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Abstract— In the paper, we are concerned with FMCW radar

detection of an accelerating target, echo of which is buried

in an additive white Gaussian noise. We derive and analyze

three-dimensional generalized ambiguity function for target

range, velocity and acceleration. We interpret known prop-

erties of this function and obtain new ones, which allows us

to specify resolutions and regions of unambiguity for range,

velocity and acceleration. The obtained resolutions we express

in terms of corresponding Cramer-Rao bounds.
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1. Introduction

In the paper, we are concerned with a linearly frequency

modulated continuous wave radar (L-FMCW radar) that

transmits T -periodic constant amplitude signal with fre-

quency linearly rising in each period. If we denote the

carrier frequency by fc and frequency modulation slope

as α , the instantaneous frequency of a transmitted signal is

fc +αt for one period −T/2 < t < T/2, and frequency de-

viation is αT . An illuminated target at range r(t) backscat-

ters the transmitted signal to the radar, where it is received

and mixed with a copy of the transmitted signal.

The obtained beat signal is block processed, each block

corresponds to 2K + 1 modulation periods. We assume

in the paper, that within the time (2K + 1)T of a signal

block (the measurement time or coherent integration time),

the illuminated target is moving with constant acceleration

with respect to the radar, thus the range is:

r(t) = r0 + v0t + 0.5at2 (1)

during the measurement time

−(2K + 1)T/2 < t < (2K + 1)T/2. (2)

In the range Eq. (1), the parameter r0 = r(0) is target

range in the middle of the measurement time Eq. (2), v0 is

target radial velocity for t = 0, and a is target radial accel-

eration.

The beat signal is sampled with sampling frequency fs

omitting transients at the beginning of each modulation

period. We denote the obtained discrete beat signal as

y(m,k) for discrete time within each modulation period

m =−M, ...,M and modulation periods k =−K, ...,K. This

signal is sum of the useful component Ae jφ0x(m,k) (that

is “template” x(m,k) and complex amplitude Ae jφ0) and

an additive complex circular white Gaussian noise n(m,k)
of variance σ2:

y(m,k) = Ae jφ0x(m,k)+ n(m,k) (3a)

for

k = −K, ...,K and m = −M, ...,M (3b)

Neglecting range walk, the template x(m,k) of the useful

signal can be approximated (see [3, 5]) as:

x(m,k) = exp{ j(θrm+ bvk + bak2)}, (4)

where the parameters θr,bv,ba are normalized range, nor-

malized velocity, and normalized acceleration, respectively:

θr = 2π 2α
c fs

r0,

bv = 2π 2 fcT
c

v0,

ba = 2π fcT 2

c
a,

(5)

where c is speed of light. From Eqs. (4) and (5) we see that

the beat signal is (a) linear-phase with respect to the “fast

time” m, and (b) quadratic-phase with respect to modulation

period index, or “slow time”, k.

In order to use a vector notation, we define the vector y

containing all samples of the measured beat signal:

y = [y(−M,−K), · · · ,y(M,−K), · · · ,
, · · · ,y(−M,K), · · · ,y(M,K)].

(6)

Analogously, we define vector x of the useful signal tem-

plate Eq. (4), and vector n of a noise component. The norm

of vector x is ||x||2 = (2M + 1)(2K + 1).

2. Detection and ambiguity function

In the detection problem we need to decide if the tar-

get echo is present in the received signal (hypothesis H1:

y = Ae jφ0x + n as in Eq. (3)) or target echo is not present

(hypothesis H0: y = n). For the Neyman-Pearson crite-

rion [4], we do the optimal test by calculating the test

statistic D defined as:

D =
1

||x||2σ2

∣

∣x
H

y
∣

∣

2
(7)

and compare it with a threshold γ . If the threshold is ex-

ceeded we decide “target present” (H1), if not we decide

otherwise (H0), that is:

D
H1

≷
H0

γ. (8)
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The threshold is a function of designed probability of false

alarm: γ = − lnPf a.

