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Abstract  Accurate segmentation of leaf regions plays a vi-
tal role in plant phenotyping and agricultural analysis. This
paper presents AKDUNet, a lightweight UNet-based architec-
ture that integrates attention gates and knowledge distillation
to improve segmentation performance while minimizing com-
putational complexity. The architecture replaces traditional
skip connections with attention gates to focus on salient spa-
tial features and employs a two-stage training pipeline, where
a compact student model learns from a deeper teacher model
using a tailored distillation loss function. AKDUNet is evaluated
on two benchmark datasets (CWFID and Sunflower) and out-
performs a range of state-of-the-art models, including UNet++,
Inception UNet, VGG-based UNets, SDUNet, INSCA UNet, and
SegFormer. Ablation studies confirm the advantages of attention
modules, and qualitative analyses using Grad-CAM visualiza-
tions reveal the model’s ability to effectively focus on crucial
leaf structures. The results demonstrate that AKDUNet is not
only computationally efficient but also highly accurate, mak-
ing it suitable for real-time deployment in resource-constrained
agricultural environments.

Keywords  attention gate, knowledge distillation, modified light
weight UNet, semantic segmentation

1. Introduction

Plant phenotyping has recently gained more attention from
researchers due to its potential to enhance high-yield plant
capabilities and augment food security. It is a key tool for un-
derstanding plant genetics, plant-environment interactions,
and various traits [1]. It also involves creating new technolo-
gies to improve plant yields and address the aforementioned
issues. Furthermore, plant phenotyping is crucial for examin-
ing plant growth, yield, and internal structure.
Plant image analysis is a key technique for plant phenotyping,
facilitating the evaluation of plant traits, growth forecasts,
and spatial details of plants. Manual measurements of visual
characteristics are costly. Hence, there is a need for auto-
mated solutions. Recent studies suggest that deep learning
(DL) techniques, a contemporary AI approach, are becom-
ing increasingly important in plant phenotyping due to their
advanced features [2].
In plant phenotyping, leaf area segmentation is crucial for an-
alyzing plant growth. However, the task becomes challenging

when dealing with small leaves or when many leaves overlap.
Furthermore, the effectiveness of leaf area segmentation can
be significantly influenced by factors such as image capture
angles and lighting conditions [3].
The proposed work introduces an AKDUNet model, designed
to enhance leaf area segmentation. It boosts segmentation
accuracy while keeping the model simple, by relying on
a smaller number of parameters. It is based on the UNet ar-
chitecture, known for its effective leaf segmentation, and is
compared with other known segmentation models, in example
UNet++, Inception UNet, SDUNet, and INCSA UNet, as well
as pre-trained deep learning models such as VGG16-UNet,
VGG19-UNet, ResNet-UNet, and SegFormer. The perfor-
mance of the AKDUNet model is assessed using the crop
weed field image dataset (CWFID) and the Sunflower data set
for plant phenotyping. Both qualitative and quantitative anal-
yses demonstrate that AKDUNet outperforms current leaf
segmentation techniques.
The key contributions of this work are as follows.
• Knowledge distillation. This method trains a smaller

student model P s to replicate the performance of a larger
teacher model P t. By transferring the core knowledge
from the teacher to the student, this approach enables the
smaller model to achieve similar performance with fewer
parameters, thus reducing the computational burden and
memory requirements.
• Attention gate mechanism. Traditional skip connections

are replaced with an attention gate mechanism. This tech-
nique allows the model to focus on the most relevant parts
of the input data and ignore less important information. By
emphasizing significant features and filtering out irrelevant
details, attention gates enhance the model’s efficiency and
accuracy without significantly increasing computational
demands.
• Performance evaluation. The effectiveness of the AK-

DUNet model is evaluated in comparison to advanced
models using metrics such as IoU score, F1 score, and
Dice coefficient loss, providing a thorough evaluation of
its performance.
• Assessment of computational complexity. This research

evaluates the computational efficiency of the proposed ap-
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proach by analyzing floating-point operations per second
(FLOPs), the number of model parameters, and the infer-
ence time, and thus providing a comprehensive assessment
of both performance and resource utilization.

The structure of the remaining sections is as follows. Section
2 reviews related work on semantic segmentation, attention
modules, and knowledge distillation learning. Section 3 pro-
vides a detailed description of the key components of the
AKDUNet model, including its architecture, implementation,
loss functions, and training algorithm. Section 4 presents an
in-depth analysis of the experimental setup and results. Sec-
tion 5 discusses the major advancements and limitations of
the approach and provides the conclusion.

