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Abstract  This paper presents an improved approach for
facial expression recognition (FER), which incorporates the
Coordinate Attention (CAM) mechanism into MobileNetV3,
a lightweight CNN widely used for its real-time applications
on low-power devices. The CA mechanism greatly improves the
ability of the model to focus on face regions of interest, as it
incorporates positional information, making feature extraction
more accurate. Additionally, dynamic kernel adaptation (DKA)
and SoftSwish are incorporated into the model to enhance
the flexibility and computational efficiency of MobileNetV3.
The proposed model was tested in three sets of JAFFE, CK+,
and FER2013, where accuracy improvements were reported
of 98.84% in the JAFFE dataset, 99.56% on the CK+ dataset,
and 88.50% on the FER2013 dataset. These results support
the viability and utility of the proposed approach to improve
FER, especially in applications that favor higher numerical
performance.

Keywords  coordinate attention mechanism, dynamic kernel
adaptation, facial expression recognition, MobileNetV3, SoftSwish
activation function

1. Introduction

Facial expression recognition (FER) has made great progress
in recent years, mainly due to the use of neural networks
and especially attention mechanisms [1], [2]. These achieve-
ments have allowed us to develop accurate, efficient, or even
real-time recognition systems, mainly needed in human-
computer interaction (HCI), security, and healthcare [3], [4].
A new approach in this direction is MobileNetV3, which is
a lightweight CNN optimized for high accuracy with minimal
computational resources. MobileNetV3, adopts some of the
most modern approaches such as depthwise separable convo-
lutions and a unique activation function called hard swish [5].
These elements allow MobileNetV3 to be used in vision sys-
tems of portable and embedded devices, which require high
power efficiency and speed.
Another significant change in improving the functionality of
a neural network is the attention mechanisms. Such mecha-

nisms keep the attention of the network on important parts
of an image and enhance the capability of the network to
identify features. In this context, attention techniques can be
distinguished, such as the latest and most innovative coordi-
nate attention (CA) mechanism [6]. The present proposal of
CA also incorporates position information, which other types
of attention often isolate and consider individually by loca-
tion or channel. It allows the network to concentrate more
accurately on important sections of the image. This paper
concerns an investigation of how to improve FER systems by
incorporating CA into MobileNetV3 to achieve a more effec-
tive FER system. Specifically, our research seeks to answer
the following question: What enhancements are given by the
combination of CA with MobileNetV3 for facial expression
recognition compared to existing methods?
This research contribution can be summarized in two folds.
First, we present an improved FER framework that incorpo-
rates MobileNetV3 and the benefits of CA. Second, we give
a comparative analysis of this framework on standard FER
datasets, including JAFFE, CK+, and FER2013, which il-
lustrates the advantages in terms of performance and time
complexity.
The paper is organized as follows. Section 2 presents the
background and related work in the field of FER and the at-
tention mechanism. In Section 3, we proposed an approach to
MobileNetV3 and the incorporation of CA. In Section 4, we
provide experimental results and discuss the efficacy of the
proposed method on multiple FER datasets. Section 5 pro-
vides an in-depth review of the proposed model. Section 6
presents a comparison with other state-of-the-art FER ap-
proaches that utilize attention mechanisms. Lastly, Section 7
provides a conclusion to the paper and future research.

2. Related Work
Recent advances in facial expression recognition (FER) have
emphasized the integration of attention mechanisms with var-
ious neural network architectures to improve accuracy and
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precision. Still, these approaches have their problems and
have diverse rates according to the specific methodologies
and datasets chosen. In [7] a lightweight FER framework was
proposed using MobileNetV1 with attention mechanisms.
The effectiveness of this approach was observed when tested
on CK+, RAF-DB, and FER2013 with evaluation that high-
lighted the performance when the face images were captured
under different lighting conditions or partially occluded.

However, compared with work [8] which used DeeplabV3+
in combination with the MobileNetV2 with attention mech-
anism, although the method proposed in [7] was much less
computationally expensive, it proved to be more generalized,
especially in more complex feature extraction tasks. The in-
tegration of attention mechanisms in these studies has been
found to be useful, but this must be done without overlooking
limitations.

For example, the authors of [9] successfully used a multi-
attention network to learn discriminative characteristics from
important facial areas. However, this method could be sen-
sitive to overfitting, particularly when working with small
data like CK+. Also, it is crucial to note that these deemed
attention mechanisms have high computational costs that re-
duce the real-time applicability of attention mechanisms in
low-power devices.

This factor is particularly relevant to the study in [10] that
demonstrates that, while building a lightweight FER model
for mobile devices is a priority, the reduction in computational
processes could be detrimental to the high accuracy of fea-
ture extraction. It is also important to note that the discussed
studies are primarily related to CNNs with attention mech-
anisms, but there are other promising streams in FER. For
instance, graph-based models and transformers are increas-
ingly being adopted in FER tasks because of their capability
to handle relationships between facial landmarks and address
the temporal aspect in video-based FER tasks.

The absence of these other forms of prediction methods, along
with the distinction between model types, including ensemble
methods that amalgamate different models to produce a more
balanced and accurate model, is a research gap. Extending
the study to these angles would give opportunities to study
possible developments in FER.

Another important aspect that these works do not normally
address concerns the generalizability of FER models to unseen
data or different populations. Most of the works cited, such
as [11] and [12], offer promising results in popular datasets.
However, the data sets could not be rich enough to ensure the
transfer of learned representations across a wide diversity of
real-world scenarios or across different cultures, age groups,
or variability in emotional expressions.

