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Abstract  Alzheimer’s disease is one of the leading causes
of dementia worldwide, and its increasing prevalence presents
significant diagnostic and therapeutic challenges, particularly
in an aging population. Current diagnostic methods, includ-
ing patient history reviews, neuropsychological tests, and MRI
scans, often fail to achieve adequate sensitivity and specifici-
ty levels. In response to these challenges, this study introduces
an advanced convolutional neural network (CNN) model that
combines ResNet-50 and Inception V3 architectures to classify,
with a high degree of precision, the stages of Alzheimer’s dis-
ease based on MRI. The model was developed and evaluated
using data from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) and classifies MRI scans into four clinical categories
representing different stages of disease severity. The evalua-
tion results, based on the precision, sensitivity and F1 score
metrics, demonstrate the effectiveness of the model. Additional
augmentation techniques and differential class weighting fur-
ther enhance the accuracy of the model. Visualization of results
using the t-SNE method and the confusion matrix underscores
the ability to distinguish between disease categories, support-
ing the model’s potential to aid in neurological diagnosis and
classification.

Keywords  Alzheimer disease, convolutional neural network,
Inception V3, ResNet-50, t-SNE analysis

1. Introduction

Dementia is one of the leading causes of disability and mor-
tality, particularly among the elderly [1]–[5]. It significantly
affects cognitive functions, especially memory, making daily
activities more difficult. According to the World Health Orga-
nization (WHO), approximately 55 million people worldwide
suffer from dementia, with this number projected to increase
to 139 million by 2050 [6]. Alzheimer’s disease, the most
common form of dementia, accounts for 60-70% of cases [7].
This paper focuses on developing and validating deep learn-
ing models for brain image analysis, specifically designed to
assess the severity of Alzheimer’s disease.
Recent advances in machine learning and deep learning have
contributed significantly to the diagnosis and prognosis of
neurodegenerative diseases, such as Alzheimer’s. Techniques
such as magnetic resonance analysis, deep neural networks,
and feature extraction methods have improved the degree of
precision achieved in diagnostic processes.

Key studies highlight the effectiveness of various machine
learning models in diagnosing Alzheimer’s disease. A clas-
sification model using ResNet-50 with self-attention lay-
ers improved the classification of the stage of Alzheimer’s,
demonstrating the potential that deep feature extraction tech-
niques combined with Bayesian optimization offer in terms
of hyperparameter tuning [8]. The study achieved a high ac-
curacy rate, although concerns about overfitting remain, due
to optimized hyperparameters [9].
Another approach from Batangas State University applied
principal component analysis (PCA) and the synthetic mi-
nority oversampling technique (SMOTE) to address data
imbalance, achieving a 99% accuracy rate using the extra tree
algorithm [10]. However, the potential for overfitting requires
a cautious interpretation of these results.
Other research has focused on more computationally efficient
models, such as vision transformers (ViT) which demonstrated
a high precision rate of 99.83% in classifying Alzheimer’s
stages with minimal computational resources [11]. This makes
it a promising option for clinical environments with limited
resources. Similarly, studies exploring random forest (RF),
support vector machine (SVM), and convolutional neural
networks (CNN) for dementia classification showed that SVM,
especially when combined with advanced feature extraction
techniques, could outperform other models [12].
In addition, combining biomarkers, such as amyloid beta and
tau proteins, with machine learning classifiers has proven
effective in identifying the early stages of Alzheimer’s. En-
semble methods, such as boosted trees and logistic regression,
have shown strong precision, highlighting the potential of
integrating biomarkers into diagnostic models [13]–[18].
These findings suggest that deep learning models, particu-
larly when optimized for data imbalance and computational
efficiency, hold promise in improving early diagnosis and clas-
sification of Alzheimer’s disease. However, more research is
needed to validate these models in clinical settings and address
potential problems such as overfitting and interpretability.

2. Methods

This section outlines the steps involved in preparing the
preprocessed models for application. The project uses the
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Fig. 1. Sample MRI images representing different stages of
Alzheimer’s disease classification from the ADNI dataset.

“Alzheimer MRI preprocessed dataset” made available by Ku-
mar and Shastri in 2022 on the Kaggle platform. The dataset
consists exclusively of magnetic resonance imaging (MRI)
scans of the brains of patients diagnosed with various stages
of Alzheimer’s disease, as well as healthy control subjects.
Data have been preprocessed by applying normalization and
other techniques to improve image quality, which is crucial
for the effectiveness of deep learning algorithms [19].
The dataset contains images collected from various sources,
including websites, hospitals, and public repositories (Fig.
1). They were preprocessed and normalized to a uniform
128×128-pixel format to facilitate data analysis and process-
ing. It contains a total of 6 400 images which have been clas-
sified into four classes corresponding to different stages of
Alzheimer’s disease:
• class 1: mild dementia (896 images),
• class 2: moderate dementia (64 images),
• class 3: non-dementia (3200 images),
• class 4: very mild dementia (2240 images).
The primary objective of using this dataset is to develop and
validate advanced predictive models capable of accurately
classifying and predicting different stages of Alzheimer’s
disease through computer analysis. By relying on machine
learning and deep learning techniques, the objective is to
create models that not only improve medical diagnosis but also
contribute to a deeper understanding of the neurodegenerative
processes associated with the disease in question.