2. Related Works

The field of knowledge distillation continues to evolve with
several advances that enhance the efficiency and effective-
ness of computer vision models. Various techniques such as
channel attention, transformers, self-attention, and novel fea-
ture distillation modules mature to optimize performance by
reducing model size and complexity. Each of these contribu-
tions reflects ongoing efforts to balance the trade-off between
model performance and computational resources, which is
crucial for deploying advanced computer vision technologies
in mobile and embedded systems.
The authors of [4] introduced a method that uses channel at-
tention and feature maps within a transformer framework to
facilitate knowledge transfer between a large teacher mod-
el P t and a smaller student model P s. Paper [5] pioneered
the application of KD frameworks, specifically in the field
of salient object detection (SOD), which involves identify-
ing the most important objects in an image. In [6], a method
for efficient semantic segmentation was proposed that com-
bines self-attention mechanisms with self-distillation. The
authors of [7] developed a common feature distillation mod-
ule designed to consolidate multi-stream information into
a spatially coherent single-stream representation.
Semantic segmentation involves assigning each pixel in an
image to a specific category. Modern RGB-D semantic seg-
mentation methods often rely on deep learning techniques
which have significantly advanced the field due to their strong
automatic learning and feature extraction capabilities. In such
a context, the authors of [8] improved deep learning models
by incorporating channel attention mechanisms to enhance
features, while in [9], self-attention modules were introduced
to refine the features extracted by the encoder.
In [10], an RFNet was developed which balances performance
and speed for real-time applications. [11] proposed an ESANet
which dynamically adjusts feature space representations by
weighting the outputs of each encoding block. In [12], high-
level features were applied to dynamically adjust the decoding
structure of deep learning networks.
Several adaptations of the traditional UNet architecture have
been developed to improve segmentation tasks. The authors
of [13] presented an improved UNet++ design which adds

deconvolution blocks to the skip connections. This modi-
fication enriches the semantic information in the decoder,
enabling deeper supervision. In [14], the UNet architecture
was introduced, incorporating inception layers and combining
binary cross-entropy, the Dice coefficient, and intersection
over union to boost performance.
The authors of [15] developed a SDUNet which features struc-
tured dropout in all UNet layers. This approach helps prevent
overfitting by eliminating some semantic details from the
network. [16] explored the INCSA UNet architecture which
integrates inception blocks with spatial attention mechanisms.
This model uses parallel and sequential layers to effectively
extract key features.
In [17], a compressed version of a UNet customized for plant
disease segmentation was presented. This streamlined model
is more storage-efficient and performs faster than the original
UNet. Paper [18] proposed SegFormer, a transformer-based
semantic segmentation model that combines hierarchical en-
coding with a lightweight MLP decoder. The model eliminates
the need for positional encoding, improving robustness to
varying input resolutions.
Traditional semantic segmentation methods frequently face
challenges that can result in inaccurate predictions. To ad-
dress these issues, this paper proposes an AKDUNet model
that integrates attention mechanisms and knowledge distil-
lation with the UNet architecture. This approach effectively
reduces the number of parameters compared to that used by
conventional UNet models, thereby reducing computational
complexity. Despite the reduction in the number of parame-
ters, the AKDUNet model aims to enhance performance by
utilizing attention mechanisms to focus on important features
and employing knowledge distillation to preserve essential
knowledge from more complex models. This customized solu-
tion specifically addresses the limitations of existing methods.

3. Proposed Methodology

This section presents a detailed overview of the AKDUNet
model, including its architecture, implementation, loss func-
tions, and training algorithm for knowledge distillation.

3.1. Implementation of Framework

Knowledge distillation is a deep learning technique that en-
ables the transfer of knowledge from a large to a smaller mod-
el. It is particularly useful for deploying models in resource-
constrained environments, where computational power and
memory are limited. To enhance segmentation accuracy, the
proposed method transfers knowledge from a larger teacher
model P t to a smaller student model P s. Figure 1 illustrates
the model’s architecture, which includes two deep convolu-
tional networks such as the student model P s with weights
θs and the teacher model P t with weights θt.
The work uses a UNet backbone [19] for both the teacher mod-
el P t and the student model P s, which helps to effectively
capture and maintain detailed features. The network con-
figurations are as follows: teacher model P t (depth, width);
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Fig. 1. Architecture of the AKDUNet model for leaf segmentation.

n ∈ {5, 3} and student UNet P s (depth, width); n ∈ {2, 3},
where depth denotes the number of layers and width denotes
the number of convolutions in each layer which are depict-
ed in Fig. 1. These variations are intended to explore the
trade-offs between detailed feature extraction, the number of
parameters, and overall model complexity.
Table 1 presents a detailed architectural comparison between
the teacher UNet (depth 5) and the student UNet (depth
2). The teacher model follows a deeper architecture with
more convolutional blocks and a higher parameter counts
of 2 354 785 to ensure rich feature extraction and accurate
segmentation.
On the contrary, the student model is a lightweight ver-
sion with significantly fewer layers and 13 681 parameters,
designed for faster inference and deployment in resource-
constrained environments. Despite its simplicity, the Student
UNet retains the core structural elements of UNet, includ-
ing convolution, pooling, up-sampling, and skip connections,
allowing it to perform efficient segmentation with reduced
computational cost.
The number of parameters in a 2D convolutional layer is given
by the formula:

CONVPar = (KH ×KW × CIN + 1)× COUT , (1)

where: KH – kernel height, KW – kernel width, CIN –
number of input channels, COUT – number of output filters.

