
ILP Optimized LSTM-based Autoscaling
and Scheduling of Containers in

Edge-cloud Environment
Shivan Singh, Narayan D.G., Sadaf Mujawar, G.S. Hanchinamani, and P.S. Hiremath

KLE Technological University, Hubballi, Karnataka, India

https://doi.org/10.26636/jtit.2025.2.2088

Abstract Edge computing is a decentralized computing
paradigm that brings computation and data storage closer to da-
ta sources, enabling faster processing and reduced latency. This
approach is critical for real-time applications, but it introduces
significant challenges in managing resources efficiently in edge-
cloud environments. Issues such as increased response times,
inefficient autoscaling, and suboptimal task scheduling arise
due to the dynamic and resource-constrained nature of edge
nodes. Kubernetes, a widely used container orchestration plat-
form, provides basic autoscaling and scheduling mechanisms,
but its default configurations often fail to meet the stringent
performance requirements of edge environments, especially in
lightweight implementations like KubeEdge. This work presents
an ILP-optimized, LSTM-based approach for autoscaling and
scheduling in edge–cloud environments. The LSTM model fore-
casts resource demands using both real-time and historical data,
enabling proactive resource allocation, while the integer linear
programming (ILP) framework optimally assigns workloads
and scales containers to meet predicted demands. By jointly ad-
dressing auto-scaling and scheduling challenges, the proposed
method improves response time and resource utilization. The ex-
perimental setup is built on a KubeEdge testbed deployed across
11 nodes (1 cloud node and 10 edge nodes). Experimental re-
sults show that the ILP-enhanced framework achieves a 12.34%
reduction in response time and a 7.85% increase in throughput
compared to the LSTM-only approach.

Keywords autoscaling, edge computing, ILP optimization, Ku-
bernetes, LSTM, resource efficiency, scheduling, throughput

1. Introduction

Edge computing represents an approach to data processing
that enables computation and storage closer to the data source
than using centralized cloud servers. This decentralized model
improves real-time data analysis, reduces latency, and im-
proves resource utilization, making it suitable for applications
like autonomous systems, smart cities, and industrial automa-
tion.
The unique requirements of edge computing environments,
including low latency responses and efficient resource utiliza-
tion, create significant challenges in workload management
and resource optimization.
KubeEdge is an open-source framework designed to extend
Kubernetes functionality to edge computing environments,

enabling efficient management of containerized applications
across distributed edge nodes. Bridges the gap between cloud
infrastructure and edge devices, facilitating seamless deploy-
ment and orchestration of workloads in resource-constrained
and geographically dispersed locations.
The architecture of KubeEdge includes components opti-
mized for edge scenarios, such as the CloudCore module,
which manages edge node control, configuration, and com-
munication with the Kubernetes API server at the cloud level,
and the EdgeCore module, which handles application deploy-
ment, resource monitoring, and local decision-making at the
edge, reducing dependency on continuous cloud connectivity.
Additionally, KubeEdge incorporates an edge message bus for
real-time communication between devices and applications,
requiring low latency and high responsiveness. By enhancing
Kubernetes with edge-specific capabilities, KubeEdge pro-
vides a robust platform for deploying scalable and reliable
applications in distributed environments.
Autoscaling completes scheduling by dynamically adjusting
the number of container replicas to match workload demands.
The Kubernetes HorizontalPod Autoscaler (HPA) primari-
ly relies on metrics such as CPU and memory usage to scale
resources. For edge computing, network traffic information
can play an important role in reducing response time [1].
Although effective in static or predictable workloads, this ap-
proach struggles in dynamic edge environments characterized
by unpredictable workload patterns.
Proactive scaling mechanisms, using predictive models such
as long-short-term memory (LSTM) networks, offer a promis-
ing solution [2]. By analyzing historical and real-time met-
rics, LSTM models can predict future resource demands, en-
abling preemptive scaling decisions. Reduce resource under-
utilization and overprovisioning and also ensure timely re-
sponses to workload fluctuations.
Scheduling in edge computing plays an important role in effi-
ciently assigning tasks to nodes while minimizing latency and
balancing workloads across distributed resources. Unlike tra-
ditional cloud environments, where computational resources
are large, edge nodes operate under strict resource limitations.
Effective scheduling requires consideration of factors such as
network conditions, task relationship, and node heterogene-
ity. For example, tasks that require real-time processing must

56
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025

https://doi.org/10.26636/jtit.2025.2.2088
https://creativecommons.org/licenses/by/4.0/

ILP Optimized LSTM-based Autoscaling and Scheduling of Containers in Edge-cloud Environment

be assigned to nodes closer to the data source to ensure low
latency, while less critical tasks can be offloaded to distant
nodes or cloud servers [3].
Recent advances have explored machine learning and integer
linear programming (ILP) to enhance scheduling efficiency,
but their integration with existing Kubernetes architectures re-
mains a challenge. Integrating autoscaling with scheduling in
Kubernetes enhances resource management by dynamically
adjusting workloads to real-time demands. Autoscaling mech-
anisms such as HPA scale pod replicas based on resource
utilization, while intelligent scheduling ensures optimal work-
load placement across clusters.
A survey on Kubernetes scheduling algorithms emphasizes
the importance of autoscaling-enabled scheduling, advocating
for algorithms that adapt to dynamic workloads by integrating
autoscaling into the scheduling process [4]. This combined
approach improves resource allocation and reduces latency
under fluctuating workloads.
This work integrates AI-based autoscaling and scheduling
mechanisms customized for Kubernetes-based edge-cloud
environments. We propose an ILP-optimized LSTM-based
approach that addresses the limitations of existing solutions.
Using CPU and memory usage as well as RTT metrics, the
LSTM model predicts workloads, enabling proactive scaling
decisions. In addition, an ILP-based scheduling algorithm as-
signs tasks to nodes based on real-time and predicted resource
availability, optimizing response time and resource utilization.
By integrating these processes, the proposed framework en-
sures efficient operation in dynamic and resource-constrained
environments.
The contributions of this work are as follows:
• an LSTM-based prediction model is proposed to forecast

resource utilization such as CPU, memory, and RTT, en-
abling accurate workload predictions,
• a combined autoscaling and scheduling framework that

integrates LSTM-based predictions with ILP-based opti-
mization is proposed,
• the proposed approach is evaluated in a KubeEdge testbed

environment to determine improvements in resource uti-
lization, response time, and workload prediction accuracy
and then compared to traditional methods.

The rest of the article is as follows. Section 2 reviews related
research and background study. Sections 3 and 4 outline the
mathematical model, the proposed model, and the algorithms.
The results are presented in Section 5, and conclusions are
given in Section 6.

2. Background Study
The KubeEdge architecture, as shown in Fig. 1, is designed
to seamlessly integrate cloud and edge computing environ-
ments. It consists of two main layers: the cloud layer and the
edge layer. The cloud layer hosts the master node, which con-
tains critical components like the scheduler, metric server,
deployments, and autoscaler. These components ensure that
tasks are managed efficiently, that resources are optimally

allocated, and that the overall system remains scalable and
reliable.
The edge layer, on the other hand, includes multiple worker
nodes that are connected through EdgeHub. These worker
nodes host applications and devices, providing compute power
at the edge of the network closer to end users.
The CloudCore, which operates in the cloud, is a key com-
ponent of the KubeEdge architecture. It consists of various
modules that handle critical communication, synchronization,
and management tasks. One of these modules is CloudHub,
which acts as the primary gateway for communication be-
tween the cloud and the edge nodes. It is responsible for main-
taining secure web socket connections and routing messages
efficiently. Another important module is the edge controller,
which oversees the management of edge nodes and synchro-
nizes pod metadata between the edge and the Kubernetes API
server. Additionally, the device controller plays a crucial role
in ensuring that device metadata is accurately synchronized
between the cloud and edge environments.
The KubeEdge architecture incorporates sophisticated mech-
anisms to handle varying workloads and dynamic resource
requirements. One of the standout features is its autoscal-
ing capability, which ensures that the system can adapt to
changes in computational demands. This is particularly im-
portant for edge computing scenarios where workloads can
fluctuate based on real-time events or user interactions. By
dynamically adjusting resources, KubeEdge maintains opti-
mal performance without overprovisioning or underutilizing
resources.
Scheduling in KubeEdge is another critical aspect of its
architecture. The scheduling framework operates both at the
cloud and the edge levels, ensuring that tasks are effectively
distributed across available resources. At the cloud level, the
master scheduler is responsible for global resource allocation.
It evaluates various factors such as resource availability,
network conditions, and task priorities to make informed
scheduling decisions.
At the edge level, the EdgeCore components handle local
scheduling. These components are designed to optimize
resource utilization while considering factors such as net-

