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Abstract  Software-defined networking (SDN) is an approach
to network management allowing to enhance the performance
of the network and making it more flexible. The centralized
architecture of SDN makes it vulnerable to cyberattacks, es-
pecially distributed denial of service (DDoS) attacks. Existing
research investigates the detection of DDoS attacks separately
on the control plane and data plane. However, there is a need
for efficient and accurate detection of these attacks using fea-
tures obtained from both control and data planes. Therefore,
we present a mechanism for identifying DDoS attacks using en-
tropy, multiple feature selection mechanisms, and deep learning.
Initially, we use entropy on the control plane to detect anoma-
lous activity and identify suspicious switches. Next, we capture
traffic on the suspicious switches to detect DDoS attacks. To de-
tect these attacks, we utilize multi-layer perceptron (MLP) deep
learning models, convolutional neural network (CNN), and the
long short-term memory (LSTM) approach. An InSDN dataset
is used to train the model and test data are generated using
Mininet emulation and the Ryu controller. The results reveal
that LSTM outperforms MLP and CNN, achieving an accuracy
of 99.83%.

Keywords  DDoS, deep learning, LSTM, machine learning,
random forest, SDN

1. Introduction

Software-defined networking (SDN) is a popular technology
providing a centralized and efficient network infrastructure.
In contrast to traditional distributed and composite network
designs, SDN separates the network traffic forwarding pro-
cess (infrastructure layer) from the control process (control
plane). This separation offers numerous advantages, such as
programmable configuration capabilities. By leveraging open
APIs within software applications, SDN allows network be-
havior to be programmed centrally across the entire network
and its constituent parts. However, SDN is also associated
with some drawbacks stemming from its centralized architec-
ture, i.e. a single point of failure. In the event of an intrusion,
this can lead to disruptions throughout the entire network.
Distributed denial of service (DDoS) attacks pose a significant
risk to SDN security. The primary objective of these attacks
is to prevent authorized users from accessing resources. Addi-
tionally, these attacks consume the targeted source’s capacity,
leading to delays and disruptions in normal operations. While

several studies have explored the use of classification algo-
rithms to identify and prevent DDoS attacks, current research
faces such challenges as achieving realistic performance rates
for the detection system, addressing detection delays, and ef-
fectively handling high volumes of network traffic [1]. The
absence of a comprehensive real-world solution to detect and
prevent different types of attacks has motivated the develop-
ment of a dedicated DDoS attack detection system.

Recently, AI-driven methodologies for identifying DDoS
attacks have been utilized [2] and most of these research
projects rely on machine/deep learning approaches to detect
DDoS attacks [3]. While some studies in the literature have
focused on addressing DDoS attacks by employing entropy or
unsupervised learning, they have turned out to be less accurate
[4]. Hence, there exists a necessity to integrate an entropy-
based approach with machine/deep learning approaches to
augment detection precision.

In this work, we have introduced a mechanism that employs
an entropy-based approach to identify suspicious switches in
the SDN control plane. We utilize a multi-feature selection
mechanism with a deep learning-based method on the data
plane to identify attacker machines. This deep learning mod-
ule captures packets from potentially compromised switches
over a predetermined time frame and employs a trained model
to identify and classify potential attacks. Through the in-
tegration of both entropy and deep learning modules, the
proposed approach is capable of effectively detecting unau-
thorized attacks and provides robust defense mechanisms
against potential unknown threats targeting the application
layer.

This study offers the following contributions:

• an entropy-based method is proposed that serves as a pri-
mary detection method on the control plane. This module
identifies OpenFlow switches that are potentially under
attack,
• machine and deep learning modules are developed that

capture traffic on the susceptible switches to identify a
DDoS attack. A multi-feature selection mechanism using
SelectKBest, ANOVA F-value scores and feature impor-
tance scores from the random forest classifier is proposed,
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• a comprehensive performance evaluation of the proposed
method is performed, including an assessment of the accu-
racy and efficiency of the detection techniques.

The remaining part of the article is divided into four sections.
Section 2 reviews related research, while Section 3 outlines
the proposed model and algorithms. The results are presented
in Section 4, and conclusions are drawn in Section 5.