X

Y

Y’
φ

Conv2D
1×1×1

Conv2D
1×1×1

Conv2D
1×1×1

ReLU

Fig. 2. Attention gate module.

Instead of directly passing features from the encoder to the
decoder through conventional skip connections, the proposed
method incorporates attention gates within the skip connec-
tions to enhance feature selection, as illustrated in Fig. 2. In
this design, the encoder feature map is used as one inputX to
the attention gate, while the gating signal from the decoder’s
previous stage is used as the second input Y . The attention
gate computes attention coefficients that selectively highlight
relevant regions in the feature maps while suppressing less
informative activations. This is mathematically represented
as:

Y ′ = ReLU(Y )⊙ Y , (2)
where:⊙ – element-wise multiplication and Y ′ – output after
applying the attention.
The multiplication with Y ensures that only the most sig-
nificant features of the decoder contribute to the subsequent
layers. By adaptively focusing on important spatial regions,
these attention gates help improve segmentation accuracy by
refining the information passed from the encoder to the de-
coder. The training process is carried out in two stages. In the
first stage, teacher model P t is designed with an encoder de-
coder architecture of depth 5. The model is trained using the
Dice coefficient loss function, with the objective of optimiz-
ing its performance based on F1 and IoU scores. Once training
has been completed, the parameters of the teacher model, in-
cluding weights θt, are frozen to ensure that they remain fixed
during the subsequent distillation phase. The trained teacher
model P t generates fixed predictions yt, which will be used
as ground truth in the second stage.
In the second stage, a smaller student model P s with a depth
of 2 is used. The student model has fewer parameters than
the teacher model, allowing for a more compact architecture.
During this stage, the outputs of teacher model P t serve as
ground truth yt for calculating the knowledge distillation loss
LKD, which quantifies the discrepancy between the teacher’s
ground truth predictions yt and the student model’s predic-
tions ys. It is also advantageous to train the student model
with ground truth labels y to get predictions ys produced by
the student model itself to calculate standard loss Ls. This
loss is derived using the Dice coefficient loss, which quanti-
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Tab. 1. Architecture and parameters of teacher and student UNet
models.

Stage Teacher UNet
(depth 5)

Student UNet
(depth 2)

Input 128 × 128 × 3 128 × 128 ×1

Block 1
3 × Conv2D

(16 filters ReLU)
MaxPool (2 × 2)

Dropout (0.5)

3 × Conv2D
(16 filters ReLU)
MaxPool (2 × 2)

Dropout (0.5)

Block 2
3 × Conv2D

(32 filters ReLU)
MaxPool (2 × 2)

Dropout (0.5)

–

Block 3
3 × Conv2D

(64 filters ReLU)
MaxPool (2 × 2)

Dropout (0.5)

–

Block 4
3 × Conv2D

(128 filters ReLU)
MaxPool (2 × 2)

Dropout (0.5)

–

Bottleneck 2 × Conv2D
(256 filters ReLU)

2 × Conv2D
(32 filters ReLU)

Up block 4
UpSample (2 × 2)

Conv2D (128)
Concat 2 × Conv2D

Dropout (0.5)

–

Up block 3
UpSample (2 × 2)

Conv2D (64)
Concat 2 × Conv2D

Dropout (0.5)

–

Up block 2
UpSample (2 × 2)

Conv2D (32)
Concat 2 × Conv2D

Dropout (0.5)

–

Up block 1
UpSample (2 × 2)

Conv2D (16)
Concat 2 × Conv2D

Dropout (0.5)

UpSample (2 × 2)
Conv2D (16)

Concat 2 × Conv2D
Dropout (0.5)

Output
3 × Conv2D
(labels 1 × 1)

Activation
(Sigmoid/Softmax)

3 × Conv2D
(labels 1 × 1)

Activation
(Sigmoid/Softmax)

Total
parameters 2 354 785 13 681

fies the predictions of similarity between student model ys
and ground truth y.
This total distillation loss combines both standard loss Ls and
knowledge distillation loss LKD, ensuring that the student
model learns to approximate both teacher predictions yt and
ground truth y effectively. The combination of these losses is
used to update the weights of student model θs, resulting in
an optimized student model with updated parameters θ′s.
Loss functions play a vital role in image segmentation as they
guide the model to segment images into distinct regions. The
choice of loss function depends on the specific requirements
of the segmentation task and the nature of the segmentation
process. To evaluate the proposed knowledge distillation ap-
proach, three key loss functions such as knowledge distillation

loss LKD, student loss Ls, and overall distillation training
loss LT are considered.