2.1. Feature Selection and Development of Predictive
Models

Two advanced neural network models, ResNet-50 and In-
ception V3, were used to extract features from the images.
Both models were pre-trained on datasets consisting of MRI
images. The images were pre-processed and upscaled to

a 299×299-pixel format for processing with the use of deep
learning algorithms.
The pre-trained network, trained for 50 epochs, utilizes a resid-
ual architecture to optimize the training process of the neural
networks. In contrast, the model incorporating a multipath
data flow concept allows for efficient processing with fewer
parameters. The outputs of both models are merged to form
a single high-dimensional feature vector. This combined fea-
ture vector is passed through a fully connected layer, followed
by a dropout layer to regularize the model and prevent over-
fitting. Finally, the processed features are passed through an
output layer which generates predictions for each of the four
severity classes.

2.2. Model Validation

A thorough validation was conducted to evaluate the perfor-
mance of the hybrid CNN model. The data were divided into
a training set (approximately 80%) and a validation set (ap-
proximately 20%), ensuring that the model was tested on data
unseen during training, allowing for the assessment of its
generalization capability. The metrics used to evaluate quali-
ty included precision, sensitivity, F1 score, and a confusion
matrix. The validation process was designed to demonstrate
whether the hybrid CNN model, which combines the ResNet-
50 and Inception V3 architectures, is capable of effectively
classifying different stages of Alzheimer’s disease based on
MRI images. High precision, sensitivity, and F1 score values
should confirm the model’s potential to serve as a valuable
tool in supporting medical diagnosis and advancing research
into Alzheimer’s disease.

3. Results

As mentioned earlier, the data were divided into training and
validation sets. Cross-validation was used to provide a more
comprehensive evaluation of the model, ensuring that the
results were not random and adequately represented the entire
dataset. The precision metric, which measures the precision
of a classifier in predicting the positive class, was used to
evaluate the models. Precision is calculated as the ratio of true
positives (TP) to the sum of true positives and false positives
(FP).

Precision =
TP

TP + FP
. (1)

Sensitivity is the classifier’s ability to provide information
about the detection of all true positives and is defined as:

Recall =
TP

TP + FN
, (2)

where FN stands for false negatives.
The F1 measure involves calculating the harmonic mean of
precision and sensitivity, which allows for a balanced model
evaluation that considers both accuracy and completeness of
predictions:

F1 = 2× Precision×Recall
Precision+Recall

. (3)
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Fig. 2. Confusion matrix showing classification results for four
Alzheimer’s severity classes, highlighting correct and misclassified
samples.

The overall performance of the model was then calculated
as the ratio of the sum of true positive and accurate negative
results to the total number of samples.

ACC =
TP + TN

TP + TN + FP + FN
. (4)

The confusion matrix allowed to assess the classification per-
formance by identifying the numbers of true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) outcomes for each class (Fig. 2). This analysis helps
determine which classes are most frequently misclassified,
indicating potential areas where the model may require im-
provement. The validation results were presented using graphs
and confusion matrices which provide a detailed evaluation
of the effectiveness of the classifiers. Despite good overall
performance, certain classes, in particular those with smaller
sample sizes, may require further optimization, as highlighted
in the detailed interpretation of the results.

3.1. Interpretation of Results and Evaluation of Model
Effectiveness

This article focuses on developing predictive models that use
advanced deep learning techniques to analyze brain magnet-
ic resonance images to assess the severity of Alzheimer’s
disease. A hybrid neural network architecture, combining
the ResNet-50 and Inception V3 models, was used to create
a more accurate classification system. Research aimed not
only to enhance the accuracy of Alzheimer’s disease diagno-
sis, but also to contribute to a deeper understanding of the
neurodegenerative processes associated with the condition.
The experiments involved detailed performance analyses of
the model, including validation through confusion matrices
and visualization of the feature space using t-SNE.
Below is a summary of the evaluation of the convolutional
neural network (CNN) model based on precision, recall, F1
score, and accuracy metrics (Tab. 1). The model was evaluated
using the test dataset, ensuring its applicability at different
stages of Alzheimer’s disease.

Tab. 1. Results of the collective evaluation of the convolutional
neural network (CNN) model.