2. Related Work

In [5], the authors developed a real-time DDoS attack detec-
tion mechanism using a deep neural network solution and
the CICIDS 2017 dataset. The results show that the pro-
posed model performs better than other models with different
datasets, achieving an accuracy of 97.59% while consuming
less time and resources. The authors of [6] initially set up
a DDoS attack detection mechanism on the data plane. Then,
to enhance the precision of detection, k-nearest neighbors and
k-means machine learning algorithms were employed. These
algorithms utilize a combination of five features to identi-
fy vulnerable flows in the network. The results indicate that
the proposed method achieves a superior accuracy rate of
97.53%, outperforming both entropy and self-organizing map
techniques.
Some of the work is based on statistical techniques. In [7],
a joint entropy-based DDoS defense scheme is proposed. The
authors use joint entropy measurements from multiple net-
work features to detect anomalies. These features include,
inter alia, packet rate, flow count, and byte count. By calcu-
lating the entropy of these features and analyzing their joint
distributions, deviations indicative of DDoS attacks are iden-
tified. Paper [8] introduces an entropy-based detection method
that analyzes various network traffic metrics to detect DDoS
attacks. This approach aims to address challenges posed by
the dynamic and potentially large-scale nature of DoS attacks
in SDN networks. Through experimental validation, the pa-
per demonstrates the effectiveness of such a framework in
accurately identifying DDoS attacks.
In [9], the authors proposed a DDoS attack detection method
using a combination of entropy and ensemble learning tech-
niques. An inspection module deployed on the data plane
collects real-time packets from the network through the edge
switch. When vulnerable packets are detected, the controller
is immediately notified. To achieve more accurate detection,
a detection module is established on the control plane. This
module incorporates five features and utilizes the random
forest algorithm to classify network traffic. Once an attack
packet is confirmed, the controller takes immediate action
by dropping the packets from the edge switch, thereby block-
ing the attack. The simulation results, focusing on ICMP and
SYN flood attacks, demonstrate a quick response and a more
efficient detection rate.
In article [10], a cross-plane DDoS mitigation approach is in-
troduced relying on two events to detect and react to DDoS
attacks. Firstly, a data plane detection module is established,
including a flow-monitoring algorithm. Secondly, a machine