3.2. Knowledge Distillation Loss

In knowledge distillation, knowledge is transferred from
teacher model P t to student model P s by minimizing the
discrepancy between the predictions of teacher labels ys ∈
Rh×w and student labels yt ∈ Rh×w, where ys and yt
represent predictions of student model P s and teacher model
P t respectively, with h andw referring to the height and width
of the input image. The equations used to derive knowledge
distillation loss LKD are as follows:

pt = softmax
(yt
τ

)
, (3)

ps = softmax
(ys
τ

)
, (4)

LKD =
2
τ

( B∑
i=1

C∑
j=1

ptij log
ptij
psij

)
, (5)

where B is the batch size, C is the number of classes, and τ
is the temperature factor that typically ranges between 1 and
5 and controls the smoothness of the probability distributions
pt and ps.
The purpose of Eqs. (3) and (4) is to convert the raw logits yt
and ys from the teacher model and student model into prob-
ability distributions. The softmax function is applied to the
logits to normalize them, transforming them into values be-
tween 0 and 1 that sum up to 1 across all classes. This ensures
that both teacher model P t and student model P s outputs
are in the form of probabilities, allowing for a meaningful
comparison of their predictions.
The equation for LKD shown in Eq. (5) quantifies how much
the student model probability distribution differs from the
teacher model P t distribution. In Eq. (5), pt and ps are prob-
abilistic prediction values of teacher model P t and student
model P s, respectively, while log p

t
ij

ps
ij

is the Kullback-Leibler
divergence which measures the difference between the teach-
er and the student probability distributions. The logarithm
computes how far the student model P s distribution is from
the teacher model P t distribution.
This loss function can also be interpreted as the cross-entropy
between the distributions and encourage the student to match
the teacher distribution. By doing this, student model P s
learns not only the prediction of the final class, but also the
relative likelihoods of different classes, enabling it to better
approximate the decision-making process.

3.3. Standard Loss

It is beneficial to train the student together with ground truth
labels y and ys labels predicted by student model P s to obtain
standard loss Ls. The Dice coefficient loss is utilized to get
the standard loss which is:

LS = 1− 2
|y ∩ ys|
|y + ys| , (6)
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where |y ∩ ys| is the number of pixels that are correctly
predicted by student model P s with respect to ground truth y,
|y + ys| represent the total number of pixels in ground truth
y and predicted labels ys of student model P s.

3.4. Total Distillation Loss

Equation (7) represents the overall training loss as a weighted
combination of standard loss Ls and knowledge distillation
loss LKD. The equation is essential for achieving two key
objectives during model training, i.e. minimizing Ls and
reducing LKD.

LT = λLs + (1− λ)LKD . (7)

Parameter λ is the weight factor, typically assuming a value
between 0 and 1, that acts as a hyperparameter controlling
the trade-off between standard loss and knowledge distillation
loss.

3.5. Backpropagation

To update the weights of student model P s using backpropa-
gation, the gradients of total loss LT with respect to student
model weights θs are calculated in the following form:

∇θs =
Ls
θs
, (8)

∇θKD =
LKD
θs
, (9)

∇θT = α∇θs + (1− α)∇θKD , (10)

where ∇θs is the gradient of standard loss Ls with respect
to student weights θs, ∇θKD is the gradient of LKD with
respect to student weights θs.
Once∇θT gradients are calculated, propagate these gradients
backward through student model P s from the output layer
to the input layer, which updates the weights of each layer
according to:

θ′s = θs − η∇θT , (11)

where θ′s is the updated weight and η is the learning rate.

3.6. Training Algorithm

The Algorithm 1 outlines the knowledge distillation pro-
cess during training, where the weight of a student model is
updated by backpropagation through gradient calculation.

4. Experimental Setup and Results
The proposed methodology is evaluated using two benchmark
datasets that present diverse and challenging conditions,
the CWFID dataset [3] and the Sunflower dataset [20]. The
CWFID dataset consists of 60 high-resolution images with
detailed pixel-level annotations, collected by the Bonirob
agricultural robot on an organic carrot farm. The images
show carrot plants at the early true leaves, where dense plant
clusters with complex double-compound leaves and secondary
structures create significant challenges for segmentation due
to frequent overlapping and occlusions.

Algorithm 1 Training process.
Start
Input

1: Training dataD = {xti, yti}, where xti is the input image, yti is
the corresponding ground truth label and initialize the hyper
parameters such as optimizer, learning rate η, batch size B,
number of classes C

2: Train teacher model P t and obtain corresponding weights θt

Backpropagation
3: Initialize student model P s with the hyper parameters and load

teacher model P t with weight θt

Forward pass
4: Set weight factor λ, temperature factor τ and employ student

model P s and teacher model P t

5: for each mini batch B and input DB = {xtb, ytb} do forward
propagation and compute s weight θs, knowledge divergence
loss LKD , student loss Ls and total distillation loss LT using
Eqs. (1)–(5)

6: end for
Backward pass

7: Compute gradients∇θT as defined by Eqs. (6)–(8)
Update

8: Update the weight of student model weight θs using the calcu-
lated gradients∇θT and obtain updated student model weight
θ′s using Eq. (9)

9: Increment the iteration count i
Termination

10: Repeat steps 5 to 8 until the model converges or until a maximum
number of iterations is reached

