in semilogarithmic scale.

3.2. SUSY Dataset Classification Task

The second classification task is based on the SUSY dataset
[27] and consists in recognizing the presence of supersym-
metric particles in collisions at high energy colliders.
More specifically, the problem is a binary classification task
where the goal is to establish whether each data point, gen-
erated via Monte Carlo simulations and characterized by 18
features (or kinematic variables), represents a signal poten-
tial collision, labeled with 1, or just background, labeled with
0. The first eight features are direct measurements of the
kinematic features of final state particles in the accelerator.
The other ten features are high-level features derived from
the first eight features and help in discriminating between the
two classes. The whole dataset consists of 5 million points,
of which 60 000 were considered as training set.
In this work, we propose a deep-learning architecture with
the target of estimating the probability that an event is from
a signal or a background process. The same approach was
considered in [27]. The architecture considered is a neural
network with four layers, having 256 units in the first layer,
128 in the second, 32 in the third layer, and one single unit
in the last layer. This last layer uses a sigmoidal activation
function while the other layers use the hyperbolic tangent
function.
For each learning algorithm, the learning rate was selected
by considering the best performance in terms of learning rate
and weight initialization. Also in this experiment, weights
were initialized by a random uniform distribution in the range
[–1, 1]. The learning rate selected for the Adam optimizer
was 0.001, for the gradient descent was 0.1, and 500 000 for
the generalized Newton method.
In order to justify this last choice, from Eq. (6) we observe
that in this case the learning rate depends on the condition
number of the input matrix, i.e. on the order of magnitude of
the inputs.
Figure 5 shows the average loss function of the described
algorithms with respect to the epochs.
Also in this case, the GNM loss function was characterized
by higher rate of convergence with respect to the Adam and
SGD optimizers.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024 39

Francesca Ponti, Fabrizio Frezza, Patrizio Simeoni, and Raffaele Parisi

4. Hybrid Optimization Approach

In this section the results obtained with an hybrid optimization
approach are reported.
As described in the previous chapter, the GNM has shown the
best performances with respect to Adam and SGD optimizers
in terms of rate of convergence. Due to the good results
obtained in the case of shallow deep neural networks, in this
chapter an hybrid optimization method is presented to train
convolutional neural networks.
This method consists in combining two optimization algo-
rithms, i.e. GNM and Adam or GNM and SGD, during the
training phase within the layers of the Neural Network. In this
case a convolutional neural network is considered and its pa-
rameters are updated with a different optimization algorithm.
In particular, the convolutional layers are updated with first
order optimization algorithms, while the last fully connected
layers are updated with the GNM method. This choice aims
to combine the speed of convergence of the second order
optimization method under examination, i.e. GNM, with the
low computational complexity of first order method that is
required to train convolutional layers.
In fact, as already described, the weight update formula of
the GNM method depends on the pseudoinverse of the input
matrix of the layer. It follows that in the case of convolutional
neural networks, where the trainable variables are tensors, it
can be computationally expensive apply the Eq. (7) to update
the weights. Conversely, for the last fully connected layers of
the neural network this operation can be easily computed.
To the aim to test the performances of the GNM algorithm in
the hybrid optimization approach proposed, a simple CNN to
classify MNIST dataset has been build with a similar approach
considered in [28].
As shown in the Fig. 6, the considered CNN is composed by
a convolutional layer with 32 filters of dimension 3×3 with
activation function ReLU, followed by a max pooling opera-
tion with filters of 2×2 dimension. Then, the fully connected
layers are applied: after the flatten layer, a dense layer of 128
units is present. Finally, the last classification layer of 10 units
follows with activation function softmax.
In Fig. 7 the performances of the hybrid approach considering
SGD and GNM are compared with respect the performance
obtained by considering the single GD optimizer to update all
the parameters of the neural network. In this case, two different

..
.

..
. ..
.

Flatten
784

Dense
128

Dense
10

Softmax

R
eL

U

R
eL

U

ReLU

MNIST
input

(28, 28)

32
×

co
nv

ol
ut

io
n

(3
,3

)

M
ax

P
oo

li
ng

 (
2,

2)

Fig. 6. MNIST dataset: convolutional neural network architecture.

010

–110

–210

–310

Epoch

L
os

s
 [

en
tr

op
y]

0 2 4 6 8 10 12 14 16 18 20

GD

Hybrid GD + GNM

Fig. 7. MNIST dataset: comparison between fully GD and hybrid
GD and GNM.

learning rates have been selected for the convolutional block
and the fully connected layers of the neural network.

