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Abstract  This paper introduces two methods for peak side-
lobe level (PSLL) reduction and null steering in the pattern of
linear arrays using position control. While most research on this
topic uses stochastic optimization techniques, here convex opti-
mization and the off-grid compressive sensing framework were
used to accomplish the required goals. For the first method, the
problem of minimizing the PSLL and forming prescribed nulls
in the pattern of linear arrays by controlling the elements’ posi-
tions is cast as a convex optimization problem with the help of
first-order Taylor approximation. For the second method, the
goals are achieved by perturbing the locations of as few array el-
ements as possible. Towards this end, the problem of forming
prescribed nulls in the pattern of non-uniformly spaced linear
arrays for a predefined PSLL by elements’ position control is
formulated as a sparse recovery problem within the off-grid
compressive sensing framework. Simulations were performed to
evaluate the efficacy of the proposed methods, and the results
were compared to results obtained using stochastic optimization
techniques.

Keywords  compressive sensing, convex optimization, mechani-
cally adaptive arrays

1. Introduction

In phased array antenna, the radiation pattern can be altered
so that the radiation pattern adds up to boost the radiation in
the wanted direction while canceling out the radiation in the
undesired directions. Numerous algorithms have been studied
to create radiation pattern nulls by changing the excitation
of elements’ amplitude only [1]– [3], phase only [4], [5],
amplitude and phase (complex) [6]– [8], or inter-element
spacing [9]–[11].
Compressed sensing (CS) is a fairly recent signal process-
ing method to sample and reconstruct signals efficiently by
obtaining solutions of underdetermined linear systems [12].
The potential to defy established wisdom in data acquisition
based on Shannon’s theory [13] and permit the recovery of
specific signals from much less observations than standard
approaches has received much attention [14], [15].

The cornerstone of CS-based approaches is that a lot of
physical variables, both intrinsically or extrinsically sparse,
can be portrayed using just a few of nonzero expansion
coefficients, given the appropriate expansion bases. The basic
objective of CS methods is to determine an approximation of
the solution x to the linear system y = Ax, where x must
have as few nonzero elements as possible [12].
The evolution of CS has centered on signals having sparse
representation in finite discrete dictionaries. The majority of
signals we encounter in the actual world, particularly those
used in remote sensing, sonar and radar, are characterized by
continuous parameters. A discretization process is used to
create a finite collection of grid points from the continuous
parameter space in order to apply CS theory. When the
true signal is not precisely supported on the grid points,
performance loss occurs for the traditional CS methods, also
known as on-grid CS. This problem is referred to as the basis
mismatch problem [16].
Off-grid CS techniques aim to address the basis mismatch
issues without trying to solve the problem by using denser
discretization, since CS theory suggests that utilizing a finer
grid could not improve performance and even might increase
the coherence of the dictionary, which contradicts the restrict-
ed isometry property necessary for guaranteeing accurate
estimation of sparse recovery problems [17], [18].
Off-grid CS framework has been used to synthesize uniformly
weighted concentric ring arrays in [19]. A method based
on off-grid CS for the synthesis of planar sparse arrays was
proposed in [20]. In [21], an alternating algorithm to synthesis
planar sparse antenna arrays with complex-excitation and
reconfigurable pattern was proposed.
Most research on the topic of optimizing antenna arrays
by position-only control employs stochastic optimization
techniques [10], [22], [23]. Stochastic optimization techniques
suffer from several limitations, including high computational
cost, particularly for large array sizes. Additionally, there
is no guarantee that the obtained solution is the optimal
one, as it may be trapped in a local minimum. Another
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Fig. 1. Geometry of a 2N element linear array along the x-axis.

drawback is the inconsistent findings achieved during each
run, which necessitates numerous independent runs. Some
of the drawbacks of stochastic optimization methods can be
overcome by using convex optimization.
In this paper, two methods for peak sidelobe level (PSLL)
reduction and null steering in uniformly weighted linear
arrays by controlling the position of the array elements are
proposed. For the first method, the synthesis problem is cast
as a convex optimization problem with the help of first-order
Taylor approximation. Here, all the array elements’ positions
are perturbed to reduce the PSLL and impose prescribed nulls
with a predetermined upper bound on the null depth in the
radiation pattern. The problem is solved iteratively with a
small position perturbations every iteration to minimize the
approximation error.
For the second method, the problem is to impose prescribed
nulls with a specified upper bound on the null depth while
perturbing the positions of as few array elements as possible to
achieve a predefined PSLL. The problem is formed as a sparse
recovery problem using the off-grid compressive sensing
framework. Here, instead of minimizing the ℓ0 norm of the
weight vector, the ℓ0 norm of the position perturbation vector
is minimized. An algorithm based on iterative reweighted
ℓ1 norm minimization of the position perturbation vector is
proposed, where the position perturbations are kept small per
iteration to control for the approximation error.
The remainder of the paper is structured as follows. Section 2
introduces the problem formulation. Method 1 is presented
in Section 3. Method 2 is detailed in Section 4. Section 5
presents the simulation results. Finally, Section 6 draws the
conclusions.

