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Abstract  This paper studies estimating the channel state infor-
mation at the end of receiver (CSIR) for multiple transmitters
communicating with only one receiver so that the latter can
decode the incoming signal more efficiently. The transmitters
and the receiver are all equipped with multi-antennas and us-
ing orthogonal space-time block codes (OSTBC). An algorithm
is developed based on deep learning for estimating multi-user
multiple-input multiple-output (MU-MIMO) channels. The al-
gorithm could estimate the CSIR using a single pilot block.
The proposed convolutional neural network (CNN) architecture
designed for this task begins with an input layer that accepts
grayscale images, followed by six convolutional blocks for feature
extraction and processing. The network concludes with a fully
connected layer to output the estimated channel information. It
is trained using a regression loss function to map input images
to accurate channel information accurately. The performance
of the proposed method is compared with classical methods
like least square and subspace-based methods, including Capon
and rank revealing QR (RRQR) methods. CNN achieved bet-
ter performance in comparison with the reference. Computer
simulations are included to validate the proposed method.
Keywords  channel estimation, CNN, CSI, CSIR, least square,
MU-MIMO, OSTBC

1. Introduction
Multi-user multiple-input multiple-output (MU-MIMO) and
orthogonal space-time block code (OSTBC) are advanced
technologies that enhance data rate and reliability in wire-
less communication systems, while combined, they provide
dependable performance for networks with many users and
antennas. By employing MU-MIMO, the spatial dimension
can be achieved to simultaneously serve several users via the
same time-frequency resources using space division multiple
access (SDMA), beamforming, and interference management
techniques like zero-forcing (ZF) and minimum mean square
error (MMSE).
The OSTBC codes are employed to encode the data across
various antennas and time slots, and this enhances spatial
diversity and ensures reliable transmission despite the chan-
nel’s variability. Initially developed by Alamouti for systems

with two transmit antennas, the OSTBC codes have been in-
tegrated into 5G systems to exploit their diversity and their
robustness in high mobility scenarios [1], [2].
Consider a mobile base station equipped with several antennas
to serve multiple users, each with several aerials. Using MU-
MIMO techniques, the base station shares its spatial resources
among individuals, allowing for concurrent communication.
Those resources allocated to each user make it possible for
them to freely communicate even though they may experience
changes in their transmission paths [3]–[11].
The STBC codes can be classified based on the availability
of a channel state information (CSI), distinguishing between
codes that require no CSI, CSI at the transmit side (CSIT),
or CSI at the receiving side (CSIR). Papers [12] and [13]
were expanded to encompass a multi-user multi-antenna
(MUMA) at the transmitter communicating with a single
receiver under the perfect CSIR condition. Understanding this
information can help the recipient better interpret the received
signal and identify any potential corruption by the channel,
thereby significantly improving the reliability and quality of
the received signal [14], [15]. However, it is essential to note
that ideal channel state information (ICSI) is unavailable in
real-world environments. Therefore, wireless communication
systems should utilize channel estimation schemes. These
schemes can be blind, semi-blind channels or leverage pilot
symbols already known to the receiver.
Minimizing the number of transmitted pilot symbols is desir-
able to enhance spectral efficiency in bandwidth-constrained
environments, making blind or semi-blind channel estimation
techniques preferable [16]–[21]. Well-known least squares
and subspace estimation algorithms, such as rank reveal-
ing QR factorization (RRQR), propagator method (PM) and
Capon method, were employed to determine the null space or
signal subspace for estimating the CSI [22], [23].
The telecommunications industry is shifting towards the sixth
generation (6G) to accommodate the increasing volume of
information exchange and the need for rapid system responses.
This transition is supported by advanced multi-input multi-
output (MIMO) configurations and machine learning (ML)-
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based channel estimation techniques in conjunction with
traditional methods like OSTBC [24], [25]. Over the past few
years, artificial intelligence has emerged as a powerful tool
for enhancing the performance of wireless communications.
In wireless communication systems, ML can be used either
to enhance the performance of a specific functional part of
the communication system, such as signal detection, noise
cancelation, channel estimation, or as an end-to-end, where
the transmitter and the receiver can be replaced by a neural
network (NN) [26]–[28].
Classical signal processing has demonstrated effectiveness
in channel estimation for wireless communication systems.
However, these methods exhibit limitations, particularly in
sophisticated wireless environments like those encountered
in 5G and beyond. These limitations include the computa-
tional complexity mainly for massive MIMO systems, the
necessity for prior channel characteristics knowledge in signal
processing blind-based channel estimation and the significant
overhead introduced by pilot-aided methods. Fortunately, ML
can efficiently handle these challenges [29], [30].
Chun et al. in [31] proposed a deep learning-based approach
for channel estimation in massive MIMO systems. The pilot
and the channel coefficients estimator were designed using
a two-layer neural network (TNN) and a deep neural network
(DNN). Based on datasets collected from a practical wireless
environment, a DL-based channel estimation scheme was
proposed in [32] for mmWave massive MIMO systems. The
generated channel matrix was utilized as the input of a DL
neural network with REsUNet to enhance channel feature
extraction.
Meenalakshmi et al. [33] applied a DL method to 5G MIMO-
OFDM systems, highlighting the method’s potential in high-
dimensional signal processing. In a MIMO-OFDM system,
the overhead on pilot symbols used for channel estimation
increases with the number of antennas at both ends. In order
to increase performance, authors in [34] integrated DL with
bidirectional long short-term memory (bi-LSTM) networks
for joint channel estimation and symbol detection in MIMO-
OFDM systems.
Motivated by the opportunities and trends for incorporating
artificial intelligence into wireless communications, as well
as the potential advantages of machine learning over tradi-
tional signal processing methods in addressing problems in
wireless communication systems, we proposed a DL-based
approach for estimating channel parameters in a MUMA sys-
tem using a convolutional neural network (CNN). The CNN
architecture is tailored to extract and learn features from input
signal data images, which enables precise channel estimation.
It comprises multiple convolutional, batch normalization, rec-
tified linear unit (ReLU), pooling layers, a fully connected
layer, and a regression layer, all optimized using stochastic
gradient descent with momentum (SGDM).
The structure of this paper is as follows. Section 2 presents the
MU-MIMO environment and gives the mathematical model
for the problem formulation. Section 3 develops the proposed
method which includes the CNN architecture and the training
process. Section 4 illustrates and compares the performance