In particular, after a tuning activity aimed at obtaining the
optimal η value, the learning rate for the convolutional layers
trained with SGD has been fixed to 0.001, while the learning
rate to update the fully connected layers and trained with
GNM has been fixed to 17.

Indeed, as already highlighted, in case of GNM, the learning
rate parameter depends on the condition number of the input
matrix, i.e. on the order of magnitude of the inputs, see Eq.
(6).

As can be seen from Fig. 7, the hybrid approach has shown the
best performances in terms of rate of convergence in reaching
the lower minima. This confirms the initial hypothesis, i.e.
the combination of the second order method convergence
rate with the scalability of first order methods would produce
better performances.

In Fig. 8 the performances of the hybrid approach considering
the combination of Adam and GNM optimizer are compared
with respect to applying the single Adam optimizer to whole
neural network. Also in this case, two different learning rates
have been selected for the convolutional block and the fully
connected layers of the neural network.

In particular, after a tuning activity, the learning rate for the
convolutional layers trained with Adam has been fixed to
0.001, while the learning rate to update the fully connected
layers and trained with GNM has been fixed to 17.

Also in this case, the hybrid approach has shown the best
performances in terms of rate of convergence to reach the
lower minima.

In Fig. 9 the performances of the hybrid approach considering
Adam and SGD in combination with GNM in the fully con-
nected layers are compared. One may notice, the combination
of Adam and GNM optimizer shows the best performances in
terms of rate of convergence in reaching the lower minima.

40
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024

A Generalized Learning Approach to Deep Neural Networks

–110

–210

–310

–410

Epoch

L
os

s
 [

en
tr

op
y]

0 2 4 6 8 10 12 14 16 18 20

Hybrid GNM + Adam

Adam

Fig. 8. MNIST dataset: comparison between fully Adam, hybrid
Adam, and GNM.

–110

–210

–310

–410

Epoch

L
os

s
 [

en
tr

op
y

]

0 2 4 6 8 10 12 14 16 18 20

Hybrid GNM + Adam

Hybrid GNM + SGD

Fig. 9. MNIST dataset: comparison between hybrid approach using
Adam and SGD in the convolutional layer.

5. Conclusions

In this work we presented a generalized optimization algo-
rithm for feedforward deep neural networks and compared its
performance to those of most popular algorithms in machine
learning. Two popular classification tasks were considered,
namely based on the MNIST and SUSY datasets. In both cas-
es, the proposed approach showed optimal results in terms
of speed of convergence, thus offering a viable alternative to
most used first order methods in deep learning problems.
Given the good performances obtained with the two classifi-
cation tasks considered, an hybrid optimization approach has
been proposed. This new approach is configured as a pow-
erful optimization method, as it combines the high rate of
convergence of the GNM method with the scalability typical
of first order ones. Also this case and as expected, the hybrid
approach has shown an higher rate of convergence with re-
spect of the standard one that considers only Adam or SGD
optimizer for the training phase.

As future studies, it is essential to explore the performance
of the optimizer on more diverse and challenging datasets,
as well as with larger-scale deep learning architectures. This
will help validate its effectiveness in real-world scenarios and
provide insights into its generalizability.
Additionally, incorporating comparative studies with other
state-of-the-art optimizers commonly used in deep learning
can offer a more comprehensive understanding of its strengths
and limitations.
In conclusion, the tested optimizer has demonstrated promis-
ing results in training deep shallow neural networks, showcas-
ing its potential to improve convergence and achieve higher
accuracy.
By addressing future challenges and exploring its application
to real-world problems, the proposed method holds consider-
able prospects for advancing the field of deep learning and
finding practical solutions in diverse domains.

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature,

vol. 521, pp. 436–444, 2015 (https://doi.org/10.1038/natu
re14539).

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT
Press, 2016 (http://www.deeplearningbook.org).

[3] Y. Bengio, Y. LeCun, and G. Hinton, “Deep Learning for AI”, Com-
munications of the ACM, vol. 64, no. 7, pp. 58–65, 2021 (https:
//doi.org/10.1145/3448250).

[4] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford Uni-
versity Press, 502 p., 1996 (ISBN: 9780198538646).