C
lo

ud
E

dg
e

D
ev

ic
es

kubectl

k-proxy k-proxy

+

Master

Autoscaler Scheduler

Metric serverDeployments

Worker 1 Worker 2 Worker 3

pod pod pod pod pod

k-proxy

Fig. 1. KubeEdge architecture.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025 57

Shivan Singh, Narayan D.G., Sadaf Mujawar, G.S. Hanchinamani, and P.S. Hiremath

work latency and data locality. The distributed nature of this
scheduling framework allows KubeEdge to achieve a balance
between centralized control and autonomous operations at
the edge.
One of the most important aspects of KubeEdge is its ability
to maintain operational consistency even in the face of dis-
continuous connectivity. Edge environments often operate
in challenging conditions where stable network connections
cannot be guaranteed. KubeEdge addresses this challenge
by ensuring that edge nodes can continue to function au-
tonomously even when disconnected from the cloud. This
resilience makes it particularly suitable for scenarios like
industrial automation, smart cities, and remote monitoring,
where edge devices must continue to operate independently.

2.1. Related Work

In the realm of autoscaling, a hybrid proactive autoscaler opti-
mized for edge computing scenarios has been proposed in [5].
Utilizing a bidirectional long- and short-term memory (Bi-
LSTM) based load prediction model, this autoscaler predicts
future workloads and performs scaling operations preemp-
tively. Furthermore, an overload compensation algorithm is
implemented to ensure quality of service (QoS) degradation
due to underprediction, and a hybrid scaling method is ap-
plied to simultaneously adjust the number of pods and their
resource quota without restarting [5].
In [6], the authors introduce an integrated framework that
combines autoscaling and scheduling for edge-cloud envi-
ronments. This framework dynamically adjusts resources and
schedules tasks based on real-time workload analysis, enhanc-
ing system performance and resource utilization. Similarly,
article [7] presents a proactive autoscaling approach for edge
computing systems managed with Kubernetes. By forecasting
workloads using multiple user-defined metrics, the proposed
proactive pod autoscaler (PPA) scales applications accord-
ingly, outperforming the default autoscaler in both resource
utilization efficiency and application performance. These
studies highlight the importance of integrating predictive
models with resource management strategies to effectively
handle dynamic workloads in edge-cloud environments.
Node-aware autoscaling has been extensively explored to
address dynamic workloads in edge computing environments.
Paper [8] introduces a node-based horizontal pod autoscaler
(NHPA) designed for KubeEdge environments. Focuses on the
use of resource at the individual node level, allowing dynamic
adjustment of pod numbers independently for each node.
This ensures optimized pod allocation and seamless scaling,
particularly in scenarios where traffic volume fluctuates over
time and location, and communication links between edge
nodes may be unstable.
Integrating machine learning models with autoscaling has
been investigated in [9], while the authors present FedAvg-
BiGRU, a proactive autoscaling method in edge computing
that combines federated averaging (FedAvg) and multistep
prediction using a bidirectional gated recurrent unit (BiGRU).
This approach reduces network traffic by exchanging model

updates instead of raw data, thereby enhancing resource allo-
cation efficiency. Similarly, [10] proposes a hybrid proactive
autoscaler that combines horizontal and vertical scaling based
on future workload predictions. This method aims to im-
prove QoS and resource utilization efficiency in Kubernetes
clusters.
Predictive workload modeling is crucial to improve autoscal-
ing and scheduling in dynamic environments. In [11], the
authors address container job scheduling as a multiobjec-
tive optimization problem, proposing a linear programming
model to address this issue. They highlight the limitations
of traditional approaches in capturing the non-linearities as-
sociated with resource usage patterns, suggesting that deep
neural networks could offer a more effective solution.
Dynamic resource allocation frameworks have been developed
to enhance Kubernetes cluster management. For example,
a study [12] proposes a dynamic task offloading framework
in KubeEdge-based edge computing environments, utilizing
machine learning to optimize resource allocation and ensure
data privacy. This approach addresses the challenges of re-
source limitations and privacy concerns in edge computing
scenarios. Similarly, work [13] introduces a proactive hybrid
autoscaler designed for edge applications in Kubernetes. By
employing a Bi-LSTM based load prediction model, this au-
toscaler anticipates future workloads, enabling preemptive
scaling actions that improve resource utilization and maintain
QoS. These frameworks demonstrate the effectiveness of in-
tegrating predictive models and machine learning techniques
for dynamic resource management in Kubernetes clusters.
Efficient task scheduling is a critical challenge in edge com-
puting environments. In [3], the authors propose a network-
based container scheduling approach that considers the vari-
ous edge node network performance, such as geographical
location and network topology, to optimize resource alloca-
tion and application performance. Furthermore, [14] investi-
gates the performance of KubeEdge in terms of computational
resource distribution and latency between edge nodes. The
study reveals that forwarding traffic between edge nodes leads
to a degraded throughput and an increased service delay in an
edge computing environment. To mitigate this problem, the
authors propose a local scheduling scheme that processes user
traffic locally at each edge node, enhancing the performance
of edge devices.
In edge computing, efficient resource scheduling is crucial
to manage the limited computational resources and dynamic
workloads characteristic of edge environments. A compre-
hensive taxonomy of resource scheduling techniques is pre-
sented in [15], categorizing approaches based on application
scenarios, computational platforms, algorithm paradigms,
and optimization objectives. This taxonomy addresses chal-
lenges such as heterogeneity, workload dynamics, and the
need for real-time processing, providing a structured frame-
work for developing effective scheduling strategies. In addi-
tion, a multi-objective optimization algorithm is introduced
in [16], with the aim of minimizing latency and maximizing
resource utilization in edge systems. This algorithm consid-
ers factors such as task allocation, resource availability, and

58
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025

ILP Optimized LSTM-based Autoscaling and Scheduling of Containers in Edge-cloud Environment

Tab. 1. Summary of related work and research gaps.

