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Abstract  Millimeter wave (mmWave) massive multi-input
multi-output (MIMO) systems are the promising technology for
next-generation 5G wireless systems and beyond. Sparse signal
recovery and channel feedback are challenging and fundamental
problems affecting downlink transmission due to the substantial
increase in channel matrix size in mmWave systems. To over-
come the overhead of the channel and improve CS recovery
effectiveness, this article proposes the joint use of the subspace
matching search algorithm and differential operation for chan-
nel impulse response (CIR). Here, the current CIR is converted
to a differential CIR using operations between the current and
previous CIRs. The differential CIR is then compressed and fed
back to the base station. Subsequently, this differential CIR is
recovered using the subspace matching search algorithm. Such
a scheme leverages effective structural sparsity through a com-
bination of subspace and differential operations. The adaptive
algorithm adaptively selects relevant subspaces based on coeffi-
cients. The simulation results show that the proposed scheme
reduces channel overhead by 36% and 24% at compression ra-
tios of 25% and 45%, respectively, over different time slots in
mmWave massive MIMO systems.

Keywords  channel impulse response, channel state information,
compressive sensing, mmWave

1. Introduction

Massive millimeter MIMO systems are a key technology for
5G communication systems and beyond [1]. Such systems are
equipped with many directional antennas to achieve effective
beamforming gains [2] required to cope with higher path
losses. To overcome these issues, effective beamforming
strategies are proposed along with a large number of antenna
arrays. There is always a trade-off between performance and
system complexity when using such beamforming strategies
[3]. Effective channel state information (CSI) estimation is
very important to obtain optimal performance of any scheme.
For time division duplexing (TDD) scheme-based mmWave
massive MIMO systems, the downlink (DL) channel CSI is
estimated immediately by DL using received the transmit-
ted pilot signals due to its channel reciprocity. However, in

frequency division duplexing (FDD) systems, due to non-
existence of channel reciprocity [4], the uplink channel (UL)
CSI is not always equivalent to the DL CSI. Excessive channel
feedback is always required to estimate CSI, making channel
feedback very challenging [5]. To address this issue, orthog-
onal pilot signals are transmitted. However, the use of such
orthogonal pilots results in increased resource utilization
within the communication system.
Generally, the estimation of mmWave channels always ex-
hibits various sparse scattering characteristics [6]. The
mmWave channel matrix always exploits a highly sparse
channel matrix with non-zero elements based on the positions
of angle of arrival (AoA) and angle of departure (AoD) of the
various dominant multipath signals [7]. In massive MIMO
systems, effective recovery of the sparse signal is considered
as the mmWave-based channel estimation problem.
Compressive sensing (CS) algorithms are an effective ap-
proach [8] adopted to reconstruct undetermined linear sys-
tems. MmWave channel estimation is generally formulated as
a sparse signal recovery problem, which provides a compres-
sive measurement that combines the effects of analog and
digital precoders and combiners. CS-based algorithms are in-
troduced to recover these sparse signal recovery problems by
effectively quantifying AoA and AoD of various multipath
signals for the formation of uniform grids. Some hierarchical
codebook-based schemes are designed in such a way as to es-
timate the millimeter wave path parameters of the channels
in MIMO systems.
For CS recovery, the orthogonal matching pursuit (OMP) al-
gorithm is employed to quantize non-uniform angle grids.
Based on this evidence, direct estimation of all the entries in
the mmWave channel of massive MIMO systems is a chal-
lenging task. CS-based channel feedback schemes [9] are
proposed to exploit the antenna’s spatial correlations by com-
pressing the channel matrix of mmWave channels, thereby
reducing the feedback overhead.
The channel impulse response (CIR) is directly compressed
and recovered using effective CS algorithms, exploiting them
in the time domain to reduce feedback overhead [10]. In
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mmWave channels, the overhead is very high because of the
sparsity nature of the channel impulse response.