First transmitter
with N antennas

Second transmitter
with N antennas

P-th transmitter
with N antennas

H1

Hp

Receiver with
M antennas

Fig. 1. MU-MIMO environment of P transmitters and a single
receiver.

of the proposed CNN across a wide range of signal-to-noise
ratios (SNR) with previous work such as: least squares (LS),
Capon and rank revealing QR (RRQR) methods. Finally,
Section 5 presents some concluding remarks, summarizing
the key findings.

2. Problem Formulation

Let us consider an uplink reception scenario, where P users
transmit their signals encoded with OSTBC in a MU-MIMO
environment as shown in Fig. 1.
The base station applies multiuser detection algorithms to
separate the users’ signals and decode the OSTBC-encoded
data. Assuming that all transmitters are equipped with N
antennas and the receiver is equipped withm antennas. To
simplify further, we assume that all transmitters employ the
same OSTBC code of block length T . Moreover, we consider
a flat block fading channel [22]. The p-th user CSI isHp of
sizeN×M , where its elements are assumed to be independent
complex Gaussian random variables. Thus, the received signal
matrix of size T ×M is given by:

Y =
P∑
p=1

X(sp)Hp + Z , (1)

whereX(sp) is the transmitted signal matrix of size T ×N ,
sp = [s1, s2, . . . , sK ] is the transmitted frame vector of size
K × 1, which consists of the quadrature phase shift keying
(QPSK) modulated data symbols and Z is the corresponding
noise matrix. The elements of OSTBC matrix X(sp) are
function of sp and its complex conjugates [22].
The matrix X(sp) can be rewritten by separating real and
imaginary parts as:

X(sp) =
K∑
k=1

(
Ck Re{sk}+Dk Im{sk}

)
. (2)

Here, matricesCk := X(ek) andDk := X(iek). Also, ek
is the K × 1 identity matrix vector corresponding to k-th
column and i is an imaginary unit