Ref. Focus area Methodology Research gap

[1] Traffic-aware
autoscaling

Incorporates traffic patterns into HPA for
Kubernetes

Lacks scalability for multi-cluster
deployments in edge computing

[2] LSTM-based
autoscaling

Analyzes real-time and historical metrics to
forecast resource demands, enabling

proactive scaling

Limited integration with scheduling
frameworks for task placement

[5] Proactive
autoscaling

Predicts workload demands using Bi-LSTM
models for preemptive scaling

Limited focus on heterogeneous resource
capacities in edge environments

[9] Federated
autoscaling

Leverages FL models to predict workload
variations across distributed edge nodes

High communication overhead and
synchronization challenges

[13] ILP-based
scheduling

Optimizes container task placement using
ILP models

Limited adaptability to dynamic workloads
in real-time systems

[14] Real-time
scheduling

Allocates tasks in KubeEdge environments,
focusing on real-time edge task execution

Does not incorporate latency-awareness in
multi-node edge deployments

[15] Resource-aware
scheduling

Proposes a taxonomy for scheduling
algorithms with a focus on adaptive

mechanisms

Absence of integration with predictive
autoscaling mechanisms

[16] Multi-objective
scheduling

Employs multi-objective optimization to
balance latency and resource usage in task

scheduling

Requires enhanced scalability for
large-scale edge systems

network conditions to ensure efficient processing and time-
ly responses to user demands. By integrating these heuristic
and taxonomy-based approaches, edge computing systems
can achieve improved performance, adaptability, and resource
management.
Energy efficiency is a critical concern in edge computing
scheduling algorithms. In [18] a workload scheduling ap-
proach based on deep reinforcement learning (DRL) has
been proposed to balance workloads, reduce service time,
and decrease task failure rates in edge environments. This
method utilizes deep Q-network (DQN) algorithms to ad-
dress the complexities of workload scheduling, with the aim
of improving virtual machine utilization and overall system
performance. Article [19] introduces energy-efficient schedul-
ing algorithms to minimize computational overhead while
maintaining performance in edge environments.
In the realm of edge computing, DRL has been used to im-
prove task scheduling efficiency. In [20] the DRL-based task
scheduling algorithm has been introduced to intelligently
manage tasks in edge computing settings, focusing on re-
ducing service delay and traffic load. This approach uses
reinforcement learning to optimize task assignments, thereby
enhancing the efficiency of edge computing systems.
ILP-based approaches have also been used to optimize re-
source allocation. The authors of [21] use ILP models to opti-
mize the placement of service function chains (SFC) in edge
cloud environments, integrating workload predictions from
LSTM models to improve efficiency. Similarly, paper [22]
proposes the combined predictive autoscaler (COPA), which
combines horizontal and vertical scaling to optimize resource
usage in Kubernetes clusters.

Research is summarized in the Tab. 1 highlights significant
advances in the fields of autoscaling and scheduling tech-
niques.

3. ILP Formulation for Joint Autoscaling
and Scheduling

To optimize resource allocation, task placement, and replica
scaling simultaneously in the Kubernetes-based edge-cloud
environment using a linear framework, we propose an ILP
model. This model uses predictions from the LSTM model
to make proactive decisions, with the aim of minimizing
a composite cost function reflecting task priorities, network
latency, and a linear cost for scaling, while adhering to node
resource constraints. The decision variables are the following.
• xp,n: binary decision variable, where xp,n = 1 if the task
p is assigned to node n and xp,n = 0 otherwise. This
represents the scheduling decision.

• R: non-negative integer decision variable representing the
total target number of container replicas to be maintained
across the cluster, as determined by the integrated opti-
mization. This represents the autoscaling decision.

Parameters used in the proposed model:
• cp: cost or inverse priority associated with placing task p. A

higher cp might represent a lower priority task or a higher
intrinsic cost of running it.

• RTTn: predicted round-trip time parameter for node n.
In this work, RTTn is defined as the predicted latency
between edge node n and a designated central point within

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025 59

Shivan Singh, Narayan D.G., Sadaf Mujawar, G.S. Hanchinamani, and P.S. Hiremath

the cluster, the Kubernetes API server. This serves as
a proxy for the general responsiveness and accessibility of
node n from a control or coordination perspective. This
value is forecasted using a dedicated LSTM model.
The inputs to this LSTM model to predict RTTn for a spe-
cific node n include its own historical RTTn values (to
the central point) from previous time intervals, the current
CPU and memory utilization of node n, and the current
network interface traffic statistics for node n (e.g., bytes
in/out, packets in/out).
These input metrics are collected through Prometheus. The
LSTM is trained offline on historical data to learn patterns
and predict RTTn for the subsequent operational interval.
This predicted RTTn is then fed as a constant parameter
into each instance of the ILP optimization problem.
• γ: non-negative penalty factor for network latency. Con-

trols the importance of minimizing latency during task
placement.
• β: non-negative linear scaling cost factor. This weight

represents the cost associated with the deployment and
maintenance of each replica. Penalize solutions linearly on
the basis of the total number of replicas R.
• CPUp, memoryp: resource requirements (CPU cores,

memory units) of a single instance/replica of task p.
• CPUn, memoryn: resource capacities (available CPU

cores, memory units) of edge node n.
• N : total number of edge nodes.
• P : total number of tasks to be scheduled.
The following constraints ensure valid scheduling and re-
source allocation. Each task must be assigned to exactly one
node. To achieve this, the following formula is applied:

N∑
n=1

xp,n = 1, ∀ p ∈ {1, . . . , P} . (1)

The total CPU usage of tasks assigned to a node must not
exceed the CPU capacity. To prevent over-commitment of
CPU resources on any node, we use:

P∑
p=1

xp,n · CPUp ¬ CPUn, ∀n ∈ {1, . . . , N} . (2)

Total memory usage of tasks assigned to a node must not
exceed the memory capacity:

P∑
p=1

xp,n ·Memoryp ¬ Memoryn, ∀n ∈ {1, . . . , N} . (3)

The task-to-node assignment must be binary:

xp,n ∈ {0, 1}, ∀ p ∈ {1, . . . , P}, n ∈ {1, . . . , N} . (4)

The total number of replicas must be non-negative:

R 0, R ∈ Z . (5)

The goal is to minimize the combined linear cost of task
placement, network latency, and replica scaling:

min
P∑
p=1

N∑
n=1

(cp · xp,n + γ · RTTn · xp,n) + β ·R . (6)

The objective function (6) aims to find the optimal balance
between scheduling efficiency and resource scaling costs
using a purely linear formulation:
• The scheduling cost term (cp ·xp,n) accumulates the intrin-

sic cost cp of placing the task p on node n. Favors placing
low-cost (high-priority) tasks.

• The latency penalty term (γ ·RTTn · xp,n) adds a penalty
proportional to the predicted latency (RTTn) of node
n where the task p is placed. The factor γ weights the
importance of latency. Minimizing this drives tasks towards
low-latency nodes.

• The linear scaling cost term (β·R) adds a cost that increases
linearly with the total number of replicas R deployed. The
factor β represents the cost per replica. This encourages
resource efficiency by penalizing unnecessarily high replica
counts.

The ILP solver finds the optimal integer values for xp,n (task
placement) and R (total replicas) that minimize this linear
objective function while satisfying all constraints (1)–(5).
The integration with LSTM remains the same as for ILP. The
LSTM model provides predictive inputs:
• The predicted round-trip time RTTn is used directly in the

latency penalty term.
• Other LSTM predictions can inform the setting of parame-

ters like cp, CPUp, or memoryp before solving the ILP.
By integrating autoscaling and scheduling equations into the
ILP framework, the proposed model addresses the challenges
of dynamic workload management in edge-cloud environ-
ments. The Gurobi solver is used to solve the ILP, ensuring
efficient optimization of resources while maintaining low
response times.

4. Proposed Methodology

This section details the methodology of the proposed system,
covering system workflow, dataset preparation, scheduling
algorithm, auto-scaling mechanism, and mathematical mod-
eling using ILP for combined scheduling and autoscaling.

4.1. System Model

The system model, depicted in Fig. 1, integrates auto-scaling,
scheduling, and predictive modeling to achieve efficient re-
source management in Kubernetes-based edge-cloud envi-
ronments. At the core of the design depicted in Fig. 2 is
a seamless workflow that begins with collecting real-time re-
source metrics, such as CPU usage, memory consumption,
and RTT from all nodes within the cluster.
Metric server as the monitoring agent, providing an uninter-
rupted stream of data essential for decision-making processes.