In addition, attention is drawn to the potential biases of these
models when trained on limited or homogenized data and
ways of correction. A detailed investigation of the type of
attention mechanisms applied in these works would be useful
to understand which mechanisms are driving performance
improvements.

For example, the utilization of self-attention, spatial attention,
or channel attention may be important in explaining why
models vary in their efficiency. In the case of article [13],
combining a ResNet with such an architecture of attention and
deformable convolutions, a more detailed breakdown of their
interaction could help in understanding their contribution to
the model’s better accuracy under varying conditions.
Finally, these methods must be compared consistently with
thoroughness based on standard evaluation metrics to deter-
mine relative performance measures. Although accuracy is
commonly reported, other important key measures in the lit-
erature include precision, recall, F1 score, and computational
efficiency.
A systematic comparison of these metrics would allow a more
objective assessment of the strengths and weaknesses of the
different models. For example, the authors of [14] are con-
cerned with the computational efficiency of their lightweight
facial expression recognition network; it would be beneficial
that these requirements were directly compared against accu-
racy and robustness reports by other models under equivalent
constraints.

3. Methodology

3.1. MobileNetV3

Further developments in computer vision are also driven
by the architecture of CNNs that provide, at a time, very
high-speed processing while being compact. Examples are
architectures such as NASNet [15], MobileNets [16], Effi-
cientNet [17], MnasNet [18], and ShuffleNets [19]. All of
these architectures have substantial depth-wise convolution
for speeding up training through reduction of computational
complexity. In depthwise convolutions, the learned convolu-
tion weights are applied to each input channel individually
with a shared kernel across all channels, thereby preserving
computational resources and reducing overall cost.
However, resolution of the optimal kernel size in such con-
volutions might be tricky, and it could add complexity in
the training phase. Based on the success of MobileNetV1
and MobileNetV2, the authors of [5] recently proposed Mo-
bileNetV3 through network architecture search (NAS) with
the NetAdapt algorithm to optimize architectures targeting
low-resource hardware platforms while balancing size, per-
formance, and latency. This is based on the inverted residual
block, which incorporates depth-wise separable convolution
and an SE mechanism to improve feature representation while
also reducing memory usage.
We further push the capabilities of MobileNetV3 with two
key improvements: dynamic kernel adaptation and SoftSwish.

3.2. Dynamic Kernel Adaptation (DKA) and Soft Swish

Dynamic kernel adaptation allows the model to dynamically
change the kernel size of the convolution according to the
particular characteristics of the input data. Unlike the common
approach that uses a fixed kernel size, DKA helps the model
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for feature_map in input:
  complexity = compute_entropy(feature_map)
     attention_weights = softmax(linear_layer(complexity))
  output = 0
  for k in [3, 5, 7]:
  conv_out = depthwise_conv(feature_map, kernel_size=k)
  output += attention_weights[k] * conv_out

Fig. 1. Simplified pseudocode of the feature capture mechanism.

adapt to changing kernel sizes to better handle different image
complexities. For example, in complex scenes, DKA can
adjust the kernel size to include details, including fine ones,
while in simpler contexts, one can get away with a smaller
kernel size for efficiency [20]. The flexibility enhances the
capability of the model for generalization on different datasets
and lessens overfitting risks, therefore making MobileNetV3
powerful, more versatile, especially for application in low
resource devices.
We further replace the original activation function with
SoftSwish. The transitions of SoftSwish are even more gentle
during backpropagation through gradients, making training
much more stable and efficient, needed in larger networks [21].
We have defined the SoftSwish function as:

SoftSwish(x) = x
1

1 + e−x
. (1)

This function blends the advantages of Swish and ReLU,
improving model stability and reducing the number of pa-
rameters required during training, thus enhancing overall effi-
ciency. Integrating dynamic kernel adaptation and SoftSwish
inside MobileNetV3 makes it much more flexible and efficient
in addressing a wide range of visual recognition tasks with
much better accuracies while keeping lower computation-
al demands. These enhancements are estimated to increase
accuracy by 3 – 5%, reduce latency by 10 – 15%, and reduce
training time by 5 – 10%. With minimal training changes,
MobileNetV3 improvements will prove to serve as a signif-
icant advantage for modern applications, particularly those
that demand efficient operation on low-resource hardware
platforms.
DKA allows the convolutional kernel size to be dynamically
adjusted on the input complexity. Specifically, a lightweight
gating mechanism evaluates an entropy-based complexity
score C(x) for each input feature map. A soft-attention func-
tion:

αk = softmax
(
fk(C)

)
, (2)

selects between kernel sizes k ∈ {3, 5, 7} during forward
propagation. This mechanism enables the network to cap-
ture both local and global features adaptively. A simplified
pseudocode is provided in Fig. 1.

3.3. MobileNetV3 for Feature Extraction

Feature extraction is one of the important processes in FER
to make classifications from an image robust and precise. The
outstanding performance of the improved state-of-the-art of
MobileNetV3, with the modifications that have been made by
us, offers a superb platform for the said activity. We used the

