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Abstract  In the literature, inter-element spacing antenna de-
sign methods have been widely discussed and presented as an
alternative approach to element excitation amplitude and/or
phase control methods that may be relied upon to achieve the
required array pattern shapes. However, methods associated
with non-uniformly distributed elements suffer from the element
overlap problem, where some of the optimized element locations
may overlap each other and cause changes in the overall array
aperture length. Practically, these element overlaps cannot be
implemented, due to the physical antenna element size, without
omitting some of them. Consequently, the overall performance
of the antenna array is degraded. Further, degradation may oc-
cur when considering phased arrays with scanned main beams.
In this paper, we first illustrate the effect of the problem of over-
lapped element locations and then we propose two approaches
based on the genetic algorithm to optimize non-uniformly spaced
arrays with overlapped element locations, while simultaneously
preserving the array’s directivity. To solve the problem of over-
lapping and to determine the physical array element size, the
minimum element-spacing constraints are incorporated in a sim-
ple way in the proposed approaches. Thus, the time required to
perform optimization-related computations is greatly reduced.
Simulation results confirm the effectiveness of the two proposed
solutions, where the probability of the elements overlapping has
been reduced to zero under specific conditions related to the
locations of the some of the elements, while the peak sidelobe
levels were always kept below –15 dB and directivity was main-
tained, to the extent possible, at the level of that of standard
uniformly spaced arrays.
Keywords  element location overlaps, non-uniformly spaced
arrays, phased antenna arrays, sidelobe level minimization

1. Introduction
In the process of synthesizing an antenna array, several design
variables which can be efficiently controlled to achieve the de-
sired beam pattern shapes offering low sidelobe level, limited
beam width and good directivity need to be taken into consid-
eration. These include the separation distances between the
array’s elements (or absolute element locations), amplitude
weighting and/or phase weighting of the array element exci-
tation vector. The amplitude and/or phase weighting-based
design methods with uniformly spaced elements (i.e. fixed
element locations) are referred to as electronic approaches,
with the array patterns being reshaped electronically, and
the element locations remaining fixed and uniform. The un-
equally spaced array methods are referred to as mechanical
approaches, as the array patterns are mechanically reshaped

by changing the locations of the specific elements. In the
case of automated scanning beam arrays, both mechanical
and electronic approaches require controllable phase shifters
to achieve wide-angle beam scanning. These phase shifters
are separate and independent from those used for element
excitation phase weighting control [1].
From the point of view of implementing the designs, the
feeding network of the electronic approaches requires fine
adjustment of the attenuators/amplifiers used for amplitude
excitation weighting. Additionally, accurate phase shifters
are required for phase excitation weighting of the array’s
elements, to reshape the array’s pattern in accordance with
the requirements [2]. Any errors or deviations from those
fine values will cause significant and unavoidable changes
in the radiation pattern [3], [4]. Therefore, these electronic
approaches are very sensitive, relatively costly and require
that advanced RF components be used.
On the other hand, mechanical approaches with uniform am-
plitude excitation weighting have been widely used due to
the need for a simple feeding divider network which can be
implemented without any attenuators or amplifiers. There-
fore, no sensitivity-related errors can be made [5]. These
advantages have recently motivated many researchers from
around the world to fully explore the benefits of these types
of arrays [6]–[10].
Further, non-uniformly spaced arrays are expected to be more
popular in current and future wireless communication systems
due to their great array pattern reshaping capability. In order
to meet some desirable requirements, several user-defined
constraints may be introduced concerning either the array’s
geometry itself (the number of elements and the spacing
between them) its radiation pattern (minimum sidelobe level
and limited beamwidth). These constraints mean that the
synthesis of such arrays becomes a non-linear problem [11]
requiring efficient optimization techniques. Thus, various
evolution algorithms, such as the genetic algorithm (GA)
[12], [13], differential evolution (DE) [14], particle swarm
optimization (PSO) [15] and the whale optimization algorithm
(WOA) [16] have been used to solve this non-linear problem.
Other solutions determine an optimal combination of feeding
current and inter-element spacing to produce array patterns
with the lowest sidelobe level, improved beamwidth, and
maximum directivity [17]. Moreover, the thinning process
produces non-uniform inter-element spacing and it has been
exploited to minimize sidelobe levels [18], [19]. However,
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thinned arrays need a very high number of combinations to
examine all potential element locations. Thus, non-uniformly
spaced arrays obtained with the use of the thinning process
are very time consuming to produce [20]. Therefore, deter-
mination of inter-element spacing or element locations may
provide greater control over the shape of the array’s radiation
pattern than thinning methods.
Recently, a T-shaped clustered array [21], a circular bound-
ary array [22] and control over the position of selected ele-
ments [23] have been also relied upon for sidelobe reduction.
Other methods use a redundancy elimination technique to
synthesize large-scale planar isophoric sparse arrays in order
to achieve low sidelobe levels. In this approach, the theoreti-
cal limits for the achievable minimum spacing and aperture
are calculated to enable selective retention of non-redundant
positional constraints only [24]. In [25], an alternating con-
vex optimization was suggested to synthesize non-uniformly
spaced arrays with minimum element spacing constraints.
In this paper, the problem of element location overlap, which is
unavoidable when optimizing the absolute element locations
using all non-uniformly spaced methods, is addressed. Then,
two efficient solutions based on the bounding location limits
are suggested to prevent this problem from occurring. Finally,
a comprehensive and optimized method for designing non-
uniformly spaced arrays with minimum element spacing
constraints and improved response time is presented. This
problem becomes more significant and may include all or
most of the array element locations when imposing more
user-defined constraints and steering the main beams towards
direction other than the normal referenced direction. Thus, the
process of designing such arrays in practice calls for increased
attention.
Finally, it is worth mentioning that the problem of overlapping
element locations in non-uniformly spaced arrays has not been
fully discussed and addressed in the literature and continues
remains a truly challenging issue that needs to be resolved.