2. Problem Formulation
Figure 1 shows a 2N element linear array placed symmetri-
cally along the x–axis. In the x− z plane, the array factor is
given by:

F (θ) = 2
N∑
n=1

In e
j( 2π
λ
xn sin θ+φn) , (1)

where λ is the wavelength, xn is the position of the n-th
element and In and φn are the excitation and the phase of the
n-th element, respectively. For a uniformly excited array, i.e.,
In = 1 and φn = 0, Eq. (1) can be written as:

F (θ) = 2
N∑
n=1

cos
[2π
λ
xn sin θ

]
. (2)

In this work, the array synthesis problem is modeled as an
off-grid CS problem. Suppose that the n-th element position
x′n is not located on the grid points, but is situated at an
unknown displacement from the closest grid point xn. To
find the element displacement from the nearest grid point, we
present position perturbation to xn.
Let a(xn) = 2 cos

[
2π
λ xn sin θ

]
. Using first order Taylor

expansion:

a(x′n) ≈ a(xn) + δn
∂a(x)
∂x

∣∣∣∣∣
x=xn

, (3)

where δn is the position perturbation variable for the n-th
element and |δn| ¬ ∆dx/2. Initially we start with the uniform
equally spaced array with interelement spacing∆dx, then the
array elements can have a controlled displacement from their
initial locations using the position perturbation variables. The
use of |δn| ¬ ∆dx/2 ensures that successive elements do not
overlap since they can only move by half the interelement
spacing in either direction.
The array radiation pattern with the elements’ position per-
turbations may be represented using the first-order Taylor
approximation as:

F (θ) ≈
N∑
n=1

[
a(xn) + δn

∂a(x)
∂x

∣∣∣∣
x=xn

]
, (4)

Equation (4) may be represented in matrix form by sampling
the radiation pattern as:

F = (A+AxΛδ)1 , (5)

where F = [F (θ1), F (θ2), . . . , F (θJ)]T is a vector contain-
ing the samples of F (θ) at J directions θj , j = 1, 2, . . . , J .
A = [a(1), . . . ,a(J)]T and a(j) = [a(x1), . . . , a(xN )]T
with θ = θj .Ax is the partial derivative ofA with respect to
x.Λδ = diag(δ), where δ is a vector of position perturbations
δ = [δ1, . . . , δN ]T . 1 ∈ RN is the one vector.

3. Method 1

In this section, we are interested in reducing the PSLL and
impose nulls with a predefined upper limit on the null depth
in the array’s radiation pattern by position control of all the
array elements. Towards this end, the array synthesis problem
may be expressed as:

min
δ
τs (6a)

subject to |(A+AxΛδ)1| ¬ τs, θ ∈ Ωsl (6b)

|(A+AxΛδ)1| ¬ τn, θ ∈ Ωnl (6c)
|δn| ¬ ∆dx/2, n = 1, 2, . . . , N , (6d)

where τs is a slack variable that represents an upper bound
on the array response in the sidelobe region, τn is an upper
bound on the null depth, Ωsl is the sidelobe region, and Ωnl
is the null region (directions).
Since the suggested method relies on the first-order Taylor
approximation in Eq. (3), the approximation error needs to
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be minimal to ensure the model’s accuracy. It is obvious that
the inaccuracy will increase as the values of the position
perturbations, δn, rise. The modeling error can be reduced by
reducing ∆dx in Eq. (6)-d to a smaller value ∆d′x < ∆dx,
but this will limit the degrees of freedom provided to the
algorithm and might reach a solution with a high PSLL.
Here, an iterative algorithm is proposed to mitigate this
problem by restricting the value of δn in each iteration to
|δkn| ¬ ∆d′x/2, where δkn is the value of δn in iteration k and
∆d′x < ∆dx. By doing so, we will be able to improve the
model’s accuracy without facing the aforementioned issues.
Initially, a uniformly spaced array is considered, i.e. the
position perturbations δ0n, n = 1, 2, . . . , N are set to zero,
A0 andA0x are calculated accordingly for the sidelobe region
and the null directions. The optimization problem at the k-th
iteration may be expressed as:

min
δk

τs (7a)

subject to |(Ak−1 +Ak−1x Λkδ )1| ¬ τs, θ ∈ Ωsl (7b)

|(Ak−1 +Ak−1x Λkδ )1| ¬ τn, θ ∈ Ωnl (7c)
|δn| ¬ ∆d′x/2, n = 1, 2, . . . , N . (7d)