60
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025

ILP Optimized LSTM-based Autoscaling and Scheduling of Containers in Edge-cloud Environment

ILP optimized prediction model SchedulerAutoscaler

Metric server

Data

Data Data
Update
dataset

Update
datasetPredicted

data

Predicted
data

Fetch
deployment

Autoscaling Train model Scheduler

Fetches CPU, RAM, RTT

Calculate no.
of pods for

CPU and RAM

Set pods to
Max(CPU_pods,

RAM_pods)

Pods query Fetch metrics

Predicts
autoscaling

using LSTM

Re-trains LSTM
model on dataset

Predicts scheduling
using LSTM

Autoscaling
LSTM
model

Pod
dataset

Node
dataset

Scheduling
LSTM
model

Cron job

Updates model on the
regular time interval

Fetch nodes
data

 (metric server)

Watch
pending pods

Schedule pod
to best score

 node

Calculate
each node

score

Nodes data

Predicted
data after

5 s

Predicted
deployment
data after

5 s

Deployment
data

Fig. 2. Detailed system model.

The autoscaler processes these metrics and prepares them
to forecast future workloads for 5 s using an LSTM-based
prediction model. This predictive model utilizes historical
and real-time data to estimate future resource requirements,
including CPU and memory usage, network delays, and ap-
plication request rates. Predicted values are stored alongside
the actual metrics, creating a continuously updated dataset to
retrain the LSTM model. This approach ensures that the ac-
curacy of the prediction evolves with changes in workload
patterns, making the system highly adaptive.
When resource demands exceed predefined thresholds, the
autoscaler proactively scales resources by either increasing
replicas or reallocating workloads to mitigate performance
bottlenecks. Similarly, the scheduler evaluates all nodes within
the cluster to determine the most suitable deployment location
for new or pending pods. This evaluation is based on a scoring
mechanism that incorporates predicted CPU and memory
usage, task priority, pod affinity, and network parameters
such as RTT. The node with the highest score is selected for
pod deployment, ensuring efficient and balanced resource
allocation.
To further enhance system performance, the model is de-
signed to retrain the LSTM predictor at regular intervals
using a cron job. The updated data set collected during op-
erations allows the retraining process to adapt to evolving
workload behaviors, ensuring the system remains capable of
handling unpredictable and dynamic resource demands.

4.2. Dataset

The data set used in this investigation was created us-
ing Prometheus, a powerful open-source monitoring tool.
Prometheus collects real-time metrics related to resource us-
age from Kubernetes-based edge-cloud environments. The
dataset consists of two main components: pod-level data for
autoscaling and node-level data for scheduling. Each data set
contains features that help predict future resource utilization
and optimize resource allocation strategies.
The pod-level dataset focuses on metrics crucial to making
auto-scaling decisions. The data set includes information

Tab. 2. Description of the dataset at the pod level.

Feature Description

timestamp The timestamp indicating the time of
the measurement

cpu CPU usage of the pod
memory Memory usage of the pod

rtt Round-trip time or latency for the pod

next_rtt Round-trip time or latency 5 s after the
current time

next_memory Memory usage 5 s after the current time
next_cpu CPU usage 5 s after the current time

Tab. 3. Description of the node-level dataset.

Feature Description

timestamp The timestamp indicating the time of
the measurement

nodename The name of the node
cpu CPU usage of the node

memory Memory usage of the node
rtt Round-trip time or latency for the node

next_rtt Round-trip time or latency 5 s after the
current time

next_memory Memory usage 5 s after the current time
next_cpu CPU usage 5 s after the current time

on CPU usage, memory utilization, RTT, and future predic-
tions. The data is continuously monitored and collected by
Prometheus. A detailed description of the pod-level dataset
features is provided in the Tab. 2.
The node-level data set is designed to help schedule pods to
the most optimal nodes. It includes both current and predicted
metrics for nodes such as CPU usage, memory usage, and
RTT. This data set is essential to implement an efficient

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025 61

Shivan Singh, Narayan D.G., Sadaf Mujawar, G.S. Hanchinamani, and P.S. Hiremath

scheduling algorithm. Table 3 provides a detailed description
of the features of the node-level dataset.

4.3. The Algorithm Description

The proposed methodology, shown in Algorithm 1, adopts
a cyclical, multiphase strategy to integrate predictive insights
with optimization for resource management in Kubernetes-
based edge environments. This structure aims at both proac-
tive adjustments and refined decision-making. The process
involves the following phases:
1) Proactive autoscaling (lines 11–23). This phase leverages

LSTM predictions (PredictMetricValues), derived from
current Prometheus metrics, to forecast future resource
demands. Based on these predictions versus operational
thresholds, a preliminary target replica count (NoofRepli-
casHeuristic) is calculated heuristically (lines 20–21). An
initial scaling action (ScaleDeployment) might option-
ally be performed at this stage (line 22) if the heuristic
count differs significantly from the current state, allowing
a rapid response to predicted load shifts.

2) Heuristic scheduling (lines 24–29). Following autoscal-
ing considerations, this phase performs a quick heuristic
placement for pending tasks. Calculate a score (Scoren)
for each node using the function f , based on current or
predicted resources and latency RTTn (line 26). Each
task is then preliminarily assigned to the node identified
as having the best score (BestNode) (lines 28–29).

3) ILP optimization and refinement (lines 30–39): The final
phase employs ILP for comprehensive optimization. An
ILP problem is formulated using the revised model, i.e.
constraints (1)–(4) and objective (6) (lines 32–33). The
inputs include node states, task requirements, predicted
RTTn by LSTM, and tuning parameters γ, β, cp. The ILP
is solved using Gurobi (line 34) to determine both the
final optimal task placement xp,n and the final optimal
total replica count Roptimal. This ILP solution refines the
decisions of the previous phases. The resulting Roptimal
dictates the definitive scaling action (lines 36–37), and the
optimized xp,n determines the final task deployment (line
39).

This multiphase design allows the system to potentially re-
act quickly using predictive heuristics (phases 1 and 2) while
leveraging the comprehensive optimization power of ILP
(phase 3) for refinement and determining the definitive scal-
ing and placement actions. Practical considerations such as
prediction accuracy, interphase delays, and ILP solve time
remain relevant for real-world performance.

4.4. Cron Job for LSTM Retraining

To maintain prediction accuracy, the LSTM model is pe-
riodically re-trained using updated datasets. A cron job is
implemented to automate this process. The steps involved are
as follows:
• Fetch updated metrics (CPU, memory, RTT) from

Prometheus,

Tab. 4. Hardware and software configuration.

Component Specification

Processor Intel core i5 7th Gen
RAM 128 GB DDR4

Storage 30 GB SSD per node
Operating system Ubuntu 20.04 LTS

Kubernetes version 1.29
KubeEdge version 1.19

Nodes 11: 1 cloud node, 10 edge nodes
RAM per node 4 GB
Virtualization VMware workstation

Orchestration tool Kubectl
Programming

framework TensorFlow, Python

Deployed application Web App using Ngnix

Tab. 5. Configuration of the LSTM model.

Parameter Value

Number of LSTM layers 16
Number of epochs 50

Batch size 64
Optimizer Adam

Loss function Categorical cross entropy

• Update the training dataset with the latest metrics,
• Retrain the LSTM model with the updated dataset to im-

prove prediction accuracy,
• Deploy the updated model into the system for future pre-

dictions.