MobileNetV3-Large model pre-trained on the ImageNet for
feature extraction. This is because MobileNetV3, in general,
has already been known for its efficiency and flexibility,
especially when combined with our dynamic kernel adaptation
and the SoftSwish activation function – both aspects increase
model flexibility and training stability.
We retrain MobileNetV3 for FER, by transfer learning retrain-
ing on the already fine-tuned MobileNet, where the original
fully connected layers designed for general image classifi-
cation were replaced. Instead, we introduce a series of 1 × 1
point-wise convolutional layers that further refine the repre-
sentations in those features that are highly specific to facial
expressions. More specifically, these layers can use the adap-
tively resized kernels of DKA, so the model can change its
receptive field with the complexity of the input image. This
architecture ensures that the extracted features are relevant
and discriminative, considering the unique challenges of the
given datasets for facial expressions.
After the pointwise convolutional layers had been implement-
ed, we further embedded the SoftSwish activation function
at every layer within the network. In this case, SoftSwish
can provide smoother gradient transitions, hence providing
better backpropagation efficiency, especially with deeper net-
work layers, which helps the generalization across different
datasets with diverse FER. During fine-tuning, we train the
model for 160 epochs with ten separate runs, each initiated
with random parameters to ensure robustness.
Instead of relying on traditional data augmentation methods,
the training process incorporated speckle noise augmentation,
random rotation, random zoom, and color jitter augmentation.
These techniques are designed to simulate real-world condi-
tions and further enhance the model’s accuracy by allowing it
to recognize facial expressions under varying conditions. This
extensive training and fine-tuning process allows the model
to produce high-quality image embeddings, each represent-
ed as a 128-dimensional vector, encapsulating the essential
features necessary for accurate FER.
The result is a highly efficient feature extraction process that
benefits from the enhanced capabilities of MobileNetV3,
making it particularly well suited for deployment in resource-
constrained environments where both performance and com-
putational efficiency are paramount (see Fig. 2).

3.4. Coordinate Attention Module

The coordinate attention module (CAM) represents a signifi-
cant advance in attention mechanisms within neural network
architectures, particularly by enhancing spatial awareness and
focus. Although integrated into models like MobileNetV3,
CAM offers substantial improvements in tasks such as facial
expression recognition, where precise spatial information is
crucial.
Coordinate attention diverges from traditional attention mech-
anisms by incorporating positional encodings directly into the
attention process. For an image I with dimensionsW ×H ,
each pixel coordinate (x, y) contributes to the attention mech-
anism through a function f(x, y) that encodes positional
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Depthwise separable convolution

Inverted residual block (bottleneck)

Adaptive average pooling

1×1  point-wise convolution

Output

Feature
extraction

Classification
Transfer learning + fine tuning

Stage 4
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Stage 2

Stage 1

Stage 3

224×224×3

112×112×16

56×56×24
28×28×40

14×14×80 14×14×112 7×7×960

1×1×128

7×7×160

Fig. 2. The architecture of MobileNetV3 used for feature extraction.

information. This can be represented as:

Attention(x, y) = f(x, y) . (3)

This formulation allows the network to assign attention scores
or weights to specific pixel coordinates, highlighting areas
of the image that are most relevant for feature extraction.
By leveraging these positional encodings, CAM enables the
network to focus on critical spatial relationships within the im-
age, thereby enhancing the model’s ability to capture detailed

Input

Residual

Sigmoid Sigmoid

BatchNorm  + non-linear

Concat + conv2d

X avg
pool

X avg
pool

Re-weight

Output

Conv2d Conv2d

Split
C*H*1

C*1*W

C*1*W

C*1*W

C*1*W

C/R*1*(W+H)

C/R*1*(W+H)

Fig. 3. Integration of the coordinate attention module (CAM) into
the MobileNetV3 architecture.

and contextually relevant features, especially in complex tasks
like facial expression recognition.
When applied to MobileNetV3, CAM integrates seamless-
ly with the existing structure, working in tandem with our
proposed DKA and SoftSwish activation function. This com-
bination ensures that the network not only adapts to varying
image complexities but also focuses its computational re-
sources on the most significant areas of the image, thereby
improving both accuracy and efficiency.

3.5. Integration of CAM into MobileNetV3

The MobileNetV3 architecture also integrated the CAM
to further improve feature extraction. CAM is integrated
with MobileNetV3’s inverted residual blocks, which creates
a more explicit level of spatial focus and greatly increases the
performance of the model in facial expression recognition.
This integration enables MobileNetV3 to make better use of
dependencies over space in facial images. The network is more
capable of creating a more discriminative and accurate feature
representation because the location of the key coordinates
on the face in the image is dynamically updated. CAM can
selectively emphasize important regions of the face, so that
the network pays closer attention to the most informative
aspects of facial expressions and neglects the non-critical
areas.
The result is a model that takes advantage of both the efficien-
cy and flexibility provided by MobileNetV3, further enhanced
by DKA and SoftSwish, in a fashion that gains even more
insight into spatial relationships using CAM. As such, this
combination will bring about much improved both accura-
cy and robustness in the recognition of facial expressions,
making this updated MobileNetV3 architecture particular-
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Output: facial 
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activation 
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Fig. 4. Methodology framework for FER using enhanced Mo-
bileNetV3 with CA and DKA.

ly suitable for applications requiring high performance with
very resource-constrained devices. The integrated CAM Mo-
bileNetV3 architecture is presented in Fig. 3.
To improve facial expression recognition, we propose an
improved methodology using MobileNetV3, augmented with
activation of CAM, DKA, and SoftSwish activation. Figure
4 illustrates this integrated framework, showing how these
components work together to improve focus, adaptability, and
training stability.
Figure 4 presents a simplified view of the proposed method-
ology, which integrates three key components within the Mo-
bileNetV3 framework: the CAM, DKA, and the SoftSwish ac-
tivation function. These components are designed to enhance
the focus on relevant facial features, adaptively optimize ker-
nel sizes for varying image complexities, and improve training
stability, respectively. This combination aims to increase both
the accuracy and computational efficiency of facial expression
recognition systems in resource-constrained environments.