End

Additionally, the Sunflower dataset, a publicly available re-
source, is used for crop and weed segmentation experiments.
This dataset was acquired by an agricultural robot in sun-
flower fields in Jesi, Italy. It comprises 500 scene images
organized into three subsets representing different stages of
crop growth: emergence, intermediate growth, and the final
stage before chemical treatment. The images were captured
over various days and times to include natural variations in
lighting and field conditions.
To facilitate evaluation, the datasets are divided into 80%
for training and 20% for testing, with sample images and
corresponding ground truth masks shown in Fig. 3.
To measure the effectiveness of the AKDUNet model, perfor-
mance metrics such as Dice coefficient loss, F1 score, and
IoU score are considered in the following manner:

Dice = 1− 2× TP
(TP + FP ) + (TP + FN)

, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1 score =
2× Precision×Recall
Precision+Recall

, (15)

IoU score =
TP

TP + FN + FP
, (16)

where TP, TN, FN, and FP are true positives, true negatives,
false negatives, and false positives, respectively.
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a) b)

c) d)

Fig. 3. Sample images and corresponding ground truth masks.

Tab. 2. AKDUNet model parameters.

Parameters Teacher UNet
P t

Student UNet
P s

Depth 5 2

Filters 16, 32, 64,
128, 256 16, 32

Kernel size 3 × 3 2 × 2
Activation function ReLU ReLU
No. of parameters 2.35 M 0.013 M

Inference time [ms] 168 ms 65 ms

4.1. Model Parameters and Implementation Details

The UNet architecture is used as the backbone for both the
teacher and student models. To evaluate the AKDUNet model,
Google Colab is used equipped with NVIDIA GPUs and 12
GB of RAM to handle the necessary computations. The input
images, originally 1296 × 966 pixels in resolution, are resized
to 128 × 128 pixels for the evaluation process.
Table 2 presents the key parameters of the two models. The
teacher model P t, with a deeper architecture, employs fil-
ters of increasing size and a 3 × 3 kernel size. It has 2.35 m
parameters and requires 168 ms for inference of the test im-
age, reflecting its more complex design and computational
demand. In contrast, the student model P s, with a shallower
architecture, uses fewer filters, a smaller 2 × 2 kernel size,
and has significantly fewer parameters (0.29 M). This model
achieves a faster inference time of 65 ms, making it more ef-
ficient and computationally powerful compared to the teacher
model. Despite the difference in complexity, both models uti-
lize the ReLU activation function, ensuring similar activation
behavior across both architectures.
Table 3 describes the hyper-parameters used for the proposed
model design. The learning rate η is set to 0.0001, allowing the
model to make small, controlled updates to its weights during
training. The Adam optimizer is employed to adaptively
adjust the learning rate based on gradients, which helps
the model to converge efficiently. A temperature factor τ

of 4 softens the teacher model output probabilities in the
knowledge distillation process. The weight factor λ is 0.5,
balancing the contribution of the hard target loss (ground
truth) and the soft target loss (teacher’s predictions). With
a batch size B of 8, the model processes 8 samples per
iteration and it is set to perform binary segmentation with two
classes C, representing the target leaf area and background in
the segmentation task.

4.2. Ablation Study

This ablation study explores the effect of adding an atten-
tion module by comparing the models with and without it.
The results show that adding the attention layer significantly
improves performance, making it a valuable enhancement.
Table 4 presents a comparative analysis of three models: stu-
dent, teacher, and AKDUNet, evaluated on three key metrics
such as F1 score, IoU score, and Dice coefficient. The models
were evaluated using 5-fold cross-validation, ensuring that
the evaluation is robust and not subject to over-fitting. The
evaluation is conducted under two conditions, without the at-
tention layer and with the attention layer. The student model
performs poorly on all metrics, with an F1 score of 66.79%,
an IoU score of 50.16%, and a loss of Dice coefficient of
0.1319.
At baseline (without attention), teacher modelP t outperforms
the student model, achieving an F1 score of 90.06% and an
IoU score of 81.98%, indicating its strong performance in
segmentation tasks. However, the AKDUNet model shows

Tab. 3. Hyperparameters.

Parameters Value

Learning rate η 0.0001
Optimizer Adam

Temperature factor τ 4
Weight factor λ 0.5

Batch size B 8
Number of classes C 2

Tab. 4. Comparison of the models’ performance with and without
the attention layer.

Model F1
score

IoU
score

Dice
coefficient

loss

Without attention layer
Student model 66.79% 50.16% 0.1319
Teacher model 90.06% 81.98% 0.0815

AKDUNet model 91.79% 85.82% 0.0414
With attention layer

Student model 85.86% 75.22% 0.0773
Teacher model 94.69% 89.94% 0.0699

AKDUNet model 96.46% 93.16% 0.0227
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Fig. 4. Comparison of F1 and IoU scores for models with and without
the attention layer.

a notable improvement with an F1 score of 91.79% and an
IoU score of 85.82%, along with the lowest Dice coefficient
loss of 0.0414, suggesting its superior ability to minimize
coefficient losses.