5. Results and Discussion

The data set was generated in a multinode KubeEdge set-
up, consisting of one cloud node and ten edge nodes, and
metrics were collected at both node and pod levels using
Prometheus and bash scripts over a 10-hour period, captur-
ing diverse workloads and resource utilization patterns. Table
4 summarizes the configuration used, while the LSTM model
configuration is summarized in Table 5. Workloads to evalu-
ate autoscaling mechanisms were generated using the Apache
Benchmark (ab) tool, which aims at the deployed web server
application.
For the evaluations focusing on fixed sustained load for re-
sponse time, CPU/memory utilization), a total of 100 000
HTTPS GET requests ab Apache tool with concurrency of
100. This configuration creates a closed-loop workload mod-
el. In this model, ab attempts to maintain 100 concurrent
active connections to the server. As soon as a request re-
ceives a response, ab immediately issues a new request on

62
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025

ILP Optimized LSTM-based Autoscaling and Scheduling of Containers in Edge-cloud Environment

Algorithm 1 ILP optimized LSTM-based autoscaling and scheduling.
1: Input:
2: Historical metrics {CPUt,MEMt, RTTt}Tt=1 from metric server
3: Current replica count Rcurrent from Kubernetes
4: Threshold values for CPU, memory, and RTT: ThresholdCPU,Thresholdmemory,ThresholdRTT
5: Resource capacities limit of nodes: CPUn,Memoryn, and RTTn
6: Tasks and their resource requirements: {CPUp,MEMp}Pp=1
7: Output:
8: Final optimized replica count Roptimal deployed
9: Task-to-node mapping xp,n used for deployment

10: while true do
11: Phase 1. Autoscaling
12: DesiredReplicaHeuristic← 1
13: FetchedMetrics← FetchMetricsFromPrometheus()
14: CurrentReplicas← GetCurrentReplicas(Deployment)
15: for metric in FetchedMetrics do
16: PredictedMetricValue← PredictMetricValues(metric)
17: DesiredMetricValue← GetDesiredMetricValue(metric)
18: MetricDesiredReplicas← ⌈CurrentReplicas · (PredictedMetricValue / DesiredMetricValue)⌉
19: DesiredReplicaHeuristic← max(DesiredReplicaHeuristic, MetricDesiredReplicas)
20: end for
21: NoofReplicasHeuristic← DesiredReplicaHeuristic
22: if NoofReplicasHeuristic ̸= CurrentReplicas then
23: end if
24: Phase 2. Scheduling
25: For each task p calculate node scores using resource metrics:
26: Scoren ← f(CPUn,Memoryn,RTTn)
27: Identify the most suitable node for each task:
28: BestNode← argmaxn(Scoren)
29: Schedule tasks to nodes based on the highest scores
30: Phase 3. ILP Optimization
31: Define decision variables: xp,n (binary), Roptimal (integer)
32: Formulate constraints using Eqs. (1)–(4)
33: Reference objective function from Eq. (6)
34: Solve ILP using Gurobi solver to determine optimal xp,n and optimal replica count Roptimal
35: ▷ The solved Roptimal refines/overrides NoofReplicasHeuristic from phase 1
36: if Roptimal ̸= CurrentReplicas then
37: ScaleDeployment(Roptimal)
38: end if
39: Deploy tasks to nodes based on the optimized xp,n
40: end while

that connection, continuing until 100 000 total requests are
completed. The request arrival process throughput measure-
ments obtained using ab tool are based on a deterministic
arrival process, where new requests are initiated as soon as
existing ones complete, constrained by the specified concur-
rency level. This approach subjects the system to continuous
high stress.

The Apache Benchmark (ab) tool was used with different total
request counts (-n parameter), specifically 10 000, 30 000,
50 000, 75 000, and 100 000 requests. The concurrency level
was kept constant at 100 (-c 100) for all of these runs. This
variation in the total number of requests, while maintaining
the same concurrency, effectively changes the duration of
the sustained load test. The nature of the request generation

remained a closed-loop model (100 concurrent connections
sending requests as fast as the server responds), allowing for
the measurement of sustained throughput under different total
work performed.
For the context of these experiments, throughput is defined as
the average rate at which the system successfully processes
requests over the entire duration of a given test run. It is
calculated as follows:

Throughput =
Total successfully completed requests

Total time taken for the test run [s]
. (7)

This value is directly reported by the ab tool upon completion
of each test. During the experiments, it was ensured that
the server did not explicitly reject requests due to overload;
thus, the measured throughput primarily reflects the sustained

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025 63

Shivan Singh, Narayan D.G., Sadaf Mujawar, G.S. Hanchinamani, and P.S. Hiremath

Tab. 6. Evaluation metrics for scheduling predictions.

Model Evaluation metric CPU Memory

LSTM
MSE 0.28 0.45
MAE 0.22 0.39

Tab. 7. Optimized LSTM predictions with ILP.

Evaluation metric CPU Memory

MSE 0.166 0.304
MAE 0.210 0.445

Tab. 8. Evaluation metrics for autoscaling predictions.

Model Evaluation metric CPU Memory

LSTM
MSE 0.156 0.104
MAE 0.247 0.195

service capacity of the autoscaled application deployment
rather than being affected by significant request loss.

5.1. Scheduling Predictions (Nodes)

Evaluation of models to predict CPU and memory usage
revealed that the LSTM model provides highly accurate
predictions. The evaluation metrics for the CPU and memory
usage predictions are presented in Table 6. One may notice
that the LSTM model achieved an MSE of 0.28 (CPU) and
0.45 (memory), with MAE values of 0.22 (CPU) and 0.39
(memory).
Table 7 demonstrates the impact of optimization using ILP.
The MSE and MAE values for CPU and memory predictions
are reduced. This improvement is achieved because ILP
minimizes the prediction error by systematically adjusting
the task allocations, ensuring greater accuracy.

5.2. Autoscaling Prediction (Pods)

The LSTM model is also employed to predict CPU and mem-
ory usage for the auto-scaling mechanism. The evaluation
metrics for autoscaling predictions are detailed in the Tab.
8. The values obtained show the performance of the LSTM
model for auto-scaling predictions across CPU and memo-
ry usage. The model achieved a mean squared error (MSE)
of 0.156 for the CPU and 0.104 for memory, indicating high
precision in predicting resource requirements. Similarly, the
mean absolute error (MAE) values were 0.247 for the CPU
and 0.195 for memory, demonstrating the reliability in mini-
mizing prediction deviations.
Table 9 highlights the improved prediction metrics after
optimizing LSTM predictions with ILP. By reducing errors
in resource estimation, the system achieves a better alignment
between predicted and actual usage, leading to improved
resource allocation efficiency.

Tab. 9. Optimized LSTM predictions with ILP for autoscaling.

Evaluation metric CPU Memory

MSE 0.135 0.089
MAE 0.356 0.202

0 10 20 30 40 50 60
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time [s]
R

es
po

ns
e

ti
m

e
 [

s]

default autoscaler LSTM based autoscaler

Fig. 3. Response time comparison: HPA vs. LSTM autoscaling.

5.3. Autoscaling Results

The evaluation of CPU and memory utilization, as well as re-
sponse time, was performed under a fixed workload of 50 000
HTTPS requests using the ab tool with 100 concurrent re-
quests at a time. This workload level was selected to simulate
medium to high resource utilization scenarios, providing in-
sight into system behavior under significant demand. The
metrics obtained offer a detailed view of resource consump-
tion and autoscaling efficiency under real conditions.
Response time refers to the end-to-end duration measured
by the Apache Benchmark client for each individual HTTPS
request, capturing the total time from request initiation to
the reception of the complete response from the application
server. This metric reflects the perceived latency under the
applied load. This measured application response time should
be distinguished from the predicted network latency parameter
RTTn used within the ILP objective function, which serves as
an internal factor optimized to influence this overall externally
measured response time.
Figure 3 presents a comparative analysis of the response times
between the default autoscaling mechanisms over time. The
graph reveals that the LSTM-based autoscaler consistently
maintains lower response times throughout the observation
period, with values ranging between 0.15 and 0.5 s. The
LSTM model demonstrates superior performance by achiev-
ing a 12.5% reduction in response time compared to the
default autoscaler.
The default autoscaler exhibits more pronounced fluctuations
and generally higher response times, with peaks reaching
approximately 0.4 s. In contrast, the LSTM-based autoscaler
maintains more stable performance with an average response
time of 0.262 s, compared to 0.298 s. This improvement can
be attributed to the ability of the LSTM model to predict

64
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025

ILP Optimized LSTM-based Autoscaling and Scheduling of Containers in Edge-cloud Environment

Tab. 10. Response time metrics: HPA vs. LSTM autoscaling.