2. Principles of the Proposed Method

2.1. Formulation of the Element Overlap Problem

Non-uniform spacing between the array’s elements may be
expressed in terms of inter-element spacing dn or actual
element location with respect to the center of the array xn.
The overall array pattern AP , which is a product of element
patternEP and array factorAF (being equal to inter-element
spacing dn) for N even and symmetrical radiating elements
can be written as:

AP (u) = EP (u)×AF (u)

=

N
2∑
n=1

an cos
[
(n− 0.5)k dn(u− uo)

]
,

(1)

where u = sin(θ), θ is the elevation angle within the range
of 0 ¬ θ ¬ π, EP (u) is the element pattern which is equal
to one for isotropic radiators, an is the complex (amplitude
and phase) weighting of the n-th element in the array which

is equal to an = 1 for unit-amplitude weighting, k = 2πλ , and
uo is the steering direction of the main beam.
Equation (1) can be rewritten – in terms of element locations
xn as follows:

AP (u) =

N
2∑
n=1

an cos
[
k xn(u− uo)

]
. (2)

To clearly explain the difference between Eqs. (1) and (2), it is
important to determine the bounds concerning both minimum
and maximum potential values of both dn and xn, as they need
to be examined by the optimizer for inter-element spacing
dn = ∆( dλ ), 0 ¬ ∆ ¬ 1 and for xn being 0 ¬ xn ¬ LAA,
where LAA is the length of the array’s aperture.
To minimize the peak sidelobe level in the region FNBW ¬
|u − uo| ¬ 1 of the array pattern in Eq. (1) or Eq. (2), the
following cost function can be used [12]:

Cost = 20 log10 min
(
|AP (u− uo)|

)
, (3)

whereFNBW is the first null beam width in the array pattern
which defines the starting point of the sidelobe region.
Such a cost function minimizes the sidelobes by optimizing
either the array element locations xn or inter-element spacings
dn, according to Eqs. (1) and (2). In both cases, only these
two sets of variables, i.e. dn and xn, are the design-related
parameters that need to be optimized.
In order to keep the beam width and, consequently, the direc-
tivity of the optimized non-uniformly spaced array as close
as possible to that of the standard uniformly spaced array, the
overall array apertures of both of them should be kept the
same. Thus, the following location bounds are imposed on
the proposed non-uniformly spaced array:

d

2
¬ xn ¬ LUAA with LUAA = x

(
N

2

)
,

n = 1, 2, . . . ,
N

2
,

(4)

where LUAA is the aperture length of the standard uniformly
spaced array.
From this equation, it can be seen that the locations of the
first and last elements on the right side of the array center
were fixed at x1 = d2 and xN

2
= LUAA. Locations of other

elements in between can be optimized according to the cost
function given in Eq. (3).
The locations of the in-between elements are random. Thus,
there is a great chance that an element may be placed over
another element or that they may located close to each other.
Therefore, physical element size overlaps are unavoidable in
these types of arrays.
To illustrate this problem, let us consider an array of N = 40
elements that are distributed symmetrically around the array’s
center. By fixing the location of the first element on each side
of the array only, N2 − 1 element locations can be optimized
according to Eq. (3). The number of controlled element
locations is 19 on each side of the array, while the first element
was fixed at the original uniformly spaced elements x1 = d2 .
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Fig. 1. Array element overlaps: a) element locations and b) instanta-
neous element locations.