2. Related Works

Many CS-based recovery algorithms have been analyzed and
proposed in recent studies to reduce channel feedback. The
sparse recovery problem [11] is formulated based on the mul-
tipath signal by quantizing the angle of arrivals (AoA) and
angle of departures (AoDs) into uniform grids. Some effective
and adaptive CS-based algorithms are developed to estimate
channel parameters. To facilitate this estimation operation,
multiresolution codebook-based CS algorithms have been
developed [12]. Some methods improve channel recovery per-
formance by identifying non-uniformly quantized angles. The
approach presented in [13] also reduces coherence redundan-
cy of the systems. To find the array response vectors and to
estimate non-uniform quantized angle grids, the orthogonal
matching pursuit (OMP) algorithm is proposed [14].
Other basic search algorithms are also introduced to reduce
computational complexity of existing systems [15]. In [16],
two different adaptive low-complexity CS algorithms are
presented which iteratively estimate channel parameters.
A block sparsity-based CS algorithm is proposed in [17],
considering multi-user mmWave massive MIMO systems.
In studies [18]–[20], CS algorithms are used for narrowband
frequency-flat channels. In such cases, they were analyzed in
the time domain instead of the angular or frequency domains.
The main challenge in estimating channels in frequency-
selective channels is the need for common supports between
the mmWave channel sparsity matrices, which inevitably leads
to a better trade-off between complexity and performance. In
[20], uplink frequency-selective channels are estimated using
a two-stage CS algorithm, with precoders and combiners.
The major challenge is that, in the time domain, wideband
mmWave channels exploit delays in sparse channel vectors.
To address the problem of sparse channel recovery, hybrid
architectures are proposed, but, unfortunately, they generally
require limited training [21].
In paper [22], a two-step time domain estimator based on
OMP and the least squares methods is formulated to reduce
computational complexity. The sparsity nature of mmWave
systems in the angle and delay domains is defined jointly, and
the problem is effectively iterated by the CS-based message
passing method (MPM) [23] which exploits its structured
sparsity to find the nearest neighbor pattern [24], [25]. In
addition to exploiting the sparsity nature, other structured
channel models, such as low rank [26], uniform grid structure
[27], [28], and jointly sparse and low rank structures [29], are
also used and estimated by leveraging the sparsity feature.
The sparse recovery problem is defined for both time and
frequency domains. Different CS algorithms [30] are used
for recovery in the time domain the frequency domain, or
a combination of both, as proposed in [31]–[33].
Most of the existing works, e.g. [34] and [35], dealing with
mmWave channel estimation techniques, focus only on nar-

rowband frequency models. To provide context, techniques
focusing on wideband mmWave channels and frequency-
selective channels are also analyzed in both frequency and
time domains [36]. To analyze downlink frequency-selective
channels, CS techniques will be helpful in finding the com-
mon support which exhibits the sparsity of mmWave channels
in the frequency domain [20].
Other methods use effective precoders and combiners employ-
ing both on-grid and off-grid techniques [37]. In general, these
wideband mmWave channel estimation techniques widely
exploit delay sparsity while using small training overheads.
Lastly, two-step channel estimation methods are proposed us-
ing least squares estimation along with orthogonal matching
search algorithms for CS recovery [38].
In this paper, we propose a modified compressive sensing-
based differential channel feedback scheme using the subspace
matching pursuit recovery algorithm (SMP-DF CS) to reduce
feedback overhead and improve the performance of mmWave
massive MIMO systems. The said scheme exploits the tem-
poral correlation of highly time-varying mmWave massive
MIMO systems. This temporal correlation property exists in
both distributed and centralized systems.
The proposed algorithm effectively reduces the feedback over-
head and computational complexity at different compressive
ratios and demonstrates improved performance for the differ-
ential feedback scheme of mmWave massive MIMO systems.
The main contribution of this article is summarized as follows:
• A joint framework is proposed for a modified SMP-based

CS recovery scheme with differential operation for the
effective estimation of the channel impulse response in the
mmWave channel. This concept effectively leverages the
sparsity nature of mmWave channels in the angular domain
and reduces channel overhead.
• The CS recovery scheme introduced uses a modified sub-

space matching pursuit algorithm to improve CIR recovery
by effectively searching subspaces in each iteration in order
to form the support vectors.

• The proposed adaptive algorithm selects relevant subspaces
based on coefficients, rather than choosing each basis for
iterations, thus resulting in faster convergence and a better
achievable sum rate.

The paper is organized as follows. Section 3 explains the
proposed CS-based differential channel feedback scheme for
subspace matching using a model of the system model and
relevant preliminaries. Section 4 gives a detailed explanation
of the performance of NMSE in different SNR regimes.
Conclusions are presented in Section 5.