learning-based detection module is implemented on the con-
trol plane to ensure more precise attack detection. The results
demonstrate that the system achieves a higher accuracy rate
of 96%. In [11], a hybrid approach is proposed that com-
bines features from both control and data planes. An entropy
module is utilized as the primary detection feature, while
a machine learning module is employed for more accurate
attack detection. The results reveal that the integration of da-
ta and control plane features leads to better accuracy with
reduced overhead.
Another framework, as proposed in [12], focuses on the
control plane. The work emphasizes the security of both
data and control planes. A deep neural network is used for
packet classification. Preliminary detection occurs on the data
plane, and attack traffic is mitigated. To detect attacks at an
earlier stage, a detection module is set up on the control plane,
providing better service to users using a priority queue. In
article [13], the authors developed a safeguard mechanism
to protect the control plane from DDoS attacks in software-
defined networks. The safeguard framework is deployed across
multiple control planes. The detection module works on the
data plane.
In [14], the authors proposed a DDoS attack detection method
using new features. On the control plane, flow messages are
collected from the data plane, which is followed by extraction
of important features. Next, the SVM model is trained using
a dedicated dataset and is tested with real-time data. The
results reveal that the system achieves a better accuracy rate
compared to other existing solutions.
In paper [15], a method for detecting DDoS attacks by com-
bining general entropy and the neural network particle swarm
optimization with personal best (PSO-BP) is introduced. The
entropy module is positioned on the OpenFlow switch to de-
tect traffic, and the detection result is classified into normal
and anomalous. To detect an attack, the controller uses the
neural network PSO-BP. Results reveal that the DDoS attack
detection rate is accurate and imposes a low CPU load on
the controller. In [16], the authors proposed a mechanism for
detecting and mitigating DDoS attacks using the data layer.
The results show that the time to detection and mitigation is
between 100 and 150 s.
The authors of [17] have developed a method to mitigate
DDoS attacks originating from compromised OpenFlow
switches on the controller. The research shows how a DDoS
attack can be launched on an SDN controller with coop-
erating switches. It also directly mitigates such an attack
within the second recurring request. In [18], the authors have
proposed security mechanisms against attacks based on en-
tropy in SDN-cloud using a POX controller. The developed
mechanism has three advantages: high detection rate, low
false-positive rate, and the ability to mitigate the attack. The
proposed framework has the highest accuracy of 98.2%.
In [19], the authors introduced a framework to detect DDoS
attacks with the cross-plane. The primary detection mecha-
nism is set up at the data plane, and for precise DDoS attack
detection the mechanism is set up at the control plane. The re-
sult reveals that the mentioned system is efficient and reduces
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detection delay with less communication over the heading
rate at the southbound.
Article [20] presents a mechanism on the control plane for
a hybrid classification model, which utilizes SVM and SVM-
SOM (self-organized map) machine learning algorithms for
packet classification. The machine-learning module respon-
sible for classification is implemented on the control plane.
The results indicate that SVM-SOM achieves higher accura-
cy compared to SVM and SOM, with a lower false-positive
rate than other algorithms. In paper [21], an efficient frame-
work for an intrusion detection system on the data plane using
data plane development kit (DPDK) is used to process pack-
ets at high speeds and monitor the data plane. The results
demonstrate that the proposed DDoS attack detection frame-
work effectively addresses high-speed networks in intrusion
detection systems.
An automated system using a hybrid machine-learning al-
gorithm for traffic packet classification is presented in [22].
The results show that a hybrid model combining SVM with
random forest classification achieves the highest accuracy of
98.8%, with a low false-positive rate. The authors of [23] fo-
cus on the detection and mitigation of DDoS attacks using
deep learning. CNN and recurrent neural network (RNN) long
short-term memory models are employed for classification.
RNN and LSTM perform well in detecting and mitigating
DDoS attacks, achieving an accuracy of 89.63%. Performance
of deep learning models is better when using a split ratio of
7:3 compared to 8:2 or 6:4. In [24], a big data framework for
large-scale SDN that combines OpenStack with SDN using
the ONOS controller, Apache Spark, and Apache Kafka is
researched. The work overcomes the limitations of tradition-
al data processing and validates the strength, scalability, and
efficiency of the proposed framework.
The framework from [25] mitigates DDoS attacks on the
data plane. The detection method analyzes header fields of
the TCP connection and hashes them. Upon detecting an
attack, the packets are dropped. In [26], the authors develop
a mechanism using deep learning. They employ a standard
dataset for traffic classification after preprocessing. The results
show that the stacked auto-encoder multi-layer perceptron
achieves an accuracy rate of 99.75%. The aim of the paper is
to classify traffic using deep learning techniques.
The majority of the work mentioned above was carried using
Internet datasets, such as CICIDS and NSL-KDD. Further-
more, most of the authors did not focus on feature selection
techniques. We address these research gaps by employing
a hybrid approach incorporating the inSDN dataset [27] and
multi-feature selection methods.

3. Proposed Methodology

This section outlines the design of the proposed system,
including the entropy module, the multi-feature selection
mechanism, the InSDN dataset utilized for model training,
and the deep learning algorithms employed for classifying
network traffic in a test environment, using Mininet emulation.

3.1. System Model

As shown in Fig. 1, the process of detecting DDoS attacks in
SDN environments involves a two-layered methodology com-
bining entropy-based anomaly detection and the deep learning
technique. The approach begins by leveraging entropy thresh-
olds to identify anomalous network traffic behaviors. Entropy,
in this context, measures the unpredictability or randomness
of source IP addresses within a defined packet window (e.g.
50 packets). When entropy drops below a specified thresh-
old during this window, it means that potentially suspicious
activity has been detected. We monitor the drop in entropy
for 10 consecutive packet windows (entropy drop counter),
providing a cumulative measure of suspicious behavior.
Upon detecting sustained drops in entropy indicative of po-
tential DDoS activity (e.g. when entropy drop counter reaches
a predefined threshold, such as 10, i.e. an anomaly threshold),
the next phase involves identifying the switches associated
with the suspicious IP addresses using SDN flow rules. These
switches are critical nodes within the network infrastructure
where abnormal traffic patterns are observed.
To further validate and enhance the detection process, a deep
learning module is employed. This module operates by cap-
turing real-time network traffic data from identified switches
for fixed time intervals (3 s) and then applies a deep learn-
ing algorithm to classify traffic patterns into those that are
normal and malicious. The deep learning model is trained
using the InSDN dataset to recognize the signature character-
istics of DDoS attacks, enabling it to accurately distinguish
between legitimate and malicious traffic.
The iterative, entropy-based anomaly detection process com-
bined with deep learning ensures a proactive approach to
detecting and mitigating DDoS attacks in SDN environments.