Metric Value

Precision 99.09%
Recall 98.84%

F1 score 98.93%
Accuracy 99.1%

Tab. 2. Results of a collective evaluation the convolutional neural
networks (CNN) model’s precision, recall, and F1 score, expressed
as values between 0 and 1.

Class Precision Recall F1 score

Non-demented 0.995 0.993 0.994
Mild demented 0.987 0.989 0.988

Moderate demented 0.985 0.984 0.985
Very mild demented 0.990 0.988 0.989

Table 2 presents detailed results for each of the four classes,
providing a more in-depth analysis of the model’s ability to
classify different stages of Alzheimer’s disease.
The t-distributed stochastic neighbor embedding (t-SNE) pro-
jection shown in Fig. 3 illustrates the two-dimensional feature
space of the model’s output. Each point corresponds to a sam-
ple from the dataset. The separation between classes is clear,
indicating that the model has learned to effectively distin-
guish between different stages of Alzheimer’s disease. Class
2 (green) and class 3 (red) form distinct clusters, suggesting
that these classes are well recognized. Class 0 (orange), rep-
resented by a smaller group, is located toward the bottom,
indicating potential difficulties in classification or fewer sam-
ples. Class 1 (blue) appears to be dispersed across several
groups, hinting at challenges in distinguishing this particular
category. Most points are tightly clustered, suggesting decent
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Fig. 3. Projection of t-SNE showing the clustering of Alzheimer’s
disease severity classes.
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Fig. 4. Validation loss vs. steps, showing stabilization after 2 000
steps and indicating model convergence.

model performance in separating the data, although some dis-
persion in class 1 and partially in class 0 indicates structural
complexity the model struggled with.
The plot shown in Fig. 3 presents the projection of t-SNE
onto the two-dimensional feature space of the model’s output.
Each point on the graph represents one sample of the data set.
One may notice a clear separation of classes, suggesting that
the model has successfully learned to distinguish between
different classes at the level of output characteristics. Class 2
(green) and class 3 (red) form very distinct groups, proving
that the model is more efficient at recognizing these particular
classes. Class 0 (orange) appears to have the form of a small
group and is located at the bottom of the graph, which may
suggest that this class has fewer samples or is more difficult
for the model to recognize. Class 1 (blue) is present in several
groups, which may indicate some problems in distinguishing
this class or the complexity of its features. Most of the points
in each class are well clustered, which is a positive result.
In the plot, one may notice that the initial changes are large,
especially before approximately 2 000 steps, where the value
of the loss decreases rapidly (Fig. 4). Once this limit has been
exceeded, the graph clearly begins to flatten out, suggesting
that further training has a diminishing effect on reducing
the loss. This is the point that we call the “elbow”, and it
indicates the optimal number of epochs after which further
training of the model no longer provides significant benefits.
The network was trained in 50 epochs.
When analyzing the model training results, one should pay
attention to the validation loss function depending on the
number of epochs, which can be represented as a function
of L(epoch). In the elbow method, we look for a point k for
which the change in the value of the loss between epochs k
and k+1 ceases to be significant and its gradient flattens out.
Mathematically, this can be put in the following form:

∆L = L(k + 1)− L(k). (5)

In Eq. (5), if
|∆L| =<< ϵ (6)

for a certain tolerance ε > 0, then k can be considered the
optimal number of epochs from the validation loss graphs
shown. One may observe that after reaching approximately
30 epochs, ∆L decreases to values close to zero, suggesting
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Fig. 5. Graph showing validation of F1 score vs. steps demonstrates
a consistent improvement in model’s performance after 2 000 steps.

that further training of the model does not produce significant
improvements.
Formally, we can assume that there is a certain point where
k  30:

δL

δ epoch
≈ 0 , (7)

which indicates that further increases in the number of epochs
result in minimal changes in the value of the loss function, and
thus in the quality of the model. Calculating the differences
between successive epochs using data from the validation loss
chart. For epochs in the 1–30 range, the differences in the loss
values are significant. From epoch 30 onwards, the loss values
begin to stabilize, and the differences between successive
epochs are marginal. The values of these differences can be
calculated in the form of finite differences in the following
way:

∆L30 = L(31)− L(30) . (8)