The optimization problem in Eq. (7) is a convex optimization
problem and can be solved using off-the-shelf packages, such
as CVX [24]. After solving the optimization problem in Eq.
(7), the array elements’ positions are adjusted in accordance
with their perturbation values:

xkn = x
k−1
n + δkn, n = 1, . . . , N , (8)

where xk−1n is the position of the n-th element at the past
iteration k − 1. Finally,Ak andAkx are updated according to
the new element positions, and the optimization problem in
Eq. (7) is solved again for another iteration. The algorithm
continues until the maximum number of iterations is reached.
The maximum number of iterations is set experimentally to
10. This algorithm is referred to as method 1 for the remaining
of the paper.

4. Method 2

To minimize the amount of elements that needs to be perturbed
from their original positions under a predefined PSLL and
null depth, the optimization problem may be formulated as:

min
δ
∥δ∥0 (9a)

subject to |(A+AxΛδ)1| ¬ τs, θ ∈ Ωsl (9b)

|(A+AxΛδ)1| ¬ τn, θ ∈ Ωnl (9c)
|δn| ¬ ∆dx/2, n = 1, 2, . . . , N , (9d)

where ∥ · ∥0 is the ℓ0 norm, which is the number of the non-
zero entries of its argument. The optimization problem in
Eq. (9) is an NP-hard optimization problem due to the non-
convex objective function. To achieve a convex optimization
problem, the convex and sparsity-promoting ℓ1 norm can be

used in place of the ℓ0 norm:

min
δ
∥δ∥1 (10a)

subject to |(A+AxΛδ)1| ¬ τs, θ ∈ Ωsl (10b)

|(A+AxΛδ)1| ¬ τn, θ ∈ Ωnl (10c)
|δn| ¬ ∆dx/2, n = 1, 2, . . . , N , (10d)

where ∥ · ∥1 is the ℓ1 norm, which is the sum of the absolute

values of its argument. That is ∥δ∥1 =
N∑
n=1
|δn|.

To lower the approximation error and reduce the number
of perturbed element, an algorithm based on the iterative
reweighted ℓ1 norm minimization is proposed [25]. Initially,
a uniformly spaced array is considered with zero position
perturbations δ0n = 0, n = 1, 2, . . . , N . The matricesA0 and
A0x are calculated accordingly for the sidelobe region and the
null directions. The optimization problem at the k-th iteration
can be expressed as:

min
δk

N∑
n=1

|ψknδkn| (11a)

subject to |(Ak−1 +Ak−1x Λkδ )1| ¬ τs, θ ∈ Ωsl (11b)

|(Ak−1 +Ak−1x Λkδ )1| ¬ τn, θ ∈ Ωnl , (11c)

with δkn being the n-th element of δ at iteration k. ψkn =
1/(|δk−1n | + ξ), where δk−1n is the value of δn at iteration
k−1. ξ is a small positive number utilized to retain numerical
stability. In this work, ξ is set to 0.0001.
With this relation between ψkn and δk−1n , small elements in δ
will be penalized because they are multiplied by a large value
ψkn. This will result in even smaller values for the small entries
in δ in the following iteration and boosting the sparsity of the
solution [25]. At the first iteration, ψ1n, n = 1, 2, . . . , N are
set to one.
After solving the optimization problem in Eq. (11) using
CVX, the values of the position perturbations are limited to
|δn| ¬ ∆d′x/2, i.e., δn ∈

[
− 12∆d

′
x,
1
2∆d

′
x

]
. The final values

of the position perturbations at iteration k are calculated using:

δ̃kn =


δkn, if δkn ∈

[
−1
2
∆d′x,

1
2
∆d′x
]

−1
2
∆d′x, if δkn < −

1
2
∆d′x

1
2
∆d′x, otherwise .

(12)

The array elements’ positions are then updated in accordance
with their position perturbation values:

xkn = x
k−1
n + δ̃kn, n = 1, . . . , N , (13)

where xk−1n is the position of the n-th element at the previous
iteration k − 1.
Finally, Ak and Akx are updated according to the new el-
ement positions for the sidelobe region and the null direc-
tions. Then, the optimization problem in Eq. (11) is solved
again for another iteration. The algorithm continues until it
reaches the maximum number of iterations or ∥δk∥2 ¬ ϵ,
where ϵ is a tolerance parameter. Here, ϵ is set to be 0.0001
experimentally.∥ · ∥2 is the ℓ2 norm. This indicates that there
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Tab. 1. Geometry of the optimized 10-element array using method
1 (normalized with respect to λ/2).

n Position n Position

1 ±0.4880 4 ±3.0000
2 ±1.0625 5 ±4.2082
3 ±2.0642
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Fig. 2. Patterns of the uniform 10-element array, method 1 and the
hybrid IWO/WDO from [10].

is no meaningful change in the positions of the array elements
in the current iteration. The maximum number of iterations
is set to 10. This algorithm is referred to as method 2 for the
remaining of the paper.