3.2. Entropy Computation

In an OpenFlow-enabled SDN network, when a TCP or UDP
packet arrives at a switch, the switch checks its flow table for
an existing rule. If no rule is found, the switch encapsulates
the packet in a “packet_in” message and sends it to the SDN
controller over a TCP connection. The controller analyzes the
packet_in message, determines the optimal forwarding path,
and sends back a “flow_mod” message with the new rule to
the switch. The switch then forwards the packet according to
the new rule and uses this rule to handle future packets.
We then use the packet_in to compute entropy and detect the
suspicious host machines. In the SDN controller, entropy for
packet_in messages using the source IP is calculated. This
measures the randomness or unpredictability of the source IP
addresses from a dataset of 50 packets. Entropy is a statistical
measure that quantifies the level of uncertainty or diversity
in a dataset. For packet_in messages, this can be done by
first collecting the source IP addresses from 50 incoming
packet_in messages.
To calculate entropy, the following steps are taken:
• determine the frequency of each unique source IP address

in the 50 packets,
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Fig. 1. Diagram of the proposed system.

• compute probability pi of each source IP i occurring, which
is the frequency of i divided by 50 (the total number of
packet_in messages),
• use the entropy formula H(X) = −

∑
pilog2(pi), where

X represents the set of source IPs.
The resulting entropy value H(X) indicates the distribution
of source IP addresses. A higher entropy value suggests a more
diverse and unpredictable set of source IPs, while a lower
entropy value indicates less diversity and more predictability.
For instance, if each of the 50 packets has a unique source IP,
the entropy will be higher compared to a scenario where all
packets originate from a few IPs. The process of computing
entropy is shown in Algorithm 1.
We utilize an entropy threshold of 0.5 to flag potentially sus-
picious IPs. The entropy drop counter serves as a metric
to monitor such activity. Entropy is calculated over a 50–
packet window. If entropy falls below the threshold during
this window, indicating suspicious behavior, the counter is
incremented. Detection of suspicious activity occurs when
entropy remains below the threshold for 10 consecutive in-
stances. Suspicious switches associated with these IPs are
identified through flow rules. Table 1 presents the statistical-
ly derived entropy values from the different scenarios which
were used to set the 0.5 threshold.
Once an anomaly is detected, a deep learning module is then
employed to capture test traffic for 3 s on the identified switch
to detect potential DDoS attacks. This iterative process con-
tinues until the end of the emulation process. The algorithm
for malicious activity detection is presented as Algorithm 2.

3.3. Data Preprocessing

InSDN [27] addresses the lack of publicly available datasets
for evaluating IDSs in SDN environments. The dataset is

Algorithm 1 Calculate_Entropy subroutine

Input: IP_List, packet_count
Output: Entropy

1: Entropy ← 0.0
2: for each (IP, value) in IP_List.items() do

3: p← value
packet_count

4: if p > 0 then
5: Entropy ← Entropy − (p · log2(p))
6: end if
7: end for
8: return Entropy

created using a virtualized network testbed with various VMs
to simulate both legitimate and malicious traffic.
The dataset includes attacks such as DDoS, scanning, spoof-
ing, and other common network attacks with 81 features. This
dataset was used for training and the test data were collected
from Mininet emulation with Ryu as the controller. Prepro-
cessing of the InSDN dataset involves several key steps to
prepare the data for effective use in training and evaluating
machine learning models for DDoS attack detection in SDN
environments. The preprocessing phase includes cleaning
the dataset to remove noise and inconsistencies, handling
missing values, and normalizing numerical features to ensure
uniformity and enhance model performance. Feature engi-

Tab. 1. Entropy value with different attack rates.