For∆L30 close to zero, we reach the point where continuing
training does not significantly improve performance. The
result of the analysis suggests that the number of epochs
equaling 30 is the optimal choice for this model, as once this
number is reached, the changes in the validation loss value
are marginal.
In terms of the F1 validation score vs. steps plot, as shown in
Fig. 5, we observe a change in the value of the F1 score for
validation data as the model’s training process progresses,
i.e., the number of steps corresponding to training epochs
increases. The F1 score is a measure of the harmonic mean
between precision and sensitivity, making it one of the key
metrics for classification models, especially when the data
are unbalanced.
At first (up to approx. 2 000 steps), the F1 score fluctuates and
is subject to irregular changes. This could mean that the model
needs more epochs to learn effective data representations and
adjust to the classification task. Once this number of steps
is exceeded, the F1 score values begin to rise more steadily
until approx. 5 000 steps, after which they become flatter,
indicating stabilization. The elbow method may be used in
this case to identify the point at which the F1 score value
stops increasing significantly.
We are looking for the step after which the change in the F1
score value becomes marginal, and further training does not
result in any significant improvement. Change ∆F1 between
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Fig. 6. Changes in the cost function as a function of the number of
steps.

stepsK and k + 1 can be described as:

∆F1(k) = F1(k + 1)− F1(k) . (9)

If |∆F1| becomes close to zero after a certain step k, the model
can be considered to have reached optimal performance. In
this case, the graph suggests that after approx. 5 000 steps
∆F1 is declining, suggesting that it is less and less beneficial
to continue to train the model. Assuming that we have the
corresponding F1 score values for steps 5 000 and 6 000, one
may calculate the difference as follows:

∆F1(5000) = F1(6000)− F1(5000). (10)

If |∆F1(5000)| ≈ 0, it means that further training steps do
not bring significant improvement, which would confirm the
elbow point at approx. 5 000 steps. According to the elbow
method, the number of steps equaling approx. 5 000 may be
considered optimal, since after this step changes in the F1
score values are marginal, which means that further training
of the model no longer brings significant benefits in improving
the quality of classification.
Figure 6 shows the value of the cost function (train loss)
for the training data as training progresses, measured in
steps. The cost function (loss function) measures how well
the model predicts target values (labels) compared to actual
performance, and the goal of the optimization process is to
minimize this value.
This process can be described using the following iterative
equation for gradient descent:

θt + 1 = θt − η∇θL(θt) , (11)

where: θt is the vector of model parameters at step t, η is the
learning rate,∇θL(θt) is the loss function at point θt.
Initially, we observe sharp changes in the loss function, as the
gradients ∇θL(θ) have high values at the beginning of the
training process, leading to large parameter updates ∆θ in
each step. The early training phase is often unstable, which is
reflected in Fig. 6 by large fluctuations, especially in the range
of 0–1 000 steps. This can be explained by the fact that at the
beginning of the training process, the model is far from the
optimal local minimum, so the gradients are steep, causing
jumps in the loss function.

As the model approaches the optimal minimum, the gradients
decrease, resulting in smaller parameter updates θ. Therefore,
we observe a flatter curve for steps t > 2 000, which indicates
that the optimization process is slowing down and the model
is gradually approaching the minimum of the loss function.
For steps t > 2 000, the curve shows fewer fluctuations,
which is typical for the convergence of a gradient algorithm.
In particular, the AdamW optimizer further accelerates con-
vergence by using mechanisms that adjust the adaptive step
size and regularization weights, thus helping avoid overfitting.
This mechanism can be mathematically described by adding
regularization to the objective function in the following way:

L(θ) = Ldata(θ) + λ∥θ∥2, (12)

where Ldata(θ) is the loss function of the data and λ∥θ∥2
is the L2 applied by AdamW. In summary, the graph shows
the effectiveness of minimizing the loss function as the steps
progress. The sharp initial decrease and subsequent stabiliza-
tion of the loss function indicate that the model is approaching
an optimal solution, with a further loss reduction occurring
in smaller steps, which is typical for convergence in gradient-
based algorithms.

4. Conclusions

The research implemented advanced deep learning techniques
using a modified CNN architecture to assess and classify var-
ious stages of Alzheimer’s disease based on MRI images.
The results demonstrate that the model achieves high de-
grees of precision, sensitivity, and effectiveness in identifying
multiple stages of disease progression, highlighting its po-
tential application as a tool supporting medical diagnostic
procedures.
Systematic improvements in accuracy showcase its ability to
learn complex data patterns, which may contribute to a better
understanding of the neurodegenerative processes associated
with Alzheimer’s disease.
Based on the findings of the study, it is recommended that
performance be further evaluated by incorporating more
MRI images from diverse populations, which could improve
generalizability and contribute to understanding variations
between patient groups. This also involves obtaining the
appropriate consent to prevent the misuse of patient data.
Future research could explore other advanced neural network
architectures, such as generative adversarial networks (GANs)
and capsule networks, which may offer new perspectives and
improved diagnosis accuracy.
Future work should focus on increasing the interpretability
of deep learning models, which is critical in a medical con-
text to help physicians better understand the decision-making
processes relied upon by the models. Extensive clinical val-
idations are also necessary to confirm the effectiveness in
real-world medical environments and constitute a key step in
progressing towards practical application.
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