Subsequently, an attention module is integrated into all the
above-mentioned models and is evaluated for its effectiveness.
The inclusion of the attention layer results in significant
improvements in all three models. The AKDUNet model
demonstrates the most significant performance improvement,
achieving an F1 score of 96.46%, an IoU score of 93.16%,
and a reduced Dice coefficient loss of 0.0227. The teacher
model P t also benefits from the addition of an attention
layer, with an F1 score of 94.69%, an IoU score of 89.94%,
and a decrease in the loss of Dice coefficient to 0.0699.
Although student P s model remains the least performing, it
still shows improvements, with an F1 score of 85.86%, an IoU
score of 75.22% and a Dice coefficient loss of 0.0773. These
results show that incorporating an attention layer consistently
improves segmentation performance across all models, as
illustrated in Fig. 4.

Figure 5, which shows the Dice coefficient loss with and
without the attention layer, highlights a significant reduction
in prediction error when the attention layer is included. The
teacher model P t shows an improvement, with its loss of the
Dice coefficient reducing from 0.0815 to 0.0699, indicating
that attention helps minimize errors even in more complex
models.

The student model P s, while showing an improvement by
reducing the loss of Dice coefficient from 0.1319 to 0.0773,
still has the highest Dice coefficient loss among all models,
highlighting its relative difficulty in minimizing prediction
errors compared to the two remaining models. The AKDUNet
model achieves the lowest loss of Dice coefficients in both
conditions, decreasing from 0.0414 (without attention) to
0.0227 (with attention), showcasing its superior efficiency
in reducing the error rate. Overall, the graph confirms that
adding the attention layer contributes to a significant reduction
in Dice coefficient loss, particularly for the proposed model,
which achieves the lowest error across all conditions.

Tab. 5. Comparison of the proposed method with other methods
using the CWFID data set.

Method F1 score
[%]

IoU score
[%] Loss

UNet++ [21] 77.56 63.37 0.2274
Inception UNet [22] 62.31 45.26 0.6211

SDUNet [15] 83.97 72.39 0.1650
INSCA UNet [16] 94.34 89.30 0.0604
VGG16 UNet [23] 90.70 82.99 0.0954
VGG19 UNet [24] 94.19 85.16 0.0634
ResNet UNet [25] 60.72 75.50 0.1730
SegFormer [18] 95.77 91.85 0.0456
Teacher UNet 94.69 89.94 0.0699
Student UNet 85.86 75.22 0.0773

AKDUNet model 96.46 93.16 0.0227

4.3. Comparison with Other Methods

The effectiveness of the proposed AKDUNet model in seg-
menting leaf regions from agricultural images was evalu-
ated using two benchmark datasets, namely CWFID and
Sunflower. The proposed method was benchmarked against
various advanced UNet architectures, including UNet++, In-
ception UNet, SDUNet, and INSCA UNet, SegFormer, and
pre-trained UNet models such as VGG16 UNet, VGG19 UN-
et, and ResNet UNet. As shown in Tab. 5, which presents
results for the CWFID dataset, AKDUNet achieves a remark-
able F1 score of 96.46%, IoU score of 94.85%, and the lowest
loss value of 0.0208, outperforming all other compared meth-
ods.
These results indicate that AKDUNet provides highly accurate
and consistent segmentation of leaf regions, which is crucial
for downstream tasks such as disease detection, leaf counting,
and plant phenotyping. While transformer-based models such
as SegFormer also show strong performance with an F1
score of 95.77% and IoU of 91.85%, the superior metrics of
AKDUNet highlight the benefits of integrating convolutional
feature learning with attention-guided knowledge distillation,
enabling the model to capture fine-grained leaf boundaries
and spatial details more effectively.
Models such as INSCA UNet with an F1 score of 94.34% and
VGG19 UNet with 94.19%, also demonstrate competitive
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Fig. 5. Dice coefficient loss for models with and without the attention
layer.
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Tab. 6. Comparison of the proposed method with other methods
using the CWFID data set.

Method F1 score
[%]

IoU score
[%] Loss

UNet++ [21] 70.04 69.38 0.0890
Inception UNet [22] 94.31 84.99 0.0040

SDUNet [15] 66.75 50.09 0.0220
INSCA UNet [16] 62.94 46.07 0.0238
VGG16 UNet [23] 90.90 82.35 0.0127
VGG19 UNet [24] 94.78 87.37 0.0064
ResNet UNet [25] 91.00 83.62 0.0152
SegFormer [18] 93.66 82.87 0.0042
Teacher UNet 90.44 77.99 0.0079
Student UNet 85.79 68.70 0.0119

AKDUNet model 95.16 88.17 0.0037

performance, yet were surpassed by AKDUNet in terms of
both IoU and loss. This indicates that while attention mech-
anisms and deep CNN backbones aid in segmentation, the
interlaced attention and knowledge transfer mechanism of
AKDUNet allows for a more robust and precise extraction of
leaf regions. Traditional models like UNet++, Inception UN-
et, and ResNet UNet show comparatively lower performance,
with F1 scores below 78%, suggesting that they may strug-
gle to delineate leaf boundaries in complex backgrounds or
overlapping structures.