Scenario Attack packet rate [%] Entropy value

1 80 0.39
2 60 0.54
3 40 0.66
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Algorithm 2 Detect_Malicious_Activity procedure

Input: Network traffic
Output: Hosts with malicious activity

1: Initialize packet_count← 0
2: Initialize Entropy_Drop_Counter ← 0
3: Initialize Threshold← 0.3
4: Initialize IP_List as empty dictionary
5: Initialize Flag_DDoS_Detected← 0
6: while receiving packets do
7: src_ip← get_source_ip(packet)
8: packet_count← packet_count+ 1
9: if src_ip exists in IP_List then

10: IP_List[src_ip]← IP_List[src_ip] + 1
11: else
12: IP_List[src_ip]← 1
13: end if
14: if packet_count = 50 then
15: Entropy ← Calculate_Entropy
16: if Entropy ¬ Threshold then
17: Increment Entropy_Drop_Counter
18: else
19: Entropy_Drop_Counter ← 0
20: end if
21: if Entropy_Drop_Counter = 10 then
22: Flag_DDoS_Detected← 1
23: Identify the suspicious IPs
24: Identify suspicious switches
25: Invoke DL model on identified switches
26: end if
27: packet_count← 0
28: Clear IP_List
29: end if
30: end while

neering techniques are applied to extract relevant features that
are capable of distinguishing between normal and malicious
network behaviors.
Additionally, data augmentation methods are utilized to in-
crease diversity and robustness of the dataset, ensuring com-
prehensive coverage of potential attack scenarios. The test data
is generated using a Mininet-emulated topology, as shown in
Fig. 2. Mininet provides a realistic virtual network environ-
ment in which various network configurations and topologies
can be simulated. This allows for thorough testing and evalua-
tion of network performance and security measures, ensuring
that the results apply to real-world scenarios.

3.4. Multiple Feature Selection Methods

Three feature extraction methods, namely SelectKBest, ANO-
VA (analysis of variance) F-value scores, and feature impor-
tance scores from a random forest (RF) classifier were em-
ployed to select the top ten features from a total of 81. Each
method initially selected 20 features, and the ten most fre-
quently occurring features across these selections were then
chosen based on their rankings.

Tab. 2. Top 10 features selected from the InSDN dataset.

No. Name of
feature Description

1 Src IP IP address source from which the
packet is sent

2 Dst IP IP address at which the packet is
intended to be sent

3 Protocol The communication network
protocol (e.g. TCP, UDP)

4 Pkt Len
Std

The standard deviation of the flow’s
packet lengths

5 Flow ID Distinct number for every flow

6 Bwd Pkt
Len Mean

The mean packet length in the
reverse direction

7 Pkt Len
Var

Variation in the duration of packets
within the flow

8 Src Port Source port number used by the
packet

9 Bwd Seg
Avg Size

Segment size average moving
backward

10 Bwd Pkt
Std Len

Packet length standard deviation in
the reverse direction

SelectKBest is a feature extraction method that selects the top
k features based on univariate statistical tests. This method
scores each feature individually using a chosen statistical test
and retains the highest-scoring features, making it useful for
quickly identifying the most relevant features for predictive
modeling.
ANOVA F-value scores are used to assess the significance of
the differences between group means in a dataset. In feature
selection, ANOVA F-value scores evaluate the relationship
between each feature and the target variable, selecting fea-
tures that show the highest F-values, indicating a stronger
discriminatory power between classes.
Feature importance scores from a RF classifier provide a mea-
sure of the significance of each feature in predicting the target
variable. The random forest algorithm computes these scores
by averaging the reduction in impurity across all trees in the
forest for each feature. Features with higher importance scores
contribute more to the model’s predictive accuracy, making
them valuable for feature selection.
By employing these three methods, researchers can identify
the most informative features in their dataset, improving the
performance and efficiency of machine learning models. The
ten best-selected features are represented in Tab. 2. Algorithm
3 illustrates the steps for feature selection.

3.5. Deep Learning Module

We have used MLP, CNN and LSTM to evaluate the perfor-
mance of the classification approach. The deep learning model
is trained using the InSDN dataset, and testing is performed
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Algorithm 3 Feature selection using multiple methods

Input: Dataset D with 81 features, target variable y
Output: Top 10 selected features

1: Initialize parameters:
2: n← 81
3: k ← 20
4: m← 10
5: Apply feature selection methods:
6: Initialize an empty list selected_features
7: for each method in {SelectKBest, ANOVA F-value, Ran-

domForest} do
8: if method is SelectKBest then
9: Perform univariate statistical tests