4. Results and Discussion

As for the execution of our experiments we used a personal
computer with a 64-bit operating system and an Intel Core
i7-3.0 GHz and 16 GB of RAM. Experimentation of all of
the above approaches was performed using Python.

4.1. The JAFFE Database

The JAFFE database is made up of faces of Japanese women
and includes both profile and frontal views of these women’s
faces. The images are in grayscale and have a resolution
of 256 × 256 pixels [22]. The database shown in Fig. 5 is
widely familiar with image processing and facial expression
analysis. It is extensively used in research and is often used in
the creation and assessment of machine learning algorithms
commonly used in facial expression recognition. Within the
database, there are several pictures of facial expressions of
different emotions such as happy, sad, angry, and disgusting
emotions, which makes it more useful in training of the FER
algorithms.

4.2. The CK+ Database

The CK+ database, also known as the extended Cohn-Kanade
database, can become a helpful tool in the field of facial
expression analysis and computer vision. This database was
created as an expansion of the original Cohn-Kanade database

with the goal of increasing the variability and richness of
captured expression [23].
The key technical aspects of the CK+ database are as follows:
• Image size – the images used in the CK+ database on

average are of 256 × 256 pixels, meaning that the dimension
of the images maintained was homogeneous.
• Facial expressions – the facial expressions covered by the

database comprise, but are not limited to, happy, sad, angry,
surprised, disgusted, and afraid. This diversity enables
researchers to assess models through the wide range of
emotions.
• Controlled environment – the images are taken in a con-

trolled environment which is very important in standardized
environment and scaling out environmental factors that
may influence facial expression analysis.
• Subjects – this is a factor that breaks the homogeneity of the

data, and several subjects make entries into the database.
This variety is useful for testing the extent of generalization
of developed facial expression recognition models.
• Annotations – the CK+ images are frequently provided

with facial landmarks and emotion labels in addition to the
geometric ones. This annotation is useful for both teach-
ing and testing machine learning algorithms, especially
for recognizing facial expressions. An illustration of the
database is provided in Fig. 6.

4.3. The FER2013 Dataset

The FER2013 dataset contains grayscale images of faces,
which are 48 pixels × 48 pixels. It encompasses seven facial
expressions: happiness, anger, disgust, fear, sadness, surprise,

Fig. 5. A partial image of the JAFEE database was used to carry out
the analysis.

Fig. 6. A sample of the images in the CK+ database.
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Fig. 7. Subset of the image from the FER2013 database.

and none/neutral. This is acted data set that can be used in
training and testing facial expression recognition models, as
it provides realistic challenges. It is most often divided into
training, validation, and testing set to create a standard for
the comparison of the different methods. This is particularly
because the network is tiny in size, and thus ideal for deep
learning. Scientists apply FER2013 to design and evaluate
models to mitigate problems with lighting, head orientation,
and different emotions [24]. An example of the proposed
database is depicted in Fig. 7.

4.4. Dataset Overview and Scalability Consideration

The computational realm of this study needs to be clarified
better through understanding of the data sets that we used dur-
ing experiments. The JAFFE dataset includes 213 grayscale
images depicting ten subjects with posed facial expressions.
The CK+ dataset contains 593 image sequences acquired from
123 different subjects, although expression labels are provid-
ed only in the final frames of each sequence. The FER2013
dataset is significantly larger, comprising more than 35 000
grayscale images divided into training, validation, and testing
sets, with each image sized at 48 × 48 pixels.
The different scales of our datasets enabled the evaluation
of the MobileNetV3 + CAM + DKA model in terms of both
efficiency and scalability. The model demonstrated consistent
accuracy and maintained a similar inference speed, even
when handling a large volume of FER2013 data, confirming
its suitability for real-time applications in diverse resource-
constrained environments.

4.5. Data Augmentation

Data augmentation is a critical step in FER, especially when
using a complex model such as MobileNetV3 with CAM and
DKA. This essential strategy involves generating additional
samples by applying various transformations to the training
set, ensuring that the model becomes more effective and
robust. Several augmentation methods can be used to improve
the accuracy of facial expression recognition, including the
following.
• Speckle noise augmentation – this method superimposes

speckle noise on the face image by multiplying it by some
random numbers, which are helpful in mimicking natural
conditions and improving the model’s ability to discern
noise.
• Random rotation enhancement – this method involves

rotating images containing faces around the vertical or

Tab. 1. Data augmentation techniques with the parameters used.

Augmentation technique Parameters

Speckle noise
augmentation Noise factor: 0.1

Random rotation Random angle: –20° to +20°
Random zoom Zoom range: 0.8 to 1.2

Random crop Crop ratio: 80% of original
image size

Color jitter
Saturation range: 0.5 to 1.5

Brightness range: –0.3 to 0.3

horizontal axis in a random manner and thus, it improves the
model’s capability to identify different human expressions.
• Random zoom augmentation – this one zooms in and out

on the images randomly – the idea being that the model
has to be able to learn about the faces and the expressions
on them at random sizes.
• Random crop augmentation – this involves tear and shear

where the method entails taking a part of the image and
discarding the other part leaving the neural network to
recognize parts of the face.
• Color jitter augmentation – this technique adds random

variation in the hue, saturation, and brightness; adds varia-
tions that the model did not receive in the training phase.

These parameters have been chosen to allow proper augmen-
tation without compromising the validity of the data on facial
expressions. By integrating these methods, the model is ex-
pected to benefit from adaptation to different changes in the
environment. Executing them enables the enhancement of
facial expression recognition in real-world settings.