With the Sunflower dataset, as shown in Tab. 6, a similar
pattern emerges. AKDUNet achieves the best performance
with an F1 score of 95.16%, an IoU score of 88.17%, and
the lowest loss of 0.0037, demonstrating its generalizability
across different types of leaf structures and lighting condi-
tions. Competing models such as VGG19 UNet with an F1
score of 94.78% and Inception UNet with 94.31% deliver
strong results, but fall short in overall consistency and overlap
accuracy compared to AKDUNet.

Interestingly, SegFormer, while highly effective on the CW-
FID dataset, shows a drop in performance here with an F1
score of 93.66% and IoU of 82.87%, suggesting that AK-
DUNet’s convolutional attention hybrid design is more robust
for diverse leaf morphology and field conditions. Moreover,
the performance gap between the teacher UNet and the stu-
dent UNet illustrates the impact of knowledge distillation,
whereas AKDUNet significantly exceeds both, validating the
advantage of its attention-enhanced distillation strategy.

Analysis performed with the use of both CWFID and Sun-
flower datasets clearly demonstrates the effectiveness and
generalizability of the proposed AKDUNet model for leaf
region segmentation in agricultural images. AKDUNet con-
sistently outperforms all other benchmarked methods in terms
of F1 score, IoU, and loss, indicating its ability to accurately
extract leaf regions with minimal prediction error. Strong per-
formance in both datasets, despite differences in leaf types,

image complexity, and lighting conditions, highlights the
robustness of the model’s architecture.

4.4. Model Complexity Comparison

To assess computational complexity, the AKDUNet model
uses floating point operations per second (FLOPs), which
consists of number of addition, subtraction, multiplication,
and division operations involved during the training process,
and the formula to calculate FLOPs is shown in Eq. (17). In
addition, the number of parameters for each method is also
considered. To ensure fairness in comparison, all methods
including the proposed model are evaluated with the same
input size of 128 × 128 × 3.
For a Conv2D layer:

FLOPS = 2×Hout×Wout×Cin×KH ×KW ×Cout , (17)

where Hout,Wout – output height and width of the image,
Cin – input channels of the image,KH ,KW – kernel height
and width of the filter, Cout – output channels.
Table 7 presents a comparative analysis of various segmen-
tation models in terms of the number of parameters and
computational complexity (FLOPs), while Fig. 6 offers a vi-
sual comparison based on parameter count (in millions) and
FLOPs (in giga FLOPs).
The proposed AKDUNet model stands out with an exception-
ally low parameter count of just 0.013 M and a minimal 0.17
GFLOPs, demonstrating remarkable efficiency in both memo-
ry usage and computational cost. Despite its lightweight archi-
tecture, AKDUNet achieves a superior segmentation accuracy
of 93.16%, surpassing more complex models such as VGG16
UNet with 25.85 M parameters, 32.26 GFLOPs, and VGG19
UNet with 16.24 M parameters, 41.15 GFLOPs, which re-
quire significantly more resources. The reduced complexity
enables faster execution and lower resource consumption,
making it suitable for deployment in resource-constrained
environments without compromising segmentation perfor-
mance.
In comparison, models such as SDUNet with 0.498 M pa-
rameters and 5.22 GFLOPs as well as ResNet UNet with
24.29 M parameters and 3.12 GFLOPs offer a trade-off be-

Tab. 7. Comparison of model complexity and computational re-
quirements.

Model Parameters [M] FLOPs [G]

UNet++ 0.149 4.89
VGG16 UNet 25.85 32.26
VGG19 UNet 16.24 41.15
ResNet UNet 24.29 3.12

Inception UNet 0.177 2.90
SDUNet 0.498 5.22

SegFormer 0.124 5.2
Teacher UNet 2.354 2.67

Proposed AKDUNet 0.013 0.17
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Fig. 6. Comparison of computational complexity with existing
models.

tween complexity and accuracy, but fall short in both seg-
mentation precision and computational efficiency. Similarly,
the teacher UNet model, with 2.354 M parameters and 2.67
GFLOPs, delivers competitive results, but does not outper-
form AKDUNet in either metric. The SegFormer model,
despite its lightweight nature with only 0.124 M parameters,
incurs a relatively high computational cost of 5.2 GFLOPs
due to its transformer-based architecture, limiting its usability
for real-time deployment on edge devices.
The ability of AKDUNet to achieve superior segmentation
accuracy with a significantly lower computational footprint
highlights its effectiveness and efficiency, especially when
both IoU score and resource demands are critical considera-
tions.