10: Select the top k features based on their scores
11: else if method is ANOVA F-value then
12: Compute the F-value for each feature
13: Select top k features based on F-value scores
14: else if method is RandomForest then
15: Train a RandomForest classifier on the dataset
16: Calculate feature importance scores
17: Select the top k features based on their importance

scores
18: end if
19: Append the chosen features to selected_features
20: end for
21: Combine selected features:
22: Initialize a dictionary feature_frequency to count the

frequency of each feature
23: for feature in selected_features do
24: if feature is already in feature_frequency then
25: Increment the count of feature by 1
26: else
27: Add feature_frequency with count 1
28: end if
29: end for
30: Select topm features:
31: Sort the features in feature_frequency by their fre-

quency in descending order
32: Select the topm features with the highest frequency
33: Output: Return the list of the top 10 features

using real-time traffic generated with the help of Mininet and
the Ryu controller in SDN.
Algorithm 4 illustrates the steps involved in the design.

4. Results and Discussion

As shown in Fig. 2, a Mininet emulator is used to create the
SDN environment. We employed a leaf and spine topology
consisting of three OpenFlow virtual switches and 20 hosts.
All the switches are managed by the Ryu controller, which
provides centralized control and enables dynamic network
management. Both normal and abnormal traffic are sent
from various source IPs to multiple target machines. We
also simulated spoofed source IP addresses for the attack. The
hping3 tool is used to generate the traffic.

.... .. .. .
.... .. .. .
.... .. .. .
.
..

... .. .. .
..

S2S2

S3S1

....... .......

C0

h1 h10 h11 h20

Fig. 2. Mininet network topology.

Algorithm 4 LSTM model for DDoS attacks detection

Input: Preprocessed dataset selected_features_df
with features and labels
Output: Trained LSTM model and evaluation metrics

1: Build LSTM model:
2: Initialize a sequential model
3: Add an LSTM layer with ReLU activation
4: Add a dense layer with sigmoid activation function
5: Compile the model using Adam optimizer and

binary_cross_entropy loss function
6: Train the model:
7: for epoch← 1 to epochs do
8: Train the model on Xtrain and ytrain for one epoch

with batch_size
9: Validate the model onXtest and ytest during training

10: if epoch is the final epoch then
11: Print ”Final epoch reached: Epoch” epoch
12: else
13: Print ”Continuing to next epoch: Epoch” epoch
14: end if
15: end for
16: Evaluate the model:
17: Evaluate the model on the test set Xtest and ytest
18: Print the test accuracy

4.1. Machine Learning Results

We use machine learning (ML) algorithms to detect the attack
on suspicious switches. Based on anomaly detection, traffic is
captured, over a fixed time period, from suspicious switches
in the SDN environment. Figure 3 illustrates the accuracy of
various ML algorithms. The trained model utilized for this
evaluation is based on the InSDN dataset.
We assessed the performance of machine learning algorithms
using the InSDN dataset with the top 10 features selected,
from an initial set of 81, as training and test data generated
using the Mininet emulator and the Ryu controller. The results
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showed that logistic regression (LR) achieved an accuracy
of 94.6%, the decision tree classifier reached an accuracy of
96.8%, and the random forest (RF) classifier outperformed
the other models with an accuracy of 98.2%.
Table 3 shows the precision, recall and F1-score levels of
ML models. The results indicate that RF performs better
than decision tree and LR in terms of accuracy due to its
ensemble learning approach, which reduces overfitting and
stabilizes predictions by averaging multiple trees. This method
effectively handles complex relationships and interactions
among features, making it more robust to noise and outliers.
RF also evaluates feature importance across all trees, ensuring
that key features are prioritized.
These factors collectively contribute to the superior accuracy
of random forest, compared with other models. The receiver
operating characteristic curve (ROC) and confusion matrix
are represented in Figs. 4 and 5, respectively. The ROC curve
plots the true positive rate (TPR) against the false positive rate
(FPR), with a red line representing the performance of the
RF model and a blue dashed line representing a random clas-
sifier, for comparison. The coordinates used for the RF model
indicate its performance at various threshold levels, demon-
strating its effectiveness in distinguishing between classes
with the result of 0.99. A ROC value of 0.99 indicates that
the RF model has a high TPR and a low FPR, demonstrat-
ing its effectiveness and reliability in detecting the targeted
instances. Figure 5 presents a confusion matrix for a ran-
dom forest model, illustrating its performance in terms of
classification accuracy. This graph illustrates the model’s
effectiveness and the distribution of prediction errors, em-
phasizing its performance in distinguishing between the two
classes.