5. Experimental Steps

All aspects of the experimental setup were carefully designed
for facial expression recognition, and we specifically designed
a scenario to provide an in-depth review of the proposed mod-
el, based on MobileNetV3 combined with CAM and DKA.
This effort helped to analyze the capabilities of the proposed
model for more complex real-world facial expressions.
The training set was the largest part of the data, representing
approximately 70% that was essential to develop the deep
neural network model to learn. Its size allowed the model to
discern intricate patterns, distill complex correlatives, and
finally trace fine nuances linked to various forms of facial
expression.
A 15% size validation set was particularly important to fur-
ther the model intricacies. It allowed for addressing matters
with hyperparameters and improvements in the general perfor-
mance and was a credible line of defense against overfitting.
Consequently, the other 15% of the data set was kept for the
purpose of the validation test. The validation set was therefore
set apart for the sole testing of the model. Its goal was to
shine on a model, evaluating or testing its performance in
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recognizing unknown facial expressions that were previously
known to confirm the efficient operating mode.

5.1. Subject-independent Data Splitting

To ensure fair evaluation and prevent data leakage, a subject-
independent splitting strategy was used for the CK+ and
JAFFE datasets. Specifically, individuals appearing in the
training set were excluded from both the validation and the
testing sets. For CK+, we used image sequences from ap-
proximately 80% of the subjects for training and reserved the
remaining 20% for testing and validation. For JAFFE, images
from 7 subjects were used for training and 3 subjects for test-
ing and validation. This ensures that the performance reflects
its ability to generalize to unseen individuals.

5.2. Enhanced Model Architecture

MobileNetV3 is the backbone network for the proposed model
that provides the ability to extract features from facial images.
It is relatively lightweight and even more appropriate for use
with mobile devices, making it ideal for real-time use. The
latest MobileNetV3 is integrated into this model to ensure
that the model obtains the desired characteristics of being
light and at the same time capable of producing high-level
features.
The coordinate attention module is another improvement that
gives our model the ability of the spatial awareness layer. This
module works on the basis of variations in the weightage of
various parts of the image, as depicted by the geographical
coordinates. In the context of facial expression recognition,
CAM opens the possibility of letting the model concentrate
on important face areas, since it assigns different weights
to the regions. The adaptation mechanism coping strategy
increases the efficiency of feature extraction and the precision
of capturing facial alterations. In this way, CAM improves
the ability to space examination of facial images in space
compared to the initial model.
Dynamic kernel adaptation (DKA) is an essential improve-
ment to the adaptability and performance of our facial expres-
sion recognition model. In contrast to standard networks that
have kernels of a fixed size, within DKA there is an option
for the kernel size to be modified in the course of training.
This flexibility is advantageous in dealing with the essential-
ly different levels of difficulty in facial images. For example,
when there is emotion in the face and the concerns are subtle,
DKA allows a larger kernel, which means that features are
extracted with a better accuracy.
On the other hand, in simple scenes, the size can be reduced
to ensure cost savings and be better optimized to increase
its predictive power. Such a dynamic adjustment mechanism
ensures that the model is robust across various datasets but is
also more efficient in terms of consumption of computational
resources. Integration of DKA with MobileNetV3 along with
CAM greatly improves the broad applicability of the model in
various datasets involving different facial expressions, while
boosting the real-time performance of the model.

5.3. Training Details

The training process was optimized to ensure peak perfor-
mance, with particular emphasis on integrating the DKA
technique. The training was carried out over 160 epochs,
which allowed the model to effectively identify hierarchical
structures and representations of the given facial expression
data with the help of DKA, which also made it more versatile.
The batch size of 32 has been chosen intentionally as it allows
one to achieve rather efficient training without overloading
the system with computations. This option was most useful
when combined with DKA, which modulated the kernel pa-
rameters during the training phase. The ranger optimizer was
used with a learning rate of 0.001.

By combining two methods known as the RAdam or rectified
Adam and LookAhead methods, RAdam fixes problems with
fluctuating step size with the better adjustment of the learning
rate for adjusting the step size feature, while LookAhead
accelerates optimization by coming up with better solutions
to improve convergence. Combined with DKA, it was possible
to achieve good and stable convergence in this setup. This
dynamic adjustment of the learning rate enabled the various
phases of training to make optimal use of the learning rate,
thereby improving the model performance as well as stability.

To avoid overfitting and improve the ability to generalize, an
improved early stopping technique was used. The validation
technique continued to update the accuracy of the chosen
model on another set of never-before-seen data. Training
was, in fact, stopped if no enhancement was observed in the
subsequent epochs up to a prescribed number of epochs. This
active approach also protected from overfitting with the help of
DKA and adjusted the stopping criteria in response to changes
in the kernel adjustments and the validation performance trend
to make sure the model would perform well in response to
a new data set.

To ensure a robust evaluation, all training experiments were
repeated over 10 independent runs with random initialization.
The accuracy results represent the mean ± standard deviation
(std) of these runs for each dataset. The activation function
used throughout was SoftSwish, defined in Eq. (1). Early
stop was employed based on validation accuracy to prevent
overfitting. The detailed hyperparameter settings used during
training are presented in the Tab. 2.

Tab. 2. Training hyperparameters and settings.

Hyperparameter Value

Optimizer Ranger (RAdam + LookAhead)
Learning rate 0.001

Batch size 32
Epochs 160

Activation function SoftSwish
Repetitions 10 runs (mean ± std reported)

Early stopping Patience = 10 epochs
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Tab. 3. Model complexity and inference speed comparison.