4.5. Qualitative Analysis

Grad CAM visualizations were also generated for the student
model P s, the teacher model P t, and the AKDUNet model to
assess the effectiveness of the distillation process, as shown
in Fig. 7.
The results revealed that while both the teacher model P t and
the student model P s showed attention to relevant features,
the AKDUNet model demonstrated superior focus on the
critical regions of the input images. This suggests that, while
the student model P s achieves reasonable accuracy, it is not
as interpretable or capable of making significant decisions
as the teacher model P t. Specifically, the grad CAM heat
maps of the AKDUNet model closely aligned with those of
the teacher model P t, indicating that the student model P s
successfully learned to prioritize the most significant areas
through the distillation process.
To evaluate the effectiveness of the proposed architecture,
a qualitative analysis was conducted for all models, and the
performance was compared for scenarios with and without
knowledge distillation. As shown in Fig. 8, segmentation
maps from the student model P s trained from scratch with-
out knowledge distillation lack clear separation between the

tP  without attention

tP  with attention

Proposed without attention

sP  without attention

sP  with attention

Proposed with attention

Fig. 7. Grad CAM visualizations of all models.

secondary leaflets and do not present sharp boundaries. This
model produces an incomplete segmentation map with many
leaf regions incorrectly classified as background.
In contrast, the segmentation map produced by the proposed
model with an attention gated module is much clearer and
more accurately aligns with the ground truth map, as shown
in Fig. 8. This analysis demonstrates that combining knowl-
edge distillation with an attention layer significantly enhances
segmentation performance. This improvement is made possi-
ble by the transfer of knowledge from the teacher model P t,
whose segmented output outperforms the student model’s
output image.
Figures 9, 10 show the original images, ground truth, and
segmentation outputs for a variety of models, including pre-
trained UNet architectures such as VGG16 UNet, VGG19
UNet, and ResNet UNet, along with advanced models like
UNet++, Inception UNet, SDUNet, and INCSA UNet. By
integrating knowledge distillation techniques and attention
mechanisms, AKDUNet achieves highly accurate segmenta-
tion, even in challenging areas such as secondary leaflets and
finer details of leaf structures.
The attention module enhances the model’s ability to focus
on critical regions, while KD effectively transfers knowledge
from the teacher model, improving the student model’s gen-
eralization and segmentation accuracy. The qualitative results
clearly demonstrate that AKDUNet significantly outperforms
existing segmentation approaches. It delivers sharper and
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Fig. 8. Leaf area segmentation results with and without the attention module.

Input image Ground truth VGG16 UNet VGG19 UNet ResNet UNet Teacher UNet

AKDUNetSegFormer UNetINSCA UNetSDUNetInception UNetUNet++

Fig. 9. Results of segmentation – area of the CWFID carrot leaf.

Input image Ground truth VGG16 UNet VGG19 UNet ResNet UNet Teacher UNet

AKDUNetSegFormer UNetINSCA UNetSDUNetInception UNetUNet++

Fig. 10. Results of segmentation – sunflower leaf area.

60
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 3/2025



Enhancing Leaf Area Segmentation by Using Attention Gates and Knowledge Distillation in UNet Architecture

more precise boundaries, particularly in complex areas, when
compared to UNet, VGG16 UNet, VGG19 UNet, ResNet
UNet, UNet++, Inception UNet, SDUNet, and INCSA UNet.

5. Conclusions

This study demonstrates the performance of the proposed AK-
DUNet model while segmenting the leaf region for precision
agriculture. Across the CWFID carrot leaf and Sunflower data
sets from CWFID, AKDUNet consistently outperformed sev-
eral state-of-the-art architectures, including SegFormer, UN-
et++, Inception UNet, SDUNet, INSCA UNet, and pre-trained
UNet variants with VGG16, VGG19 and ResNet backbones.
The model achieved higher F1 scores and IoU values while
maintaining minimal loss, validating its robustness in han-
dling variations in leaf morphology and imaging conditions.
Its significantly lower computational complexity is a key
advantage of AKDUNet. Although only 0.013 million param-
eters and 0.17 GFLOPs were used, the segmentation results
were comparable to or better than those of much larger mod-
els. Such a high degree of efficiency positions AKDUNet
as a strong candidate for real-time deployment on resource-
constrained devices such as drones, mobile phones, or edge
computing platforms used in agricultural monitoring systems.
The model’s architecture, which integrates attention mecha-
nisms and knowledge distillation from a deeper teacher net-
work, enables it to focus on critical regions and segment fine
details with a high degree of accuracy. Its ability to general-
ize across datasets suggests that it can adapt well to diverse
plant species and imaging conditions without the need for
extensive retraining.
However, there are certain limitations to this work. First, the
evaluation was conducted on a limited number of datasets, pri-
marily focused on leaf structures from specific crops. While
AKDUNet showed strong generalization across these, its
performance on more complex agricultural scenes with over-
lapping plant parts, occlusions, or mixed crop types has not
yet been tested. Second, although the model is lightweight, it
still relies on supervised learning and labeled data, which can
be costly and time-consuming to obtain at scale. Finally, the
knowledge distillation strategy, while effective, may require
careful tuning of teacher-student dynamics to ensure stable
training across various domains.
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