√
−1. Using Eq. (2), we

can express the reshaped real received vector of size 2MT×1
for single transmitted frame per user as [23]:
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y = Y =
P∑
p=1

A(hp) sp +Z. (3)

DefineB as a real vector after reshaping the complex matrix
B using the vectorization operator vec{.} by stacking all
columns of a matrix on top of each other as:

B :=

[
vec
{
Re(B)

}
vec
{
Im(B)

} ] . (4)

Define also, hp :=Hp of size 2MN×1. An extended vector
of all channels g of size 2MNP is formed as:

g =


h1

h2
...

hp

 . (5)

The vectorized form of the matrixA(hp) is given by:

A(hp) :=
[
C1Hp, . . . ,CKHp,D1Hp, . . . ,DKHp

]
= [a1(hp)a2(hp) . . . . . . a2K(hp)] .

(6)

The matrix in Eq. (6) is an orthogonal matrix with column
norm of ∥hp∥2. AsA(hp) is linear in hp there exists 2K real
matrices Φk, k = 1, 2, . . . , 2K with dimensions 2MT ×
2MN such that:

ak(hp) := Φkhp for k = 1, 2, . . . , 2K . (7)

Here,Φk for k = 1, 2, . . . , 2K is OSTBC specific and known.
Based on Eq. (7) we can rewrite Eq. (6) as:

A(hp) := [Φ1hp Φ1hp ... ...Φ2Khp] , (8)

and
vec {A(hp)} = Φhp , (9)

where:
Φ :=
[
ΦT1 ,Φ

T
2 , . . . ,Φ

T
2K

]T
. (10)

The 2MT × 2MT covariance matrix based in one training
block formulated from the received data as:

Rcov := E
{
Y Y

T
}
. (11)

For the case of multiple training frames per user J , the
reshaped real received vector of size 2JMT × 1 is formed by
concatenating the corresponding of the reshaped real received
vector of size 2MT × 1 as:

y =


y1

y2
...

yJ

 . (12)

The 2JMT × 2JMT covariance matrix based in J training
block is formulated from the received data as:

Rcov := E
{
yyT
}
. (13)

The problem is to estimate the P channel matricesHp, each
of sizeN ×M or simply g in Eq. (5) based on the covariance
matrix in Eq. (13) and the J transmitted pilot data frames
each of sizeK × 1 symbols sp per user, to form an overall
pilot vector of size PJK × 1. This is a classical estimation
problem which was studied earlier in [22]. The novelty of
this article is to utilize DL methods to build a CNN that can
extract the CSI.
The input data for the neural network constitutes a carefully
structured 4D array of single-channel images. Each image of
size 2JMT×(2JMT+1) is derived from the concatenation
of the covariance matrix with the overall pilot vector after
ensuring that the vector is reshaped appropriately by padding
zeros to the pilot vector to match the matrix dimensions.
In large number of users scenario, were the pilot vector
couldn’t be accommodated within 2JMT , the covariance
matrix is extended by padding a complete rows of zeros
and the image size will be given by 2PJK, so in general
the image size is given by max(2JMT, 2PJK) × (1 +
max(2JMT, 2PJK).
The neural network’s output data is a 3D array of vectors
representing the accurate CSI. Each vector operates as the
ground truth for one instance of the training set, with the
entire array structured to match the number of Monte Carlo
simulations. Such data is essential for training the neural
network to estimate the channel characteristics accurately
based on the input signal data.
This format allows CNN to process and learn from the signal
data, ultimately aiming to perform accurate channel estima-
tion based on the provided training set. The CNN architecture
is designed to learn and extract features from the input signal
data images, facilitating accurate channel estimation. It con-
sists of multiple convolutional, batch normalization, ReLU
and pooling layers, followed by a fully connected layer and
a regression layer optimized using SGDM.

3. Development of The Proposed Methods

Recently, there has been a significant and growing shift to-
wards exploring machine learning models as alternatives
to conventional signal processing-based channel estimation
methods. These models are designed to learn the channel re-
sponse from large sets of measurements more accurately than
traditional statistical-based methods, reflecting the current
trends in our field.
Adopting machine learning channel estimation models
presents multiple potential advantages. First, these models
may be more precise than their traditional statistical-based
counterparts, particularly in complex or fast-changing chan-
nels. Second, they can also be more flexible and learn to
adjust themselves over time in ways that traditional statistical-
based models cannot. Finally, machine learning models might
estimate a wider variety of channel properties than can be
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Tab. 1. MU-MIMO parameters.