Metric HPA RT LSTM autoscaling RT

Minimum 0.201 s 0.161 s
Average 0.298 s 0.262 s

Maximum 0.398 s 0.373 s

10000 30000 50000 75000 100000
400

500

600

700

800

900

1000

Requests

T
hr

ou
gh

p
ut

 [
re

q/
s] default autoscaler

LSTM based autoscaler

Fig. 4. Throughput comparison: HPA vs. LSTM autoscaling.

resource requirements and proactively adjust allocations,
resulting in more efficient resource utilization and reduced
latency.
The temporal pattern shows that while both autoscalers experi-
ence periodic fluctuations in response times, the LSTM-based
approach maintains better consistency and lower overall la-
tency. This improved stability and reduced response time
demonstrate the effectiveness of the LSTM model in dynamic
resource allocation, particularly in handling varying workload
conditions in edge cloud environments.
Table 10 highlights the statistical metrics for response time.
LSTM autoscaling consistently achieves better minimum,
average, and maximum response times compared to HPA,
ensuring faster response to workload fluctuations.
Figure 4 presents a comparison of throughput performance be-
tween the LSTM-based autoscaler and the default autoscaler
(HPA) across varying request loads from 10 000 to 100 000
requests. The LSTM autoscaler consistently demonstrates
superior performance, achieving a 29.2% improvement in
throughput compared to HPA. The graph illustrates the pro-
gressive increase in throughput as the request volume in-
creases. The LSTM autoscaler maintains a steeper growth
trajectory, starting at approximately 564.52 req/sec at 10 000
requests and reaching 913.54 req/s at 100 000 requests. On
the contrary, the default autoscaler shows a more modest pro-
gression from 490.89 req/s to 794.39 req/s over the same
range.
Figure 4 also provides a visualization of the performance gap
between the two approaches at specific request intervals. The
LSTM autoscaler achieves an average throughput of 744.36
req/s, outperforming the default autoscaler’s 647.18 req/s.
This performance differential becomes more pronounced with
higher request volumes, demonstrating superior capability in
handling increased workload demands.

Tab. 11. Summary of performance metrics.

Metric HPA LSTM autoscaling

Minimum 490.888 req/s 564.521 req/s
Average 647.169 req/s 744.644 req/s

Maximum 794.385 req/s 913.543 req/s

This improvement in performance can be attributed to the
ability of the LSTM model to predict resource requirements
and proactively adjust scaling decisions, resulting in more
efficient resource utilization and better handling of varying
workload patterns in edge cloud environments.
Table 11 presents a summary of the performance for HPA and
LSTM autoscaling. The LSTM autoscaling model consistently
delivers higher throughput, with a minimum of 564.52 req/s,
exceeding HPA’s 490.89 req/s.
The average throughput for LSTM autoscaling is 744.644
req/s, while HPA achieves 647.169 req/s, indicating an im-
provement. At peak load, LSTM autoscaling reaches a maxi-
mum throughput of 913.543 req/s compared to HPA’s 794.385
req/s. These results highlight the scalability and efficiency of
LSTM-based autoscaling over HPA.

5.4. Combined Autoscaling and Scheduling Results

Integrating LSTM-based autoscaling and scheduling ensures
a coordinated approach, improving workload distribution
and resource management. Evaluation of CPU and memo-
ry utilization, as well as response time, was performed using
a fixed workload of 50 000 requests generated with the Apache
Benchmark (ab) tool. This workload level was selected to
represent a realistic medium-load scenario, providing a com-
prehensive view of system performance under consistent
demand.
Figure 5 illustrates the response time comparison between
LSTM autoscaling with default scheduler and LSTM-based
autoscaling and scheduling over time. The LSTM autoscal-
ing with default scheduler exhibits higher response times
throughout the observation period, fluctuating between 0.201
and 0.397 s. The response time pattern shows notable varia-
tions, particularly between the 2040 s interval, indicating less
stable performance. On the contrary, the LSTM-based au-
toscaling and scheduling approach demonstrates consistently
lower response times across the entire timeline.
This combined approach maintains response times between
0.158 and 0.368 s, achieving a 12% improvement in the me-
dian response time (0.259 s vs. 0.294 s). The graph shows
more stable performance with fewer fluctuations, particu-
larly evident in the 30–50 s range, where the response time
variations are notably smaller than the default approach.
The improved stability and lower response times can be at-
tributed to the combined effect of auto-scaling with schedul-
ing. The integrated approach demonstrates superior resource
allocation efficiency, with the LSTM models working in tan-
dem to predict resource requirements and optimize pod place-
ment. This coordinated decision-making results in more pre-
dictable performance patterns and reduced latency, as ev-

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025 65

Shivan Singh, Narayan D.G., Sadaf Mujawar, G.S. Hanchinamani, and P.S. Hiremath

0 10 20 30 40 50 60
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time [s]

R
es

po
ns

e
ti

m
e

 [
s]

LSTM autoscaling and default scheduler
LSTM-based autoscaling and scheduling

Fig. 5. Response time vs. time for combined scheduling and au-
toscaling.

Tab. 12. Comparison of response time for combined scheduling and
autoscaling.

Metric
LSTM based

autoscaling with
default scheduler

LSTM autoscaling
and scheduling

Minimum 0.201 s 0.158 s
Average 0.294 s 0.259 s

Maximum 0.397 s 0.368 s

idenced by the 21.4% improvement in minimum response
time (from 0.201 to 0.158 s) and the 7.3% reduction in max-
imum response time (from 0.397 to 0.368 s). Performance
improvements in all metrics underscore the effectiveness of
the combined LSTM-based approach in maintaining optimal
system responsiveness under varying workload conditions.
Figure 6 presents a comparison of throughput performance be-
tween LSTM autoscaling with the default Kubernetes sched-
uler and the combined LSTM-based autoscaling and schedul-
ing approach. The analysis reveals several significant perfor-
mance patterns across varying request loads. At the lower
end of the request spectrum (10 000 requests), the combined
LSTM-based approach demonstrates an initial throughput
advantage of 628.14 req/s compared to 611.33 req/s for the
default scheduler, that is, a 2.75% improvement. This perfor-
mance gap widens with load level.
The throughput enhancement becomes pronounced at high-
er request volumes, reaching 930.42 req/s vs. 907.78 req/s
at 100 000 requests, maintaining a 2.49% performance gain.
The system shows excellent scalability, with both approach-
es maintaining near-linear throughput growth from 10 000
to 100 000 requests. The LSTM-based combined approach
maintains a consistent performance improvement of average
2.61% at all test points. At medium load (50 000 requests),
the LSTM-based system processes 758.99 req/s compared to
739.73 req/s for the default scheduler, demonstrating robust
performance under typical operating conditions. The highest
absolute performance gain is observed at 100 000 requests,
where the LSTM-based system processes an additional 22.64

Requests

10000 30000 50000 75000 100000

400

500

600

700

800

900

1000

T
h

ro
ug

hp
ut

 [
re

q/
s]

LSTM autoscaling and default scheduler
LSTM-based autoscaling and scheduling

Fig. 6. Comparison of performance for combined scheduling and
autoscaling.

Tab. 13. Summary of performance metrics: HPA vs. LSTM au-
toscaling.

Metric HPA LSTM autoscaling

Minimum 611.331 req/s 628.14 req/s
Average 747.0824 req/s 766.217 req/s

Maximum 907.778 req/s 930.416 req/s

req/s. This sustained performance improvement across all
request levels demonstrates the effectiveness of integrating
LSTM-based decision-making in both the scheduling and
autoscaling components. Table 13 summarizes the through-
put performance of HPA and LSTM autoscaling on different
request loads. LSTM-based autoscaling consistently outper-
forms HPA in all scenarios.