Model Parameters [M] FLOPs [M] Inference time [ms/sample]

MobileNetV3 (baseline) 2.9 219 21.3
MobileNetV3 + DKA 3.1 232 19.6

MobileNetV3 + DKA + CAM 3.5 245 18.7

5.4. Computational Efficiency Analysis

To support our claims regarding computational efficiency, we
evaluated and compared the parameter count, FLOPs, and
inference latency of the baseline MobileNetV3 model and its
enhanced versions with DKA and CAM. These values were
obtained using the PyTorch profiler and averaged over 100
runs (Tab. 3).
These results show that the addition of DKA and CAM leads
to only a modest increase in parameter count and FLOPs,
while achieving a significant reduction in latency of approxi-
mately 12.2% faster inference, demonstrating suitability for
deployment in low-resource environments.

5.5. Performance Comparison of FER Models Across
Multiple Datasets

This section explores the performance of various facial ex-
pression recognition models across three widely used datasets.
FER2013, CK+, and JAFFE. By comparing accuracies, re-
calls, precisions, and F1 scores, we intend to show the ad-
vantages and disadvantages of given models while visually
proving the applicability of the presented approach. Exam-
ples of performance measures for each data set are shown in
Figs. 8–10.
The proposed model stands out with the highest performance
metrics across all criteria evaluated in FER2013 dataset anal-
ysis. It achieves an accuracy of 87.1%, recall of 81.8%, preci-
sion of 83.9%, and an F1 score of 82.8%. This is a significant
improvement over other models, which shows its superi-
or capability to recognize facial expressions accurately and
consistently. MobileNetV3 follows, showing respectable per-
formance with an accuracy of 84.8% and an F1 score of
80.5%. This means that it is relatively good, though some-
what less so than the model proposed here. LCNet ranks next,
ranked by progressively worsening metrics, followed by FB-
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Fig. 8. Performance metrics for different models in the FER2013
dataset.

Net and ShuffleNet V2. Although they are equally relevant,
these models have relatively less accuracy than our model
and therefore suggest that even more complex architectures
may be helpful for this dataset.
The results in the CK+ dataset showed great performance
with a precision of 95.8% and a good F1 score of 94.1%. It
surpasses all other models, and thus it is suggested that it is
perfectly suited to the task of facial expression analysis within
this dataset. MobileNetV3 also performs well with a given
accuracy of about 91.1% and an F1 score of about 90.3%.
This clearly depicts the strength of the model, though it is
not as efficient as our model. The results of FBNet, LCNet
and ShuffleNet V2 are also acceptable, but the difference
in metrics can be observed. This implies that the advanced
features of the proposed model improve the performance on
this data set to a large extent.
For the JAFFE data set, it is significant when we note that our
model offered an accuracy of 96.6% and an F1 score of 94.1%.
This data set also validates the effectiveness and generality of
the model identified in this study with other related data sets.
It can be seen that both FBNet and MobileNetV3 have good
accuracy and F1 scores considering the fashion data set and
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Fig. 9. Performance metrics for the models evaluated in the CK+
dataset.
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Fig. 10. Performance metrics for the models evaluated in the JAFFE
dataset.
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Fig. 11. Comparative analysis on the JAFEE dataset for: a) SoftSwish
and b) h_swish activation functions.

are still lower than the designed model. LCNet and ShuffleNet
V2 have good results. However, they are not very efficient
compared to the proposed model. Thus, the high stability of
the performance of our model on all four sets proves that it is
reliable and efficient for facial expression recognition.

5.6. Comparative Analysis of Loss Functions

In the next step, we study a comparative study of the applied
h_swish and SoftSwish activation functions in models of
facial expression recognition using different sets of data:
JAFEE, CK+, and FER2013 was conducted. Its purpose is to
evaluate these activation functions to improve the performance
and regularization of facial expression recognition. This is
demonstrated in Figs. 11–13 and denotes how these functions
work before and after DKA, revealing the effects on the model
prediction capability in the different datasets.
Looking at the results obtained on the JAFEE dataset, the
SoftSwish model should be noticed, which demonstrates
rather high indicators both before and after the application of
the DKA. Before DKA, SoftSwish was as accurate as 0.939
and after DKA it was 0.966. This implies that the intervention
of DKA leads to a drastic improvement in the performance of
SoftSwish. In the same way as with h_swish, the accuracy
was higher after DKA as well: 0.920 before DKA and 0.939
after DKA.
The same was the case in the CK+ dataset, where SoftSwish
averaged a 0.9369 before DKA and a 0.9580 at the end of
DKA. h_swish also showed nearly equally good results as
the latter, with an accuracy improvement from 0.9173 before
DKA to 0.9375 after DKA.
SoftSwish was found to have an improvement on the FER2013
data set with an increase in precision from (0.8559 to 0.8710)
after applying DKA. For the part of h_swish, there was an
improvement in the level of accuracy from (0.8413) before
the use of DKA to (0.8585) after the implementation of DKA.
From these results, it can be concluded that, for h_swish and
SoftSwish, the application of DKA has a considerable impact
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Fig. 12. Comparative analysis on the CK+ dataset: a) SoftSwish and
b) h_swish activation functions.

A
cc

ur
ac

y
A

cc
u

ra
cy

0.00

0.00

0.20

0.40

0.20

0.40

0.60

0.80

0.60

0.80

A
rc

F
ac

e

T
ri

pl
et

 l
os

s

M
ar

gi
n 

lo
ss

C
ro

sF
ac

e 
lo

ss

C
en

te
r

S
of

tm
ax

C
at

er
og

ic
al

 
cr

os
s-

en
tr

op
y

before DKA difference (after – before)

Loss functions

a)

b)

Fig. 13. Comparative analysis of the FER2013 data set for a)
SoftSwish and b) activation functions.

on the enhancement of the accuracy of facial expression
recognition on various datasets.