Calculation of the test statistic D (Eq. (7)) requires knowl-

edge of x and, according to Eq. (4), knowledge of target

parameters r0, v0, a. If these parameters are unknown, then

we do multiple tests for a discrete set of hypothetical target

motion parameters, specified on a certain grid. The ques-

tion that here appears is how dense and how wide should

this grid be. In order to answer this question, we use the

ambiguity function concept.

We denote unknown true normalized target parameters

as [θ+
r ,b+

v ,b+
a ], and useful signal template correspond-

ing to these parameters as x(θ+
r ,b+

v ,b+
a ). Using this no-

tation and assuming that the target is present, we have y =
Ae jφ0x(θ+

r ,b+
v ,b+

a )+ n, and the detection statistic Eq. (7),

calculated for hypothetical target parameters [θr,bv,ba], is

D(θr,bv,ba)

=
1

||x||2σ2

∣

∣x
H(θr,bv,ba)(Ae jφ0 x(θ+

r ,b+
v ,b+

a )+ n)
∣

∣

2
. (9)

Defining the ambiguity function as:

H(θr −θ+
r ,bv −b+

v ,ba −b+
a )

=

∣

∣

∣

∣

x
H(θ+

r ,b+
v ,b+

a )x(θr,bv,ba)

||x||2
∣

∣

∣

∣

2

(10)

and signal to noise ratio as SNR = A2||x||2/σ2, we may

rewrite the test statistic Eq. (9) as:

D(θr,bv,ba)

=

∣

∣

∣

∣

√

SNR ·H(θr −θ+
r ,bv −b+

v ,ba −b+
a )+ n1

∣

∣

∣

∣

2

, (11)

where n1 represents complex random value with Gaussian

pdf CN(0,1). The last equation means that probability

of detection depends only on SNR, shape of the ambi-

guity function, and how close the hypothetical parameters

[θr,bv,ba] are to the unknown true parameters [θ+
r ,b+

v ,b+
a ].

The width of the main lobe of the ambiguity function tells

us how dense should the hypothetical parameter grid be

(radar resolution) and period of this function specifies size

of the grid (region of unambiguous parameters). In next

section we analyze the ambiguity function Eq. (10).

3. Analysis of the ambiguity function

Since in Eq. (11) we have only differences θr −θ+
r , bv−b+

v

and ba −b+
a , we may assume for simplicity that true target

parameters are all zeros, that is [θ+
r ,b+

v ,b+
a ] = [0,0,0]. Ac-

cording to Eq. (4), we can rewrite the ambiguity function

as:

H(θr,bv,ba) =

∣

∣

∣

∣

1

(2M + 1)(2K + 1)

M

∑
m=−M

K

∑
k=−K

exp{ jθrm}

×exp{ j(bvk + bak2)}
∣

∣

∣

∣

2

= Hr(θr) ·Hb(bv,ba),

where

Hr(θr) =

∣

∣

∣

∣

∣

1

2M + 1

M

∑
m=−M

exp{ jθrm}
∣

∣

∣

∣

∣

2

(12)

and

Hb(bv,ba) =

∣

∣

∣

∣

∣

1

2K + 1

K

∑
k=−K

exp{ j(bvk + bak2)}
∣

∣

∣

∣

∣

2

. (13)

We see, that the ambiguity function is a product of function

Hr(θr) dependant only on range, and function Hb(bv,ba),
dependent only on the movement parameters bv, ba. Thus,

radar movement characteristics are, in this sense, indepen-

dent of range characteristics. We will call functions Hr(θr)
and Hb(bv,ba) range ambiguity function and movement am-

biguity function, respectively.