5.5. Combined Autoscaling and Scheduling with and
without ILP

Here a comparative analysis of the combined autoscaling and
scheduling approach with and without ILP optimization is
provided. The evaluation focuses on response time as the key
performance metric and data collected under a fixed workload
of 50 000 HTTPS requests using the ab tool. This workload
level provides a realistic scenario to assess the efficiency of
ILP optimization in minimizing latency.
The response time analysis reveals distinct performance char-
acteristics between the two approaches (Fig. 7). The combined
autoscaling and scheduling without ILP exhibits response
times fluctuating between 0.21 and 0.40 s, with variations par-
ticularly in the 20–30 s interval. In contrast, the ILP-enhanced
approach demonstrates superior stability, maintaining re-
sponse times between 0.15 and 0.33 s with reduced variance.
The throughput comparison across varying request loads
shows consistent performance advantages for the LSTM-
based approach. Starting at 10 000 requests, it achieves 628.14
req/s compared to 611.33 req/s for the default scheduler, i.e.
a 2.75% improvement. This performance differential persists
through higher loads, reaching 930.42 req/s versus 907.78
req/s at 100 000 requests.
The system demonstrates excellent scalability with near-linear
throughput growth throughout the test range, maintaining

66
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025

ILP Optimized LSTM-based Autoscaling and Scheduling of Containers in Edge-cloud Environment

0 10 20 30 40 50 60
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time [s]

R
es

p
on

se
ti

m
e

 [
s]

without ILP
with ILP

Fig. 7. Comparison of response times for combined autoscaling and
scheduling with and without ILP.

Tab. 14. Comparison of response time for combined scheduling and
autoscaling.

Metric
LSTM

autoscaling and
scheduling

ILP-enhanced LSTM
autoscaling and

scheduling

Minimum 0.210 s 0.152 s
Median 0.315 s 0.262 s

Maximum 0.397 s 0.348 s

an average improvement of 2.61% across all test points. At
medium load (50 000 requests), the LSTM-based system
processes 758.99 req/s compared to 739.73 req/s for the
default scheduler, while the highest absolute performance
gain is observed at 100 000 requests with an additional 22.64
req/s. The impact of ILP optimization is particularly evident
in maintaining more consistent performance levels, especially
during the 40–60 s period, where it stabilizes around 0.30 s,
demonstrating enhanced efficiency in resource allocation and
workload distribution.
The metrics in the Tab. 14 highlight the improvements
achieved by the ILP-enhanced LSTM autoscaling and schedul-
ing approach. Compared to the non-ILP method, the median
response time was reduced from 0.315 to 0.263 s, demon-
strating enhanced efficiency, particularly in handling dynamic
workloads with lower latency.
Figure 8 illustrates an analysis of throughput performance
between the ILP-enhanced and standard LSTM approaches
for combined autoscaling and scheduling. The ILP-enhanced
solution demonstrates superior performance across all request
volumes, with the average throughput increasing from 756.34
req/s to 815.50 req/s, representing a 7.8% improvement.
The performance advantage becomes more pronounced un-
der higher workloads, with maximum throughput reaching
1 010.75 req/s compared to 929.68 req/s in the non-ILP ap-
proach, showing an 8.7% increase. Even at lower request
volumes, the ILP-enhanced method maintains better efficien-
cy, with minimum throughput improving from 581.02 req/s

10000 30000 50000 75000 100000

700

600

500

800

900

1000

1100

Requests

T
hr

ou
gh

pu
t

 [
re

q
/s

ec
]

without ILP
with ILP

Fig. 8. Performance comparison for combined LSTM autoscaling
and scheduling with and without ILP.

Tab. 15. Performance metrics: combined LSTM autoscaling and
scheduling vs. ILP-enhanced approach.

Metric
LSTM

autoscaling and
scheduling

ILP-enhanced LSTM
autoscaling and

scheduling

Minimum 581.02 req/s 610.88 req/s
Average 756.34 req/s 815.50 req/s
Maximum 929.68 req/s 1010.75 req/s

to 610.88 req/s. The graph highlights consistent performance
gains across all request volumes, particularly in the 75 000–
100 000 request range, where the system demonstrates optimal
resource utilization and workload management capabilities.
Table 15 provides detailed comparison of throughput metrics.

6. Conclusions

This study addresses the limitations of default Kubernetes re-
source management by proposing an integrated framework
that combines LSTM-based autoscaling and scheduling with
ILP-based optimization. Using predictive modeling in con-
junction with intelligent resource allocation, the ILP and
LSTM-based system improves overall efficiency. A com-
parative evaluation between the LSTM-based autoscaling
and scheduling system and the ILP- and LSTM-based sys-
tem demonstrated a 12.34% reduction in response time and
a 7.85% increase in throughput.
Despite the improvement in results, several limitations must
be considered. The experiments were conducted in a virtual-
ized environment using a stateless Web application. While
efforts were made to approximate real-world conditions, the
controlled nature of the testbed may not fully reflect the com-
plexities encountered in practical deployments. Furthermore,
the LSTM model was specifically trained and fine-tuned for
the given use case. Applying the framework to other ap-
plications would likely require retraining the model with
domain-specific historical data and adjusting parameters to
suit different system dynamics.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2025 67

Shivan Singh, Narayan D.G., Sadaf Mujawar, G.S. Hanchinamani, and P.S. Hiremath

References
[1] L.H. Phuc, L.-A. Phan, and T. Kim, “Traffic-aware Horizontal Pod

Autoscaler in Kubernetes-based Edge Computing Infrastructure”,
IEEE Access, vol. 10, pp. 18966–18977, 2022 (https://doi.org/
10.1109/ACCESS.2022.3150867).

[2] S.T. Singh, M. Tiwari, and A.S. Dhar, “Machine Learning based
Workload Prediction for Auto-scaling Cloud Applications”, 2022
OPJU International Technology Conference on Emerging Technolo-
gies for Sustainable Development (OTCON), Raigarh, India, 2023
(https://doi.org/10.1109/OTCON56053.2023.10114033).

[3] I. Ahmad, M.G. AlFailakawi, A. AlMutawa, and L. Alsalman, “Con-
tainer Scheduling Techniques: A Survey and Assessment”, Journal of
King Saud University – Computer and Information Sciences, vol. 34,
pp. 3934–3947, 2022 (https://doi.org/10.1016/j.jksuci.2
021.03.002).

[4] K. Senjab, S. Abbas, N. Ahmed, and A.R. Khan, “A Survey of
Kubernetes Scheduling Algorithms”, Journal of Cloud Computing,
vol. 12, art. no. 87, 2023 (https://doi.org/10.1186/s13677-0
23-00471-1).

[5] K. Zhu et al., “Proactive Hybrid Autoscaling for Container-Based
Edge Applications in Kubernetes”, Lecture Notes of the Institute for
Computer Sciences, vol. 574, pp. 330–345, 2024 (https://doi.or
g/10.1007/978-3-031-65123-6_24).

[6] Z. Wang, Q. Zhu, and Y. Hou, “Multiworkflow Scheduling in Edge-
cloud Computing by African Vulture Optimization Algorithm”, 2024
11th International Forum on Electrical Engineering and Automation
(IFEEA), Shenzhen, China, 2024 (https://doi.org/10.1109/
IFEEA64237.2024.10878706).

[7] J. Li, P. Singh, and S. Toor, “Proactive Autoscaling for Edge Com-
puting Systems with Kubernetes”, Proc. of the 14th IEEE/ACM In-
ternational Conference on Utility and Cloud Computing Companion
(UCC’21), art. no. 22, pp. 1–8, 2022 (https://doi.org/10.1145/
3492323.3495588).

[8] L.H. Phuc et al., “Node-based Horizontal Pod Autoscaler in
KubeEdge-based Edge Computing Infrastructure”, IEEE Access,
vol. 10, pp. 134417–134426, 2022 (https://doi.org/10.1109/
ACCESS.2022.3232131).

[9] J. Dogani and F. Khunjush, “Proactive Auto-scaling Technique for Web
Applications in Container-based Edge Computing Using Federated
Learning Model”, Journal of Parallel and Distributed Computing,
vol. 187, art. no. 104837, 2024 (https://doi.org/10.1016/j.
jpdc.2024.104837).