Variable Description Value

P Number of users/transmitters 2
p p-th user= 1, 2, . . . , P 1, 2
N Number of antennas per user 4

M
Number of antennas at the

receiver 4

sp
p-th user information/pilot

data vector 3×1

K Length of sp 3

T
The block length of OSTBC

code 4

Jt Number of pilot blocks 2, 5, 10
2JMT ×
(2JMT+1)

Input image size

done using classical and statistics-based channel estimation
models.
However, using ML models for channel estimation comes with
its own set of challenges. First, these models can be resource-
intensive when being built and in operation. Additionally,
they require proper training sets for good results because poor
input could result in poor outputs. Also, the performance
of machine learning models is influenced by the similarity
of the training signals. Finally, such systems are complex to
interpret, making it difficult to understand how they operate.
The most straightforward DL architecture is the multi-layer
perceptron (MLP), which consists of a succession of fully
connected layers separated by activation functions. Despite
their simplicity, MLP remains an essential tool when the
dimension of the signal to be processed is manageable.

3.1. Datasets Generation

The research’s first aim is to generate a synthetic dataset
which imitates the actual CSI complexity. CSI of various
SNRs having different numbers will be utilized. We choose
¾-rate OSTBC (K = 3, T = 4). In this case study, we shall
have two users (P = 2) participating in a multi-access channel
where each sender employs four transmit antennas (N = 4) to
communicate with another partner via four receive antennas
each (M = 4). There is an assumption that one of the users
has a SNR that is stronger than the others by 2.5 dB. The
estimation of CSI requires the receiver to know only two to ten
blocks of information assuming Jt = 2, 5, or 10. Each case
was simulated for 1000 independent channel realizations. All
used parameters are given in Tab. 1.

3.2. Dataset Preprocessing

The dataset of the received signal went through preprocessing
procedures to form an image of size 2JMT × (2JMT +1),
which is derived from the concatenation of the covariance
matrix with the overall training vector after ensuring that the
vector is reshaped appropriately by padding zeros to match

Input Layer 2JMT×(2JMT+1): 64×65×1  
Conv Layer: 3×3×8, Padding=same 

 Batch Norm Layer 

 ReLU Layer

 Avg Pooling Layer: 2×2, Stride=2 

 
Conv Layer: 3×3×8, Padding=same 

 
Batch Norm Layer 

 

ReLU Layer

 

Avg Pooling Layer: 2×2, Stride=2 

 

Conv Layer: 3×3×8, Padding=same 
Batch Norm Layer 
ReLU Layer

Avg Pooling Layer: 2×2, Stride=2 

Conv Layer: 3×3×16, Padding=same 
Batch Norm Layer 
ReLU Layer

 Avg Pooling Layer: 2×2, Stride=2 

Conv Layer: 3×3×6, Padding=same 
Batch Norm Layer 

 
ReLU Layer

 

Conv Layer: 3×3×6, Padding=same 
Batch Norm Layer 
ReLU Layer
Fully Connected Layer 2PMN: 64 
Regression Layer

Fig. 2. Deep neural network architecture (the diagram was automat-
ically generated by Matlab).

the matrix dimensions to guarantee consistency and make
model training easier. After that, the dataset was split into
training (80%) and testing (20%) groups [31]. The output
layer utilizes a linear activation function to accommodate
this variability, allowing for the flexibility required to capture
such experiment-specific nuances. The size of the learning
set is considered 1000.

3.3. Neural Network Architecture

The convolutional neural network (CNN) architecture based
on two pilot frames, as shown in Fig. 2, is designed explicit-
ly for channel estimation in MU-MIMO systems. The CNN
architecture designed for this task begins with an input lay-
er that accepts grayscale images. Six convolutional blocks
follow this, each performing specific operations to extract,
and process features from the input data. The CNN archi-
tecture ends with an out layer of a fully connected layer to
output the estimated channel information. A regression loss
function is employed to train the neural network to accurately
learn the mapping of the input images to the accurate channel
information.