3. Proposed SMP-DF CS Scheme

3.1. System Model

The model of a mmWave massive MIMO system is equipped
with Nt and NR transmitting and receiving antennas, respec-
tively. The received downlink signal transmission rp, based
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on the training symbol, is expressed as:

rp = Hpfpsp + np , (1)

where Hp is the channel matrix of the downlink mmWave
system, fp is the vector representing beamforming, sp denotes
the received symbol vector, and np represents the complex
white noise vector with Gaussian distribution. The combined
vectors formed to detect the transmitted symbols are given
by:

yp =W
HHpfpsp +W

Hnp , (2)

where vector w = [W1,W2,W3, . . . ,WNq].
The downlink channel matrix equivalent to its transmitted
pilots is given as Hp = H and is based on block fading. The
received signal vector is formulated as:

Y = [y1, y2, y3, . . . , yNp ] . (3)

After receiving the pilot signals, Eq. (3) becomes:

Y =WHHFS +WHN , (4)

where s represents the diagonal matrix.
The mmWave signal channel is modelled as:

H =

√
NTNR
L

L∑
l=1

αl . ar(θl) . a
H
t (φl) , (5)

where L represents the number of scatters, θl and ϕl denote
the array response vectors that are associated with azimuth
and elevation angles, respectively.
The array response vectors at(θl) of the transmitter are:√

1
Nt

[
1, ej

2π
λ
d sin(θl), . . . , ej

2π
λ
(Nt−1)d sin(θl)

]
. (6)

The array response vectors ar(ϕl) of the receiver are formu-
lated as:√

1
Nr

[
1, ej

2π
λ
d sin(φl), . . . , ej

2π
λ
(Nr−1)d sin(φl)

]
, (7)

where d and λ represent the distance between the adjacent
antennas in the UPA and the wavelength of the signal, respec-
tively.
The model of the system is finally defined in a compact form
as:

H = Ar . Hα . A
H
t , (8)

where the terms At = [at(θ1), at(θ2), . . . , at(θl)] and Ar =
[ar(φ1), ar(φ2), . . . , ar(φl)] represents the steering matrix
of transmitter and receivers of this systems, respectively.
The channel matrix is formulated as follows:

Hα =

√
Nt . Nr
L
diag
[
α1, α2, . . . , αL

]
, (9)

whereHα is the diagonal matrix based on the steering vectors
of the transmitted and received signals.

3.2. Time Varying mmWave Massive MIMO Channel

The temporal time-varying channel impulse response of the
mmWave massive MIMO system of the t-th time slot of the n-
th transmitting antenna at the base station (BS) is considered.

The effective channel model for the received signal at a single-
antenna user is given as:

h(t)n =
[
h(t)n (0), h

(t)
n (1), . . . , h

(t)
n (L− 1)

]
, (10)

where N is the total number of transmitting antennas and L
is the maximum channel delay spread.
The channel impulse response (CIR) is always very sparse be-
cause of its nature in mmWave communication, as it typically
consists of only a few dominant propagation paths. These
paths play a significant role in improving channel response.

The sparsity nature of the CIR series
[
h(t)Tn

]T
t=1 consists of T

consecutive time slots that exhibit high temporal correlation
values even in massive MIMO channels with fast time-varying
MIMO channels. The change in temporal correlations always
exists through the support vectors which refer to the position
of non-zero elements and their amplitudes.
The time-varying and sparse nature of the CIR equation is
formulated by the support vector p(t)n and the amplitude
vectors a(t)n. Then the Eq. (10) becomes:

h(t)n = a(t)n ◦ p(t)n , (11)

where p(t)n is the support vector and a(t)n is the amplitude
vector at time slot t of the n-th transmitting antenna. The
“◦” symbol represents the Hadamard product which denotes
element-wise multiplication.
In order to model the rapid variations of this mmWave chan-
nel, support vectors p(t)n over time slot t in l elements can
be represented as a first-order Markov process. This Markov
process is characterized on two different transition proba-
bilities, denoted as P01 and P10. These terms are distributed
m(1)n at the initial time slot t = 1. For any steady-state in
the Markov process, the transition probabilities for all values
of t and n are given as:

Pr
[
p(t)n(l) = 1

]
= m . (12)

The other transmission probabilities P10 are represented as:

P10 =
µP01
1− µ . (13)

CIR amplitude over the time slot t is modeled using a first-
order autoregressive model, given as:

a(t)n = ρ . a(t− 1)n +
√
1− ρ2 w(t) , (14)

where r represents the correlation coefficient, ρ is the zero-
order Bessel function, fd represents the maximum Doppler
frequency, τ is the duration between the time intervals, and
w(t) stands for independent noise vectors, with all elements
always assumed to be independent and identically distributed
(iid) with a normal distribution.