Further, we assumed that the steered direction of the main
beam is uo = 0.6 radians in u-space. Figure 1 shows the re-
sultant element locations of the optimized array. The standard
array geometry that uses uniformly spaced elements has been
also shown for comparison. One may notice that the most of
the resultant optimized element locations overlap. Therefore,
such a design configuration without overlapped elements is
practically impossible.

2.2. Proposed Solutions

In this section, we present two approaches to dealing with the
problem of element location overlaps.
The first approach is based on controlling the locations of
a number of outer elements instead of all element locations,
as shown in Fig. 2. The locations of inner elements remain
fixed and match the locations of the original uniformly spaced
array elements. By optimizing the locations of outer elements
only, we will reduce the probability of overlapping and will
mitigate the array’s implementation cost. The probability
of overlapping is reduced, but the phenomenon cannot be
prevented entirely.
This approach also offers a level of directivity that is higher
than the one achieved when relying on fully optimized element
locations. The only loss is a slight increase in the sidelobe
level, when compared to that of the fully optimized element
locations. This is mainly due to the lower number of degrees
of freedom available.
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Fig. 2. Partially controlled element location approach: a) element
locations and b) instantaneous element locations.

The second approach is based on enforcing constraints on the
location of each element, as shown in Fig. 3. This allows to
completely prevent the overlapping of specific elements while
simultaneously preserving the array’s performance without
sacrificing sidelobe level, due to the availability of all degrees
of freedom. The applied bound constraints can be written as
follows:

xuniformn−∆ ¬ xn ¬ xuniformn+∆, n = 1, 2, . . . ,
N

2
, (5)

where xuniformn is the location of the n-th element of the
standard uniformly spaced array and∆ is the bound constraint
for lower and upper intervals which can be specified by the
user.
The design steps may be summarized as follows:
1) Define the initial parameters, such as array parameters,

population size, and the variable number of element loca-
tions.

2) Set the goals or user-defined constraints related to array
element locations that can be provided by the designer.

3) Set the optimization parameters, such as parents, muta-
tion, crossover, and the maximum number of iterations.
Calculate and sort the cost function values.

4) Perform genetic optimization which includes mirage pro-
cess, choosing best siblings and mutations.

5) Perform best pattern calculation.
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Fig. 3. The bound constraints approach: a) element locations and b)
instantaneous element locations.

3. Simulation Results

In all of the considered scenarios, a symmetric phased array
of N = 40 radiating elements with either fully or partially
non-uniformly spaced elements was examined. For the genetic
optimization algorithm used, the size of the population is set to
100. The remaining parameters were chosen in the following
manner: uniform crossover, selection was tournament, and the
mutation rate was 0.2. Finally, the mating pool was chosen to
be 4. The main beam has been steered to remain within the
range of the elevation plane between −0.5 ¬ uo ¬ 0.5.
In the first example, performance in terms of sidelobe level
(SLL), directivity (D), and the computational time of the
proposed non-uniformly spaced array was studied for various
controlling element locations. Figure 4 illustrates SLL and
D variations, as well as the required computational time.
Generally, one may notice from these two figures that SLL
reduction improves as the number of controlled element lo-
cations increases, while the D parameter is slightly degraded
and the computational time becomes longer when increasing
the number of the controlled element locations.
In the second example, SLL variations with the scan angle of
the main beam are illustrated in Fig. 5. Here, three instances of
non-uniformly spaced arrays were considered and compared.
In the first instance, full control is exercised over all element
locations (i.e. all element locations are optimized), while in
the second and third instances, half or quarter of element
locations are controller, respectively. The main beam has
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been steered in a range of −0.5 ¬ uo ¬ 0.5 in the u-space.
Directivity was evaluated using the same procedure.
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Further, the results of these three instances in which all, half,
and a quarter of the element locations are controlled are shown
in Figs. 6–8, respectively.
Directivity D, SLL, and computational time T of these
three instances were D = 27.2 dB, SLL = −18.6 dB,
T = 7.875 s, D = 27.3 dB, SLL = −15.5 dB, T = 5.471
s,D = 28.0 dB, SLL = −15.2 dB, T = 2.27 s, respectively.
The optimized element locations for these three instances
were:
• xfully={0.2500 0.8084 1.0179 1.4764 1.8005 2.0588