3.4. Input Layer

The CNN input layer is an image input layer with dimensions
[64, 65, 1] representing the reshaped data designed to handle
grayscale images derived from the received signal matrices
and training vectors. It acts as the first point of data entry,
identifying the shape and configuration of the input data for
the network to process.

3.5. Hidden Layers

The hidden layers consist of the following layers.
First convolutional block. Three convolutional layers are
stacked one after the other. Each layer applies convolution-
al filters to extract spatial features from the input data. The
convolutional filters are 3×3 in size, and the number of fil-
ters gradually increases from 8 to 32. Followed by batch
normalization, which is applied after each convolutional lay-
er. The previous layer’s activations are normalized, which
helps to stabilize and accelerate the training process. Every
batch normalization layer is immediately succeeded by ReLU
activating functions. ReLU introduces non-linearity to the
network by setting negative values to zero, allowing the mod-
el to learn complex patterns in the data. Four average pooling
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layers are added to down sample the spatial dimensions of
the feature maps. Each pooling layer reduces the spatial res-
olution by a factor of 2, helping to reduce computation and
control overfitting.
Second convolutional block. Like the first convolutional
layer, this layer further refines the features extracted by the
previous layers. Followed by batch normalization, ReLU
activation and average pooling layers as described above.
Third Convolutional block. It continues the process of
feature extraction with additional filters. Followed by batch
normalization, ReLU activation and average pooling layers.
Fourth convolutional block. Increases the number of filters
to 16, maintaining the same filter size and padding. This
block also includes batch normalization, ReLU activation,
and average pooling layers. The fifth and sixth convolutional
blocks reduce the filter count to 6, while maintaining the same
architecture with convolution, batch normalization and ReLU
activation layers.
Fifth convolutional layer. It further increases the number of
filters to 32. It is followed by batch normalization and ReLU
activation layers.
Sixth convolutional layer. It maintains the number of filters
at 32 for deeper feature extraction. Four average pooling
layers are added to down sample the spatial dimensions of the
feature maps. Each pooling layer reduces the spatial resolution
by a factor of 2, helping to reduce computation and control
overfitting.

3.6. Output Layer

The output layer consists of two layers:
Fully connected layer. After the convolutional blocks, the
network includes a fully connected layer with 64 output
neurons, which connects all input neurons to each output
neuron, facilitating the combination of extracted features into
final predictions.
Regression layer. It is used to compute the loss for regression
tasks, making this architecture suitable for continuous output
prediction, such as estimating channel information. This
structured approach allows the CNN to learn hierarchical
feature representations effectively, enhancing its predictive
accuracy from input images to true channel information.

3.7. Neural Network Training Process

The training process for the neural network is designed to
estimate the CSI. The critical parameters set for training
include the mini-batch size, maximum epochs, and the initial
learning rate. Specifically, we choose the size of the mini
batch to be 128 in order to settle the trade-off between learning
speed and stability.
The network is trained over a maximum of 30 epochs, ensuring
sufficient iterations for convergence. A piecewise learning
rate schedule starts with an initial learning rate of 0.004.
This schedule decreases the learning rate by a factor of 0.1
every 20 epochs. This approach helps fine-tune the model
as it approaches convergence, allowing for more precise
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Fig. 3. Training loss function.

adjustments to the weights in the later stages of training.
The data is shuffled at the beginning of each epoch to ensure
robust learning. This shuffling prevents the network from
learning any spurious patterns related to the order of the
training data.
We use validation data, evaluated every 100 iterations, to
regularly assess the model’s performance on unseen data.
This typical validation makes it possible to assess the ability of
the model to generalize and note any signs of early overfitting
during the training process. The SGDM algorithm is used
to optimize the network. We chose this optimizer because
it accelerates convergence and improves training stability.
SGDM minimizes the loss function by iteratively adjusting
the network’s weights. It incorporates momentum to avoid
oscillations and helps navigate the optimization landscape
more efficiently.
The loss function used in this context is the regression loss,
which measures the difference between the predicted channel
information and the actual values. By minimizing this loss, the
network learns to make more accurate predictions, as shown
in Fig. 3. Upon completing the training process, the neural
network can make precise predictions on new, unseen data.
This capability results from the network’s ability to effective-
ly estimate the channel response, demonstrating the model’s
learned expertise and robustness in dealing with varying
channel conditions. Combining carefully chosen training pa-
rameters, validation techniques, and an effective optimization
algorithm ensures that the neural network performs reliably
in practical applications.