3.1. Ambiguity function with respect to range

The range ambiguity function Hr(θr) from Eq. (12) is

a squared modulus of a rectangular window spectrum nor-

malized in such a way that its maximum is equal to one:

Hr(θr) =

∣

∣

∣

∣

sin[(2M + 1)θr/2]

(2M + 1)sin[θr/2]

∣

∣

∣

∣

2

. (14)

The zero-to-zero width of the main lobe of this function is

equal to 4π/(2M + 1). Defining the range resolution △θr

as half of this value, we obtain:

△θr = 2π/(2M + 1). (15)

The density of the range grid on which the detection tests

are done should not be smaller than △θr. Furthermore, the

function Hr(θr) is 2π-periodic, thus the maximal unam-

biguous range is 0 ≤ θr < 2π .

3.2. Ambiguity function with respect to velocity

and acceleration

The movement ambiguity function Hb (bv, ba) defined

in Eq. (13) is depicted in Fig. 2. It is more complicated

than previously analyzed range ambiguity function Hr(θr).
We cannot express this function in a simple form, but a few

interesting properties can be derived directly from its defi-

nition Eq. (13).

Property 1 (maximum): The function Hb(bv,ba) acquires

maximum for bv = ba = 0, and this maximum is equal to 1.

To prove it, we can easily check that Hb(bv,ba) = 1, and

using the Schwartz inequality we have:

Hb(bv,ba) =

∣

∣

∣

∣

∣

K

∑
k=−K

1

2K + 1
exp{− j(bvk + bak2)}

∣

∣

∣

∣

∣

2

≤
K

∑
k=−K

∣

∣

∣

∣

1

2K + 1

∣

∣

∣

∣

2

×
K

∑
k=−K

∣

∣exp{− j(bvk + bak2)}
∣

∣

2
= 1.
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This property together with Eq. (11) means that for

high SNR, the statistic D(θr,bv,ba) acquires maximum in

the vicinity of true parameters [θr,bv,ba] = [θ+
r ,b+

v ,b+
a ] and

this maximum is approximately (because of noise) equal

to SNR.

Property 2 (symmetry): It was shown in [1], that:

Hb(bv,ba) = Hb(−bv,−ba) = Hb(bv,−ba). (16)

The property is illustrated in Fig. 1. Its intuitive interpre-

tation is that positive and negative values of motion param-

eters (velocity and acceleration) are not much distinct from

each other.

Fig. 1. Symmetry of the motion ambiguity function Hb(bv,ba).

Property 3 (periodicity): It was also shown in [1], that

Hb(bv,ba) = Hb(bv + πn1,ba + πn2) (17)

for integers n1 and n2 such that n1 + n2 is even.

This property means that periods of the ambiguity

function are (2π ,0), (0,2π), (π ,π), (π ,−π), (−π ,π),
(−π ,−π), (0,−2π), (−2π ,0). This periodicity is visible

in Fig. 2a.

Property 3 allows us to find a region of unambiguous ve-

locity and acceleration bv,ba. We do it by observing that if

[bv,ba] is in this region, then [bv +πn1,ba +πn2] is not. We

may notice that shape of this region is not unique. A few

possible regions of unambiguous velocity and acceleration

are depicted in Figs. 2b-e. For example in the Fig. 2b

we have unambiguous velocity-acceleration region such

that:

−π ≤ bv < π ,

−π/2 ≤ ba < π/2. (18)

We may notice that in Eq. (18), the maximal unambigu-

ous velocity ±π is the same as in the constant velocity

case when ba ≡ 0. In other words, extending target range

model to include acceleration, does not affect ambiguity of

velocity measurement.

Fig. 2. (a) Plot of the ambiguity function Hb(bv,ba) with marked

unambiguity region corresponding to (b). Figures (b)-(e): a few

examples of unambiguity regions for parameters bv,ba (dots sym-

bolize periodically repeated maxima of Hb(bv,ba)).

It is worth noting that sidelobes for ba ≈ π/2 are very

high and it would be difficult to use the whole range of

unambiguous acceleration −π/2 ≤ ba < π/2 in a multi-

target detection. Hence, the radar parameters should be

chosen to assure that acceleration of a typical target is much

smaller than π/2.