5.7. Comparative Analysis of Enhanced FER Models
Across Datasets

To check the general performance of the FER models, it is
important to compare the results of their assessment across
various data sets. The appearance of the datasets is different
and the main problems associated with them are the vari-
ability in poses, illumination, and the acquisition of facial
images for FER2013, CK+, and JAFFE. In Fig. 14, we pro-
vide a comprehensive comparison analysis of the improved
MobileNetV3 model with DKA and CA added compared to
the baseline MobileNetV3 and the MobileNetV3 model that
was improved only with DKA. This will help in the focus of
the paper to present the enhancements that have been made
as a result of the use of proposed approaches and hence es-
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Fig. 14. Comparative analysis of the FER2013 data set for a)
SoftSwish and b) activation functions.

tablish the effectiveness of the model in detecting emotions
from faces with high accuracy in similar datasets.

From the analysis of the performance in all the evaluated
dataset; FER2013, CK+ and JAFFE as presented in Fig. 14,
incorporating DKA and CA in the MobileNetV3 platform
has boosted the performance of the model.

On the FER2013 dataset, which is known for its challenging
real-world images with varying lighting conditions and facial
expressions, our enhanced model achieved a notable accuracy
of 88.5%. This represents an improvement of 3.7% over
the baseline MobileNetV3. The inclusion of DKA allows
the model to dynamically adapt its convolutional kernels,
thus improving its ability to capture finer details in complex
scenes. Meanwhile, CA enhances the model’s focus on crucial
facial regions, ensuring that the most relevant features are
emphasized during the recognition process.

The CK+ dataset, characterized by its controlled environment
and a wide range of emotional expressions, further highlights
the advantages of these enhancements. Here, the proposed
model achieved an accuracy of 97.17%, significantly exceed-
ing the accuracy of 91.1% of the baseline model.

This remarkable improvement to the effectiveness of CA in
refining the model’s attention to spatial details, particularly in
distinguishing subtle differences in expressions. Additionally,
DKA contributes to the model’s flexibility in processing var-
ied facial expressions, thereby boosting its overall accuracy.

In the JAFFE dataset, which includes images of Japanese
female subjects displaying different emotions, our model
achieved an impressive precision of 97.84%. This result fur-
ther underscores the model’s robustness in handling diverse
populations and expression intensities. The combined effect
of DKA and CA allows the model to generalize well across
different demographic groups, ensuring consistent perfor-
mance even in data sets with specific cultural or gender-related
characteristics.

Overall, the integration of DKA and CA techniques into Mo-
bileNetV3 has proven to be a powerful approach to enhance
facial expression recognition. These techniques not only im-
prove accuracy but also ensure its reliability and adaptability
across various challenging scenarios.
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Fig. 15. Confusion matrix for: a) FER2013, b) CK+, and c) JAFFE
datasets.

5.8. Confusion Matrix for all Datasets

To evaluate the model’s performance in more detail across dif-
ferent datasets, confusion matrices were employed to analyze
the accuracy of the model in classifying facial expressions.
These matrices are a powerful tool for understanding how
well the model distinguishes between different classes and
accurately identifies the correct expressions. Figure 15 illus-
trates the confusion matrices obtained for the CK+, FER2013,
and JAFFE datasets.
The confusion matrices for the three datasets (CK+, FER2013,
and JAFFE) demonstrate the outstanding performance of the
proposed model in FER. The model exhibits exceptionally
high accuracy on both the CK+ and JAFFE datasets, with di-
agonal values ranging from 99.2% to 99.8%, indicating its
ability to accurately distinguish between different expressions
in controlled environments. In contrast, despite the complex-
ity of the FER2013 dataset, which includes images under
various real-world conditions, the model still achieves de-
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Tab. 4. Comparison of the performance of different FER methods using attention mechanisms for the JAFFE, CK+, and FER2013 datasets.

Method JAFFE CK+ FER2013

MobileNetV3 + CAM + DKA (proposed method) 98.84% 99.56% 88.50%
MobileNetV3 + DKA 97.84% 97.17% 87.10%
Baseline MobileNetV3 96.60% 91.10% 84.80%

Attention mechanism-based CNN for FER [25] 88.81% 82.16% 79.33%
FER using LBP and CNN networks that integrate the attention

mechanism [26] 90.70% 99.48% 71.29%

FER method combined with the attention mechanism [27] 82.16% 88.81% 79.33%
Auto-fernet – fer network with architecture search [28] 97.14% 98.89% 73.78%

Lightweight FER with key region fusion [29] 82.16% 88.81% 79.33%

cent accuracy, reaching up to 89.2% in the best cases, with
relatively low misclassification rates. Overall, these results
underscore the model’s reliability and efficiency in handling
facial expressions across various datasets, proving its effec-
tiveness in delivering precise and consistent performance
even in challenging scenarios.

5.9. Evaluation of MobileNetV3 + CAM + DKA Across
Datasets

From the analysis, it is evident that the MobileNetV3 + CAM
+ DKA model produces high accuracy in facial expression
recognition test trials. Thus, for the JAFFE dataset, the pro-
posed model yields a high accuracy of (98.84%), which means
that it can work efficiently on experiments, including a va-
riety of facial expressions. These findings are reflected in
the confusion matrix, which shows the ability of the chosen
model to correctly recognize each of the expressions with an
emphasis on the neutral one.