[10] T.-X. Do and V.K.N. Tan “Hybrid Autoscaling Strategy on Container-
Based Cloud Platform”, International Journal of Software Innovation,
vol. 10, 2022, pp. 1–12. (https://doi.org/10.4018/IJSI.2920
19).

[11] X. Feng et al., “Adaptive Container Auto-scaling for Fluctuating
Workloads in Cloud”, Future Generation Computer Systems, vol. 172,
art. no. 107872, 2025 (https://doi.org/10.1016/j.future.2
025.107872).

[12] S.D. Konidena, “Efficient Resource Allocation in Kubernetes Using
Machine Learning”, International Journal of Innovative Science and
Research Technology, vol. 9, 2024 (https://doi.org/10.38124/
ijisrt/IJISRT24JUL607).

[13] J. Zhou, S. Pal, C. Dong, and K. Wang, “Enhancing Quality of Service
Through Federated Learning in Edge-cloud Architecture”, Ad Hoc
Networks, vol. 156, art. no. 103430, 2024 (https://doi.org/10
.1016/j.adhoc.2024.103430).

[14] S.-H. Kim and T. Kim, “Local Scheduling in KubeEdge-based Edge
Computing Environment”, Sensors, vol. 23, art. no. 1522, 2023 (http
s://doi.org/10.3390/s23031522).

[15] M. Raeisi-Varzaneh, O. Dakkak, A. Habbal, and B.-S. Kim, “Resource
Scheduling in Edge Computing: Architecture, Taxonomy, Open Issues
and Future Research Directions”, IEEE Access, vol. 11, pp. 25329–
25350, 2023 (https://doi.org/10.1109/ACCESS.2023.3256
522).

[16] Z. Shi and Z. Shi, “Multi-node Task Scheduling Algorithm for Edge
Computing Based on Multi-Objective Optimization”, Journal of

Physics: Conference Series, vol. 1607, art. no. 012017, 2020 (https:
//doi.org/10.1088/1742-6596/1607/1/012017).

[17] K. Wang et al., “Computing Aware Scheduling in Mobile Edge
Computing System”, Wireless Networks, vol. 27, pp. 4229–4245,
2021 (https://doi.org/10.1007/s11276-018-1892-z).

[18] G. Vijayasekaran and M. Duraipandian, “Resource Scheduling in Edge
Computing IoT networks Using Hybrid Deep Learning Algorithm”,
System Research and Information Technologies, pp. 86–101, 2022
(https://doi.org/10.20535/SRIT.2308-8893.2022.3.06).

[19] Y. Lu et al., “EA-DFPSO: An Intelligent Energy-efficient Scheduling
Algorithm for Mobile Edge Networks”, Digital Communications and
Networks, vol. 8, pp. 237–246, 2022 (https://doi.org/10.101
6/j.dcan.2021.09.011).

[20] P. Khoshvaght et al., “A Multi-objective Deep Reinforcement Learning
Algorithm for Spatio-temporal Latency Optimization in Mobile IoT-
enabled Edge Computing Networks”, Simulation Modelling Practice
and Theory, vol. 143, art. no. 103161, 2025 (https://doi.org/10
.1016/j.simpat.2025.103161).

[21] P. Vishesh et al., “Optimized Placement of Service Function Chains
in Edge Cloud with LSTM and ILP”, SN Computer Science, vol. 6,
art. no. 44, 2024 (https://doi.org/10.1007/s42979-024-03
539-0).

[22] Z. Ding and Q. Huang, “COPA: A Combined Autoscaling Method
for Kubernetes”, 2021 IEEE International Conference on Web Ser-
vices (ICWS), Chicago, USA, 2021 (https://doi.org/10.1109/
ICWS53863.2021.00061).

Shivan Singh, B.Eng.
School of Computer Science and Engineering
https://orcid.org/0009-0004-7894-3858

E-mail: 01fe21bcs246@kletech.ac.in
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

Narayan D.G., Ph.D.
School of Computer Science and Engineering
https://orcid.org/0000-0002-2843-8931

E-mail: narayan_dg@kletech.ac.in
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

Sadaf Mujawar, M.Tech.
Department of Computer Science and Engineering
https://orcid.org/0009-0007-5434-0114

E-mail: sadaf.savanur@kletech.ac.in
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

G.S. Hanchinamani, Ph.D.
Department of Computer Science and Engineering
https://orcid.org/0000-0002-8791-0351

E-mail: gs_hanchinamani@kletech.ac.in
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

P.S. Hiremath, Ph.D.
Department of MCA
https://orcid.org/0000-0001-7640-6937

E-mail: pshiremath@kletech.ac.in
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

https://doi.org/10.1109/ACCESS.2022.3150867
https://doi.org/10.1109/ACCESS.2022.3150867
https://doi.org/10.1109/OTCON56053.2023.10114033
https://doi.org/10.1016/j.jksuci.2021.03.002
https://doi.org/10.1016/j.jksuci.2021.03.002
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1007/978-3-031-65123-6_24
https://doi.org/10.1007/978-3-031-65123-6_24
https://doi.org/10.1109/IFEEA64237.2024.10878706
https://doi.org/10.1109/IFEEA64237.2024.10878706
https://doi.org/10.1145/3492323.3495588
https://doi.org/10.1145/3492323.3495588
https://doi.org/10.1109/ACCESS.2022.3232131
https://doi.org/10.1109/ACCESS.2022.3232131
https://doi.org/10.1016/j.jpdc.2024.104837
https://doi.org/10.1016/j.jpdc.2024.104837
https://doi.org/10.4018/IJSI.292019
https://doi.org/10.4018/IJSI.292019
https://doi.org/10.1016/j.future.2025.107872
https://doi.org/10.1016/j.future.2025.107872
https://doi.org/10.38124/ijisrt/IJISRT24JUL607
https://doi.org/10.38124/ijisrt/IJISRT24JUL607
https://doi.org/10.1016/j.adhoc.2024.103430
https://doi.org/10.1016/j.adhoc.2024.103430
https://doi.org/10.3390/s23031522
https://doi.org/10.3390/s23031522
https://doi.org/10.1109/ACCESS.2023.3256522
https://doi.org/10.1109/ACCESS.2023.3256522
https://doi.org/10.1088/1742-6596/1607/1/012017
https://doi.org/10.1088/1742-6596/1607/1/012017
https://doi.org/10.1007/s11276-018-1892-z
https://doi.org/10.20535/SRIT.2308-8893.2022.3.06
https://doi.org/10.1016/j.dcan.2021.09.011
https://doi.org/10.1016/j.dcan.2021.09.011
https://doi.org/10.1016/j.simpat.2025.103161
https://doi.org/10.1016/j.simpat.2025.103161
https://doi.org/10.1007/s42979-024-03539-0
https://doi.org/10.1007/s42979-024-03539-0
https://doi.org/10.1109/ICWS53863.2021.00061
https://doi.org/10.1109/ICWS53863.2021.00061
https://orcid.org/0009-0004-7894-3858
https://www.kletech.ac.in
https://orcid.org/0000-0002-2843-8931
https://www.kletech.ac.in
https://orcid.org/0009-0007-5434-0114
https://www.kletech.ac.in
https://orcid.org/0000-0002-8791-0351
https://www.kletech.ac.in
https://orcid.org/0000-0001-7640-6937
https://www.kletech.ac.in

	Introduction
	Background Study
	Related Work

	ILP Formulation for Joint Autoscaling and Scheduling
	Proposed Methodology
	System Model
	Dataset
	The Algorithm Description
	Cron Job for LSTM Retraining

	Results and Discussion
	Scheduling Predictions (Nodes)
	Autoscaling Prediction (Pods)
	Autoscaling Results
	Combined Autoscaling and Scheduling Results
	Combined Autoscaling and Scheduling with and without ILP

	Conclusions