[5] R.D. Reed and R.J. Marks, Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks, MIT Press, 1999 (https:
//doi.org/10.7551/mitpress/4937.001.0001).

[6] R. Parisi, E.D. Di Claudio, G. Orlandi, and B.D. Rao, “Fast Adaptive
Digital Equalization by Recurrent Neural Networks”, IEEE Trans-
actions on Signal Processing, vol. 45, no. 11, pp. 2731–2739, 1997
(https://doi.org/10.1109/78.650099).

[7] R. Battiti, “First- and Second-order Methods for Learning: Between
Steepest Descent and Newton’s Method”, Neural Computation, vol.
4, no. 2, pp. 141–166, 1992 (https://doi.org/10.1162/neco.1
992.4.2.141).

[8] L. Bottou, F.E. Curtis, and J. Nocedal, “Optimization Methods for
Large-scale Machine Learning”, SIAM Review, vol. 60, no. 2, pp.
223–311, 2018 (https://doi.org/10.1137/16M1080173).

[9] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, 664
p., 2006 (https://doi.org/10.1007/978-0-387-40065-5).

[10] A.S. Berahas, M. Jahani, P. Richtárik, and M. Takác, “Quasi-Newton
Methods for Machine Learning: Forget the Past, Just Sample”, arXiv,
2019 (https://doi.org/10.48550/ARXIV.1901.09997).

[11] D. Goldfarb, Y. Ren, and A. Bahamou, “Practical Quasi-Newton
Methods for Training Deep Neural Networks”, arXiv, 2020 (https:
//doi.org/10.48550/arXiv.2006.08877).

[12] A.S. Berahas, R. Bollapragada, and J. Nocedal, “An Investigation of
Newton-Sketch and Subsampled Newton Methods”, Optimization
Methods and Software, vol. 35, no. 4, pp. 661–680, 2020 (https:
//doi.org/10.1080/10556788.2020.1725751).

[13] A.S. Berahas and M. Takác, “A Robust Multi-batch L-BFGS Method
for Machine Learning”, Optimization Methods and Software, vol. 35,
no. 1, pp. 191–219, 2020 (https://doi.org/10.1080/1055678
8.2019.1658107).

[14] J.E. Dennis, Jr. and J.J. Moré, “Quasi-Newton Methods, Motivation
and Theory”, SIAM Review, vol. 19, no. 1, pp. 46–89, 1977 (https:
//doi.org/10.1137/1019005).

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2024 41

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org
https://doi.org/10.1145/3448250
https://doi.org/10.1145/3448250
https://doi.org/10.7551/mitpress/4937.001.0001
https://doi.org/10.7551/mitpress/4937.001.0001
https://doi.org/10.1109/78.650099
https://doi.org/10.1162/neco.1992.4.2.141
https://doi.org/10.1162/neco.1992.4.2.141
https://doi.org/10.1137/16M1080173
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.48550/ARXIV.1901.09997
https://doi.org/10.48550/arXiv.2006.08877
https://doi.org/10.48550/arXiv.2006.08877
https://doi.org/10.1080/10556788.2020.1725751
https://doi.org/10.1080/10556788.2020.1725751
https://doi.org/10.1080/10556788.2019.1658107
https://doi.org/10.1080/10556788.2019.1658107
https://doi.org/10.1137/1019005
https://doi.org/10.1137/1019005

Francesca Ponti, Fabrizio Frezza, Patrizio Simeoni, and Raffaele Parisi

[15] Z. Yao et al., “ADAHESSIAN: An Adaptive Second Order Optimizer
for Machine Learning”, arXiv, 2020 (https://doi.org/10.48550
/ARXIV.2006.00719).

[16] R. Anil et al., “Scalable Second Order Optimization for Deep Learn-
ing”, arXiv, 2020 (https://doi.org/10.48550/ARXIV.2002.0
9018).

[17] J.D. Lee et al., “First-order Methods Almost Always Avoid Saddle
Points”, arXiv, 2017 (https://doi.org/10.48550/ARXIV.1710
.07406).

[18] R. Parisi, E.D. Di Claudio, G. Orlandi, and B.D. Rao, “A Generalized
Learning Paradigm Exploiting the Structure of Feedforward Neural
Networks”, IEEE Transactions on Neural Networks, vol. 7, no. 6, pp.
1450–1460, 1996 (https://doi.org/10.1109/72.548172).