In the CK+ dataset, the model maintains a notably high
accuracy, achieving a rate of 99.56%, this further reaffirms the
strength of the model as there is consistency in its performance
across the three datasets. Furthermore, when tested in the
FER2013 database, the precision is equal to 88.5%, which
means that even under realistic conditions, it successfully
identifies different expressions.

The inclusion of CAM and DKA partly enhances the effective-
ness and general accuracy of the model based on all defined
sets. CAM improves feature capture by optimally directing
focus, and DKA enhances the model’s ability to general-
ize, making it more adaptable and effective in real-world
scenarios.

Despite the high accuracy observed on the CK+ and JAFFE
datasets (more than 99%), we acknowledge that such small
and homogeneous datasets carry a risk of overfitting. To mit-
igate this, we adopted strict subject-independent evaluation
protocols, ensuring no identity overlap across training, valida-
tion, or test sets. Furthermore, we conducted multiple training
runs and reported mean ± std results to verify consistency.
Future work will extend our evaluation to larger and more

diverse datasets, such as AffectNet and Occlusion-FER, to
validate generalization under real-world conditions.

6. Comparison with Different Approaches

Table 4 compares the performance of the proposed method
with other state-of-the-art FER approaches that use attention
mechanisms on the JAFFE, CK+ and FER2013 datasets.
The proposed MobileNetV3 + CAM + DKA model demon-
strates improved performance because its three integrated
enhancements include CA for spatial awareness, DKA for
flexibility, and improved training stability using the SoftSwish
activation function. The complete proposed model delivers
better accuracy results than both the baseline MobileNetV3
and its DKA-only variant when evaluated on all datasets.
Performance gain requires accepting a more complex model
structure together with additional parameters. With the addi-
tion of the CAM, the parameter count increases slightly, but
the feature detection accuracy improves significantly under
challenging lighting conditions and facial obstructions. With
adaptive computation implemented through DKA, the model
can dynamically modify kernel sizes, leading to better gener-
alization performance without negatively affecting inference
speed.
The performance strength of the LBP + CNN and Auto-
FERNet methods in controlled datasets proves insufficient to
address the diverse conditions of FER2013, due to limited
spatial feature encoding or dependence on handcrafted fea-
tures. Our method strikes a balance between performance and
computational efficiency, making it more suitable for edge
deployment compared to heavier models such as those based
on ResNet architecture for FER tasks.
The comparison of results is presented in the Tab. 4 high-
light the effectiveness of the proposed method, which inte-
grates CA with MobileNetV3, across the JAFFE, CK+, and
FER2013 datasets. Our method achieved an impressive ac-
curacy of 98.84% in the JAFFE dataset, 99.56% in the CK+
dataset, and 88.50% on the FER2013 dataset, outperforming
most other state-of-the-art methods that incorporate attention
mechanisms.
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Specifically, the proposed method shows a significant im-
provement over CNN based on the attention mechanism pre-
sented in [25], which reported precisions of 88.81%, 82.16%
and 79.33% on the JAFFE, CK+, and FER2013 datasets, re-
spectively. This substantial performance gap highlights the
superiority of the coordinate attention mechanism in effec-
tively capturing and utilizing spatial information within facial
images.
Similarly, the method that involves the integration of LBP
as a feature extractor and CNN network by incorporating an
attention mechanism as suggested in [26] yielded slightly
higher precision in the CK+ benchmark dataset at 99.48%.
However, its performance drastically dropped on the FER2013
dataset with an accuracy of only 71.29%. This means that
the method proposed in this work is more generalizable in
different datasets while retaining a high level of accuracy, as
demonstrated in the FER2013 dataset.
Furthermore, the FER method combined with the attention
mechanism in [27] that produced the accuracies of 82.16%,
88.81% and 79.33% in the JAFFE, CK+ and FER2013
datasets, respectively, are relatively low compared to the huge
improvements recorded by our method. The CA mechanism
when combined with MobileNetV3 offers superior results in
terms of spatial patterns while also outperforming other work
in terms of adaptability to various datasets.
Finally, the lightweight FER with key region fusion method
matches the performance of our proposed method on all
three datasets. This close competition indicates that, while
both methods are highly effective, the CA mechanism, when
combined with MobileNetV3, provides a competitive edge,
particularly in scenarios that require a balance of accuracy
and computational efficiency.

7. Conclusions

In this work, we achieved a significant advancement in FER
by incorporating the coordinate attention mechanism into the
MobileNetV3 CNN architecture, further enhanced with dy-
namic kernel adaptation and SoftSwish activation. This novel
combination leverages the strength of each of its constituents
and, therefore, provides up-to-date, substantial improvements
over the existing FER methodologies.
The approach introduced is very strong and accurate; it es-
tablishes itself as a state-of-the-art solution in the field. The
proposed CA mechanism finely embeds the positional in-
formation to sharpen the model’s attention on the important
facial features, while MobileNetV3, with the help of DKA and
SoftSwish, contributed toward high computational efficiency
and adaptability to varying image complexities.
However, this study also recognized some limitations. The
major limitation is that it depends on a relatively small set
of experimental data and may not capture much diversity
in real-world tasks. Furthermore, behavior under different
lighting conditions, occlusions, and other challenging envi-
ronments has not fully investigated. These drawbacks will be
covered in further research by extending the evaluation with

datasets that present a large diversity of lighting conditions
and occlusions, as well as deepening the further contextual en-
hancements to make the model stronger in terms of reliability
and generalization.
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