Property 4 (intersection for ba = 0): Intersection of

Hb(bv,ba) for ba = 0, that is Hb(bv,0), is the squared mod-

ulus of the rectangular window spectrum.

This property can be derived directly from definition of

function Hb(·). Thanks to this property we know that radar

velocity resolution is

△bv = 2π/(2K + 1) (19)

and is the same as in the case of constant velocity target.

Radar velocity resolution is illustrated in Fig. 3.
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Fig. 3. Cross-section of Hb(bv,ba) for ba = 0 and radar velocity

resolution △bv.

Property 5 (intersection for bv = 0): If ba is small, and K

is big enough, then Hb(0,ba) is a function of ba(2K + 1)2

only (not independently of ba and K).

This property can be proved by approximating the function

Hb(0,ba) with the corresponding integral:

Hb(0,ba) =

∣

∣

∣

∣

∣

1

2K + 1

K

∑
k=−K

e jbak2

∣

∣

∣

∣

∣

2

≈
∣

∣

∣

∣

1

2K + 1

∫ K+1/2

−K−1/2
e jbat2

1 dt1

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

1

(2K + 1)
√

ba

∫ (2K+1)
√

ba/2

−(2K+1)
√

ba/2
e jt2

dt

∣

∣

∣

∣

∣

2

. (20)

The last equality was obtained by setting bat2
1 = t2.

The main result of this property is that half of the main

lobe width, that is radar acceleration resolution (see Fig. 4)

is

△ba = 2π
ca

(2K + 1)2
(21)

for a constant ca. Using computer simulations we showed

that for half of a minimum-to-minimum main lobe width

(we can call it radar acceleration resolution) ca ≈ 3.676.

Hence, the non-normalized acceleration resolution is

(from Eq. (5)): △a = 3.68λ/[(2K + 1)T ]2, where λ = c/ fc

is a wavelength. We may use this equation to decide if

target acceleration should be taken into account in the de-

Fig. 4. Cross-section of Hb(bv,ba) for bv = 0 and radar acceler-

ation resolution △ba.

tection test design. If expected maximal acceleration of

a typical useful target is smaller than △a then we may ne-

glect acceleration and assume constant velocity what cor-

responds to having only one acceleration cell centered at

a = 0. If the acceleration is greater, then more acceleration

cells should be created, otherwise, velocity spectrum would

be smeared (see [6]) considerably reducing probability of

detection.

Property 6 (relation to the Cramer-Rao bounds): Veloc-

ity and acceleration resolutions △bv and △ba are related

to respective Cramer-Rao bounds CRB{bv} and CRB{ba}
according to the equations:

√

CRB{bv} =
0.39√
SNR

△bv, (22)

√

CRB{ba} =
0.41√
SNR

△ba. (23)

According to [3] and [2], the Cramer-Rao bounds for nor-

malized velocity and acceleration are:

CRB{bv} =
6

SNR · (2K + 1)2
, (24)

CRB{ba} =
90

SNR · (2K + 1)4
. (25)

The Cramer-Rao bounds CRB{bv} and CRB{ba} are lower

bounds on variance of any unbiased estimator of parame-

ters bv and ba, respectively. Hence, Eqs. (22) and (23)

reveal proportionality of bounds on standard deviations to

radar resolutions obtained from the analysis of the ambi-

guity function. It is interesting, that although cross sec-

tions of Hb(bv,ba) across velocity and acceleration dimen-

sions are quite different, the two proportionality coefficients

0.39/
√

SNR and 0.41/
√

SNR are almost the same.

4. Conclusions

We analyzed the ambiguity function for accelerating

target. This allowed us to calculate radar resolutions and

specify regions of unambiguous range, velocity and accel-

eration. We showed that due to choosing measurement time

Eq. (2) symmetrical around t = 0, maximal unambiguous

velocity and velocity resolution are the same for an accel-

erating target as would be in a constant velocity case. We

also related radar resolutions to corresponding Cramer-Rao

bounds.
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