[19] S. Ruder, “An Overview of Gradient Descent Optimization Algo-
rithms”, arXiv, 2016 (https://doi.org/10.48550/ARXIV.1609
.04747).

[20] H. Robbins and S. Monro, “A Stochastic Approximation Method”,
The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407,
1951 (https://doi.org/10.1214/aoms/1177729586).

[21] R. Rojas, Neural Networks. A Systematic Introduction, Springer, 504
p., 2006 (https://doi.org/10.1007/978-3-642-61068-4).

[22] D.E. Rumelhart and J.L. McClelland, “Learning Internal Represen-
tations by Error Propagation”, in: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Foundations, MIT
Press, pp. 318–362, 1987 (ISBN: 9780262291408).

[23] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion”, arXiv, 2014 (https://doi.org/10.48550/ARXIV.1412.
6980).

[24] J.D. Lee et al., “Basic Classification: Classify Images of Cloth-
ing” (https://www.tensorflow.org/tutorials/keras/cla
ssification).

[25] Y. LeCun, C. Cortes, and C.J.C. Burges, The MNIST Database
of Handwritten Digits, 2012 (http://yann.lecun.com/exdb
/mnist/).

[26] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems”, arXiv, 2016 (https://doi.
org/10.48550/ARXIV.1603.04467).

[27] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for Exotic Particles
in High-energy Physics with Deep Learning”, Nature Communica-
tions, vol. 5, art. no. 4308, 2014 (https://doi.org/10.1038/nc
omms5308).

[28] D.-Y. Ge et al., “Design of High Accuracy Detector for MNIST
Handwritten Digit Recognition Based on Convolutional Neural Net-
work”, 2019 12th International Conference on Intelligent Computa-
tion Technology and Automation (ICICTA), Xiangtan, China, 2019
(https://doi.org/10.1109/ICICTA49267.2019.00145).

Francesca Ponti, Ph.D.
Department of Information Engineering, Electronics
and Telecommunications
https://orcid.org/0000-0003-1855-7280

E-mail: francesca.ponti@uniroma.it
“Sapienza” University of Rome, Rome, Italy
https://www.uniroma1.it/en/

Fabrizio Frezza, Prof.
Department of Information Engineering, Electronics
and Telecommunications
https://orcid.org/0000-0001-9457-7617

E-mail: fabrizio.frezza@uniroma1.it
“Sapienza” University of Rome, Rome, Italy
https://www.uniroma1.it/en/

Patrizio Simeoni, Ph.D.
Department of Electronic and Communications Engineering
https://orcid.org/0009-0008-7365-7624

E-mail: patrizio.simeoni@setu.ie
South East Technological University, Carlow, Ireland
https://www.setu.ie

Raffaele Parisi, Prof.
Department of Information Engineering, Electronics
and Telecommunications
https://orcid.org/0000-0002-6062-0274

E-mail: raffaele.parisi@uniroma1.it
“Sapienza” University of Rome, Rome, Italy
https://www.uniroma1.it/en/

https://doi.org/10.48550/ARXIV.2006.00719
https://doi.org/10.48550/ARXIV.2006.00719
https://doi.org/10.48550/ARXIV.2002.09018
https://doi.org/10.48550/ARXIV.2002.09018
https://doi.org/10.48550/ARXIV.1710.07406
https://doi.org/10.48550/ARXIV.1710.07406
https://doi.org/10.1109/72.548172
https://doi.org/10.48550/ARXIV.1609.04747
https://doi.org/10.48550/ARXIV.1609.04747
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://www.tensorflow.org/tutorials/keras/classification
https://www.tensorflow.org/tutorials/keras/classification
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.48550/ARXIV.1603.04467
https://doi.org/10.48550/ARXIV.1603.04467
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1109/ICICTA49267.2019.00145
https://orcid.org/0000-0003-1855-7280
https://www.uniroma1.it/en/
https://orcid.org/0000-0001-9457-7617
https://www.uniroma1.it/en/
https://orcid.org/0009-0008-7365-7624
https://www.setu.ie
https://orcid.org/0000-0002-6062-0274
https://www.uniroma1.it/en/

	Introduction
	Existing Optimization Algorithms
	Stochastic Gradient Descent
	Adam Optimizer
	Generalized Newton's Method

	Experimental Results
	MNIST Dataset Classification Task
	SUSY Dataset Classification Task

	Hybrid Optimization Approach
	Conclusions