4. Simulation Results
We conducted extensive simulations for the purpose of vali-
dating the proposed method. OSTBC with a rate ofK = 34
(K = 3, T = 4) was under consideration. The multi-access
scenario in question headed for two users (P = 2), each hav-
ingN = 4 transmitting antennas and communicating through
a single receiver withM = 4 receiving antennas.
We assumed that one of the two users had a transmit power
that was 2.5 dB higher than the other and carried out each of
these scenarios usingMC = 1000 independent channel real-
izations. The normalized root-mean-square error (NRMSE)
for p-th user was:
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transmitter using: a) two pilot frames and b) ten pilot frames.
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NRMSEp =
1
Mc

Mc∑
n=1


√√√√ 1
2MN

2MN∑
i=1

(
hp(i)− ĥp(i)

)2 .
(14)

A comparison of NRMSE on a more robust transmitter using
two pilot frames is presented between the CNN estimator,
LS, RRQR, and Capon methods at various SNR levels, as

010

–110

–210

N
R

M
S

E

LS
Capon CNN

RRQR

0 2 4 6 8 10 12 14 16 18 20

Number of pilot frames

Fig. 6. Performance comparison of different methods of estimating
for stronger transmitter at 10 dB SNR.

shown in Fig. 4a. The CNN method demonstrates a significant
improvement over all conventional estimators. For instance,
the CNN achieves an NRMSE of 0.001 at SNR of 11 dB,
whereas the Capon estimator requires an SNR of 20 dB to
reach the same NRMSE. Additionally, at an SNR of 5 dB, the
NRMSE values for the CNN, Capon, RRQR, and LS methods
are 0.0182, 0.0634, 0.0763, and 0.306, respectively. Similarly,
Fig. 4b. indicates that using ten pilot frames provides a 5 dB
advantage for the CNN over the Capon method in achieving
the same NRMSE.
The NRMSE versus SNR are presented in Fig. 5a. and Fig. 5b
for a system with a weaker transmitter’s CNN estimator using
two and ten pilot frames, respectively. Also, the performance
of the CNN estimator is compared with the performance
of the LS, RRQR, and Capon methods. It is observed that
with two pilot frames, the performance of the CNN-based
channel estimator significantly outperforms the performance
of equivalent signal processing-based channel estimation
models such as LS, Capon, and RRQR. The NRMSE versus
the number of pilot frames at 10 dB is illustrated in Fig.
6. Smaller NRMSE is consistently shown by CNN-based
estimator in comparison with other signal processing-based
estimators as regards the number of employed pilot frames,
thus indicating higher reliability of CNN-based estimator than
other signal processing-based estimators. Indeed, the CNN
method is better, even with a single pilot frame. Moreover, the
number of pilot frames will influence the performance of the
LS, Capon, and QR methods. Finally, the graph shows that
as the number of pilot frames increases, the gradual drop-off
occurs for the estimator’s performance based upon CNN,
which tends to maintain its stability.

5. Conclusion

This paper presents a novel deep-learning algorithm to es-
timate the channel state at the receiver end (CSIR) in an
MU-MIMO system using OSTBC. The proposed CNN mod-
el, featuring six convolutional blocks for extracting features
and one fully connected layer for outputting channel esti-
mates, demonstrated better performance than other classical
subspace-based estimators. We used just one pilot block and
validated proposed approach by extensive computer simula-
tions, which indicated significant improvements over classical
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techniques such as least squares, Capon, and RRQR. Then,
the usage of pilot blocks was extended up to 20 frames. These
findings proved that this novel method based on deep learn-
ing can be relied upon for accurate CSIR estimation, thereby
improving the signal decoding efficiency of multi-antenna
communication systems.
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