Tab. 3. Performance of the ML models.

ML algorithms Precision
(P)

Recall
(R) F1-score

Decision tree 0.966 0.97 0.968
Logistic

regression (LR) 0.951 0.94 0.942

Random forest
(RF) 0.984 0.98 0.982

Trained with the InSDN dataset and tested with data
generated using Mininet emulation
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4.2. Deep Learning Results

Deep learning models are essential due to their ability to cap-
ture complex patterns and relationships within data. These
models handle high-dimensional data effectively, distinguish-
ing between normal and malicious traffic, even when signif-
icant variability is at play. The scalability of deep learning
allows it to be applied in large-scale network environments
without performance losses.
We use three deep learning models: LSTM, CNN, and MLP,
each with different hyperparameter tuning. The LSTM model
consists of an LSTM layer followed by dense layers, capturing
sequential patterns within the feature set, with a softmax out-
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put layer. It is trained using categorical cross-entropy loss and
the Adam optimizer. The MLP model is configured with an
input layer matching the number of selected features, several
hidden layers with ReLU activation functions, and a soft-
max output layer. It is trained using backpropagation with
a categorical cross-entropy loss function. The CNN model
includes an input layer reshaped for a 2D convolutional archi-
tecture, multiple convolutional layers with ReLU activation,
max-pooling layers, and fully connected layers, culminating
in a softmax output layer.
As shown in Fig. 6, LSTM achieved the highest accuracy
among the three models (99.83%), outperforming both CNN
and MLP models, thus highlighting its superior capability in
capturing temporal relationships within the selected features.
LSTM is better at managing sequential data and capturing
temporal dependencies, making them suitable for analyzing
networktraffic. The built-in memory mechanism retains long-
term dependencies to store anomalous traffic patterns. LSTM
has allowed to enhance the process of analyzing temporal
patterns and detecting anomalies within network traffic data.
Figure 7 represents the loss graph during the training phase
of the dataset and the validation loss obtained after evaluat-
ing the validation dataset. The graph demonstrates that the
loss experienced decreases gradually over the course of mul-
tiple epochs. On the other hand, the validation loss exhibits

fluctuations at epoch 8 before stabilizing over the remaining
epochs. Figure 8 depicts the accuracy graph during the train-
ing phase of the dataset and the validation accuracy obtained
after evaluating the validation dataset. The results reveal that
the accuracy improves gradually over the number of epochs
during training. However, at epoch 8, there is a drop in vali-
dation accuracy, followed by a sudden increase, after which
the accuracy remains stable over subsequent epochs.
In summary, the LSTM model achieves the highest accuracy
level (99.83%) among the deep learning models. The random
forest model achieves the highest accuracy (98.2%) among
machine learning models. Therefore, we conclude that deep
learning outperforms machine learning. Consequently, we
use the LSTM model to detect DDoS attacks in data captured
from suspicious switches identified by the entropy module.
This collaborative approach helps reduce the DDoS attack
detection lead time.

5. Conclusions

SDN is a centrally controlled and programmable network ar-
chitecture that enables a flexible network environment. The
primary concern in SDN networks is the issue of security.
This work aims to address the security challenge by designing
a method for detecting DDoS attacks in SDN. The proposed
approach consists of two modules. Initially, the entropy mod-
ule is deployed on the control plane to detect suspicious
switches and hosts based on entropy. Then, a deep learning
module is used to detect DDoS attacks using the test data cap-
tured from the suspicious switches. The deep learning module
performs the important feature extraction and attack classifi-
cation tasks using deep learning algorithms, such as MLP,
CNN, and LSTM. Based on the experiments and evaluation
results, the system achieves an average accuracy of 99.83%
in categorizing various types of DDoS flooding attacks, e.g.
UDP, TCP-SYN, and ICMP. The experiments indicate that
the deep learning techniques yield better evaluation results,
particularly in terms of model accuracy and model loss.
As future work, we plan to implement the proposed mecha-
nism within a real-time SDN testbed based on the OpenStack
cloud.
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