3.3. SMP-DF CS Scheme

The proposed algorithm (depicted in Fig. 1) enables the adap-
tation of beamforming techniques and provides effective re-
duction of channel feedback, as well as improves robustness
to channel estimation errors. This scheme directly compresses
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Fig. 1. Subspace matching pursuit CS recovery-based differential channel feedback.

sparse CIR using the sensing matrix based on the CS algo-
rithm.

Before compression, the sparse CIR is converted into a dif-
ferential CIR by using differential operations between the
current and previous CIRs. This differential CIR has better
sparsity than the original CIR. It computes the difference be-
tween the estimated hn(t− 1) at (t− 1) slot and the previous
CIR h(t) at t slot. The differential CIR is expressed as [9]:

△h(t)n = h(t)n − h(t−1)n . (15)

Algorithm 1 Subspace matching pursuit CS algorithm
Input: measurement vector z, measurement matrix Φ,
sparsity level s, maximum number of iterationsmax_iter
Output: recovered signal a, number of used iterations
used_iter
Start

1: d← dimension of Φ
2: a← 0d ▷ Initialize recovered signal
3: ρ← z ▷ Initialize residual
4: T ← ∅ ▷ Initialize support
5: for it = 1 tomax_iter do
6: Compute inner products: inner_products← |ΦT ρ|
7: Update support: T ← indices of top 2s

elements of inner_products
8: Estimate signal: b← 0d, bT ← (Φ(:, T ))+z
9: Prune signal estimate: keep top s coefficients;

T ← indices of top s elements of |b|
10: Update recovered signal: a← 0d, aT ← bT
11: Update residual: r ← z − Φa
12: if ∥ρ∥ < 1E− 3 ∥z∥ then
13: break
14: end if
15: end for
16: used_iter ← it
End

After substituting the current and previous CIRs according to
Eq. (14), the equation becomes:

△h(t)n = p(t)n ◦
[√
(1− ρ2w(t)− (1− ρ)a(t−1)n

]
+
[
(p(t)n − p(t−1)n ◦ a(t−1)n

] . (16)

The first term of Eq. (16), which consists of the CIR amplitude,
is almost negligible. Similarly, the second term, representing
the non-zero elements, is also very small. To avoid errors in
feedback propagation, mobile users initialize the CIR based
on a high and effective compression ratio to enable precise
recovery at the base station.
After compression of the differential CIR, the channel is
fed back to the BS. On the BS side, the proposed scheme is
based on three important steps. The received CIR is efficiently
recovered using the subspace matching pursuit (SMP)-based
CS algorithm.
Based on the compressive sensing (CS) theory, the high-
ly sparse differential CIR is compressed using the sensing
matrix. Then, the measurement vector is given as:

y = φ . △ h(t)n , (17)

where φ represents the sensing matrix and△h(t)n represents
the differential CIR.
On the receiving side of the BS, measurement vector y is fed
back through the channel:

y = φ . △ h(t)n + n , (18)

where n represents the noise of the channel. Here, the entities
are also considered i.i.d. and follow a normal distribution.
On the BS side, the noise vector is added to the measurement
vector. The SMP-based CS recovery algorithm is adopted
to recover differential CIRs. The SMP-based CS recovery
algorithm iteratively refines the differential CIR by updating
its support and amplitudes based on the received measurement
vector. This Algorithm 1 initializes such parameters as d,
which represents the dimension of the sensing matrix, a
which is a zero vector, ρ – denoting the measurement vector,
and T , which represents the support vector of the signal.
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Tab. 1. Simulation parameters for the proposed scheme.