2.7005 2.7088 3.3348 3.6790 4.2418 4.9666 5.5234
6.0957 6.6634 6.9290 7.2540 7.8689 8.6270 9.5963},

• xhalf={0.2500 0.7500 1.2500 1.7500 2.2500 2.7500
3.2500 3.7500 4.2500 4.7500 5.0000 5.4614 5.9897
6.5948 7.2056 7.9667 8.9249 9.75 9.750 9.75},
• xquarter={0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25

4.75 5.25 5.75 6.25 6.75 7.25 8.27 9.129 9.75 9.75 9.75}.

One may see that the performance of a partially controlled
element locations approach is better in terms of directivity and
computational time than that of the fully controlled element
locations approach, except for the peak side lobe level which is
slightly higher due to a smaller number of degrees of freedom,
as mentioned earlier.
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Fig. 8. Results of controlling quarter element locations: a) radiation patterns, b) cost function variations, c) element locations, and d) their
instantaneous variations.

More importantly, it can be observed that the element location
overlaps still exist, even with the partially controlled element
locations approach. This is mainly due to the wide bound
constraints used, as shown in Eq. (4), which only preserve the
overall array aperture (i.e. beamwidth), with overlaps between
optimized element locations not being included.
In the next example, the lower and upper bounded constraints
on each controlled element location are considered to pre-
vent overlaps between the array’s elements. At first, the pro-
posed approach is applied to the fully controlled element
locations method (see Fig. 9), and then to the partially con-
trolled element locations method (see Fig. 10) to assess their
performance.
The performance of the fully controlled element locations
method with bounded constraints wasD = 27.74 dB,SLL =
−17.0 dB, T = 9.2 s, and xn={0.25 0.583 0.9768 1.458
1.952 2.45 2.95 3.45 3.95 4.45 4.95 5.45 5.9679 6.4929 6.95
7.9717 8.5386 9.0496 9.55 9.75}.
For the partially controlled element locations method with
bounded constraint, the achieved parameters were: D =
27.66 dB, SLL = −16 dB, T = 5.1 s, and xn={0.25 0.496
1.25 1.45 2.25 2.4539 3.25 3.00 4.25 4.323 5.25 5.00 6.25
6.674 7.25 7.793 8.25 8.945 9.25 9.983}.
From Figs. 9–10, one may see that element location overlaps
have been completely solved and the performance obtained
was very acceptable.

4. Conclusions

The results obtained in the simulation have shown that non-
uniformly spaced arrays with fully or partially absolute ele-
ment location controls could offer a considerable improve-
ment in terms of side lobe level reduction and also in terms
of beamwidth. An equally narrow beamwidth as that of the
standard uniformly spaced array was achieved by maintain-
ing the same array aperture, i.e. by keeping the locations of
the first and the last element constant. Consequently, similar
directivity was obtained in the optimized array.

It was also observed that in non-uniformly spaced arrays, lo-
cation overlaps were usually encountered between optimized
elements – a phenomenon which is undesirable and may cause
performance degradation in the practical applications of such
arrays.

Two efficient approaches have been proposed to solve this
problem. The first one relies on partially optimized element
location controls, while the other one imposes bounded con-
straints on the location of each element. The principal ad-
vantage of using the two approaches proposed above is their
short computational time. This feature is very important in
the application of null placement for interference suppression.
Thus, the proposed approaches can be extended to control the
nulls in antenna array patterns by using randomly distributed
elements with bounded constraints.
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Fig. 9. Results of controlling all element locations with bounded
constraints: a) radiation patterns, b) cost function variations, c)
element locations, d) their instantaneous variations, and e) amplitude
weights.
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Fig. 10. Results of controlling half element locations with bounded
constraints: a) radiation patterns, b) cost function variations, c)
element locations, d) their instantaneous variations, and e) amplitude
weights.
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In contrast to sidelobe reduction, nulls placement requires
a much lower number of the degrees of freedom, and these
may be appropriately provided, in sufficient quantities, by the
presented approaches. This should be the subject of future
research work.
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