5. Simulation Results

For the first example, consider the synthesis of a 10-element
linear array (i.e. N = 5) with a minimum PSLL. The initial
uniformly spaced array has an inter-element spacing of λ/2.
This array was optimized using particle swarm optimiza-
tion (PSO) in [22], comprehensive learning particle swarm
optimizer (CLPSO) in [23], and hybrid invasive weed opti-
mization and wind driven optimization (IWO/WDO) in [10].
The best obtained result was a PSLL of −15.9 dB for the
normalized pattern using the hybrid IWO/WDO from [10].
Applying method 1 resulted in obtaining a PSLL of −18.67
dB for the normalized pattern compared to −15.9 dB for
the hybrid IWO/WDO. The normalized patterns of the uni-
form array, method 1 and the hybrid IWO/WDO are shown in
Fig. 2. The geometry of the optimized array is given in Tab.
1 with respect to λ/2.
The second example demonstrates the synthesis of a 28-
element linear array (N = 14) with a minimum PSLL and
three prescribed nulls at 30◦, 32.5◦, and 35◦ as in [10]. The
initial uniformly spaced array has an inter-element spacing
of λ/2. This array was optimized using particle PSO in [22],
CLPSO in [23], and hybrid IWO/WDO in [10]. The hybrid
IWO/WDO resulted in the best PSLL of −13.19 dB for the
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Fig. 3. Patterns of the uniform 28-element array, method 1 and
the hybrid IWO/WDO from [10]. The directions of the nulls are
indicated by the arrows.

normalized pattern. Applying method 1 resulted in a PSLL
of −18.45 dB. The normalized patterns of method 1, the
uniform array and the hybrid IWO/WDO are depicted in
Fig. 3. Table 2 lists the element positions for the optimized
array using method 1 with respect to λ/2.
Next, for the third example, we apply method 2 for the 28-
element linear array (N = 14) with initial inter-element
spacing of λ/2. We set the upper bound on the array re-
sponse in the sidelobe region to that obtained using the hybrid
IWO/WDO from [10]. The objective for method 2 is to achieve
this PSLL and the three imposed nulls at 30◦, 32.5◦, and 35◦
by perturbing the positions of a minimum number of that ar-
ray elements. Applying method 2 resulted in perturbing the
positions of only 6 out of the total 28 array elements while
satisfying all the constraints on the radiation pattern. The pat-
terns of the uniform 28-element array, the hybrid IWO/WDO
from [10] and the pattern of method 2 are shown in Fig. 4. It
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Fig. 4. Patterns of the uniform 28-element array, method 2 and
the hybrid IWO/WDO from [10]. The directions of the nulls are
indicated by the arrows.
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Tab. 2. Geometry of the optimized 28-element array normalized
with respect to λ/2. The perturbed elements using method 2 are
marked in bold.

n Method 1 Method 2

1 ±0.6763 ±0.5000
2 ±1.0383 ±1.5000
3 ±2.2080 ±2.4339
4 ±2.7874 ±3.5000
5 ±3.9208 ±4.5000
6 ±4.6472 ±5.5000
7 ±5.5773 ±6.5000
8 ±6.7073 ±7.5000
9 ±7.8581 ±8.5000
10 ±8.7781 ±9.5000
11 ±10.1495 ±10.5000
12 ±11.2278 ±11.5000
13 ±12.3734 ±12.1901
14 ±13.8323 ±13.6986

can be seen from the figure the all the constraints on the radi-
ation pattern are met by perturbing the locations of only 6
array elements. The optimized array geometry using method
2 is given in Tab. 2.

6. Conclusions

In this paper, two methods for the synthesis of aperiodic lin-
ear arrays were presented. For the first method, the problem
of PSLL reduction and forming prescribed nulls in the radia-
tion pattern of the array by optimizing the position of array
elements was formulated as a convex optimization problem
and solved iteratively.
For the second method, only a small number of the array
elements are perturbed from their original positions to achieve
a predefined upper bound on the PSLL and form prescribed
nulls in the radiation pattern with an upper bound on the null
depth. The two methods were compared to results from the
literature using stochastic optimization techniques such as
PSO, CLPSO, and hybrid IWO/WDO. The results showed
the effectiveness of the proposed methods.
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