Parameter Value

Measurement matrix dimensions L 200
Transmission probability at initial time slot ρ 0.05

Initial probability of support vectorm 0.1
Maximum Doppler frequency fd 10 Hz

Time slot duration τ 1 ms
Standard deviation of independent

noise vector σ 1

Number of antennas N 32
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Fig. 2. Comparison of NMSE versus SNR for the proposed scheme
and existing CS schemes (η =25% and 45%).

In each iteration stage of this algorithm, the inner products
between the residual and columns are computed first to find
the dimension of the sensing matrix. Thereafter, the support
vector is selected based on the magnitudes of the first two ele-
ments. The signal is estimated by optimizing the least squares
problem. The signal is estimated based on the coefficient with
the highest magnitude. The residue is then updated by cal-
culating the difference between the updated signal and its
measurements.

4. Simulation Results

This section presents the numerical results to illustrate the pro-
posed channel estimation algorithm and other existing meth-
ods. Here, we have considered the mmWave system archi-
tecture where both the transmitter and receiver are equipped
with uniform planar arrays. Half of the wavelength of the
signal λ2 will be considered as the distance between the ad-
justed antenna elements. Similarly, the values of AoA and
AoD of each path are selected using a uniform distribution
form [0, 2π]. Similarly, the gain of each mmWave path follows
a normal distribution with a mean value of 1 and a variance
of 1, as N(0, 1). It is assumed that the system operates un-
der a carrier frequency of 28 GHz with a bandwidth of 100

MHz. The simulations consider the massive millimeter wave
MIMO system model with the parameters shown in Tab. 1.
The proposed SMP-DF CS algorithm is compared with the
existing conventional direct and CoSaMP-based differential
CS (CS-DF) algorithms at two different compression ratios.
In the differential CIR, it is assumed that the initial ampli-
tude and its support vectors may vary from the value 0 to N
and that such vectors are always independent. To maintain
the appropriate effective channel compression ratio (η = µL )
over the feedback slots, η is maintained at 25% and 45%,
respectively. The SMP recovery CS-based differential feed-
back scheme is compared with a direct CS scheme and a CS
recovery-based differential feedback method. For evaluation,
the normalized mean square error (NMSE) is calculated using
the following equation.

NMSE = E

[
||Ĥ −H||2

||H||2

]
, (19)

where Ĥ is the estimate of the true channel H .
A comparison of NMSE for the specific schemes is shown in
Fig. 2 for different signal-to-noise ratio (SNR) regimes.
To achieve effective compression ratios, 45% and 15% are
considered for initial and subsequent time slots for the first
case (η =25%). For the second case (η =45%), the ratios are
65% and 35%, respectively. This result shows that the pro-
posed scheme outperforms other existing schemes by 36%
and 24% at the compression ratios of η at 25% and 45%,
respectively. This is achieved by leveraging the structural
sparsity of signals as a subspace combination. The adaptive
pursuit strategies to select the relevant subspace and coeffi-
cient iteratively, integrating the differential operation, enhance
overall robustness and improve the recovered accuracy.
The achievable sum rate of the proposed system is compared
with all other existing direct CS and differential feedback-
based CS schemes at different compression ratios of 25% and
45%, respectively. The achievable sum rate is to maximize
the data rate supported by the system for all end users given
the channel. Figure 3 shows that as SNR increases, with the
achievable sum rate also improving for the proposed scheme.
The SMP-based differential CS scheme performs the best
across the entire SNR range compared to other existing CS
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Fig. 3. Achievable sum rate versus SNR of the proposed scheme.
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schemes. Furthermore, the gap between the direct CS method
and the proposed SMP-based differential feedback method
becomes comparatively narrower as SNR increases and the
compression ratio η increases from 25% to 45%, respectively.

5. Conclusion and Future Work
This article investigates the sparse channel recovery problem
and the issue of channel feedback overhead. To enhance the
performance of the CS-based differential channel feedback
scheme, the article proposes a subspace matching pursuit
recovery algorithm used in conjunction with differential
operations. A simulation has been performed to analyze and
compare NMSE across different SNR regimes.
Results of the simulation show that the proposed scheme
outperforms the other existing direct CS and differential CS
schemes, reducing the channel overhead by 36% and 24% at
different compression ratios over the time slots of mmWave
massive MIMO systems. In future work, the proposed scheme
may be extended to intelligent reflecting surface (IRS)-aided
mmWave massive MIMO systems to meet the requirements
of future-generation wireless systems.
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