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Abstract — This paper presents a unified analytical and sim-
ulation framework for optimizing the performance of M/M/1
queueing systems that incorporate differentiated working va-
cations, server breakdowns, and customer balking behavior.
Other features of the solution include dynamical transitions be-
tween full-service mode, two levels of working vacation (with
reduced service rates) phases, and random breakdown-repair
cycles. Customers arrive via a Poisson process and decide to join
or balk based on the server’s current state. Embedded Markov
chains, probability generating functions, and Matlab based dis-
crete event simulation are applied to analyze key performance
metrics, including average waiting time, queue length, and serv-
er utilization. A particle swarm optimization (PSO) algorithm is
used to identify parameter configurations that minimize conges-
tion and delay. Application scenarios in 5G/6G networks and
service platforms demonstrate how adaptive vacation scheduling
and resilience strategies improve energy efficiency and through-
put. The results offer valuable information for performance
tuning in resource-constrained telecommunication systems.

Keywords — 5G/6G networks, queueing performance analysis,
server reliability, single-server queues, working vacations

1. Introduction

Modern wireless communication systems, including 5G, 6G
and Internet of Things (IoT) networks, face increasing lev-
els of demand for high-quality services, yet have limited
computational and energy resources at their disposal. The
dynamic nature of network traffic, combined with energy con-
straints and unpredictable system behavior, calls for deploying
adaptive queueing mechanisms that are capable of manag-
ing service delays, optimizing resource usage, and ensuring
operational resilience. The queue theory provides a robust
analytical framework for addressing such challenges and has
become a key tool in the process of modeling and optimizing
telecommunication networks [1], [2].

Among the various queueing models, the working vacation
queue, originally proposed in [3], has gained attention for
its practical applicability in energy-aware systems. Unlike
traditional vacation models where the server becomes com-
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pletely idle, the working vacation model assumes that the
server continues to operate at a reduced rate, closely resem-
bling energy-saving or degraded service modes known from
wireless infrastructures. This framework has been extended
to include re-trials, server unreliability, customer impatience,
and heterogeneous vacation behaviors [4], [5], improving its
relevance to complex environments such as sensor networks
and cloud-edge systems [6], [7].

Recent advances in network management include intelligent
queue control in 5G, hybrid optimization models for traffic
handling, and delay-tolerant service designs [8]—[10]. How-
ever, few studies jointly address such phenomena as server
breakdowns, multiple working vacation phases, and balking
behavior, especially under the constraints of wireless systems,
where these conditions often coexist.

In our previous work [5], we analyzed the steady state behavior
of an M/M/1 queueing system with differentiated working
vacations and customer balking. This paper extends that model
by introducing the following improvements:

e Two distinct working vacation phases, each with its own
reduced service rate.

e Random server breakdowns and repair dynamics, modeling
real-world hardware unreliability.

e State-dependent customer balking, where join/balk deci-
sions are influenced by the server’s operating mode.

e Integration of discrete-event simulation in Matlab to vali-
date the analytical findings.

e Application of particle swarm optimization (PSO) to iden-
tify optimal system parameters while minimizing delays
and improving performance metrics.

The inclusion of PSO in this study is a significant method-
ological enhancement. PSO is a robust, population-based
metaheuristic that efficiently explores complex, non-linear
search spaces and converges quickly. It is particularly well-
suited for optimizing queueing systems with stochastic behav-
ior, where traditional gradient-based methods may struggle.
By applying PSO to tune service rates, vacation parameters,
breakdown rates, and balking thresholds, this paper offers
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Tab. 1. Model parameters and their descriptions.

Parameter Description Typical values
A\ Custqmer arrival rate Example: 1.0
(Poisson process)
Service rate during busy Must satisfy
# period w> 1 > e
Service rate during type I Reduced
H working vacation service rate
. . Further
Service rate during type
M2 . . reduced
IT working vacation .
service rate
- Probability of eptermg Example: 0.1
type I vacation
Probability of entering )
2 type II vacation Example: 0.05
Probability of server .
«a breakdown Example: 0.03
3 Server repair rate after Exponential
breakdown repair rate
Balking probability Setto 0.3
b . ) L
during type I vacation (heuristic)
b Balking probability Setto 0.5
2 during type II vacation (heuristic)
b Balking probability Set to 0.7
during server breakdown (heuristic)

an actionable optimization framework for improving system
responsiveness and energy efficiency in dynamic wireless
communication environments.

Using embedded Markov chains, probability-generating func-
tions, and discrete event simulation, we analyze key per-
formance indicators such as average waiting time, server
utilization, and system throughput. Our results provide prac-
tical design insights for customer service platforms, edge
computing nodes, and base stations in energy- and reliability-
constrained systems.

2. Model Description

This study analyses a single-server M/M/1 queueing system
that incorporates differentiated working vacations, server
breakdowns, and customer balking behavior. The system is
structured under the following assumptions:

e Arrival process. Customers arrive following a Poisson
process with rate \.

e Service mechanism. During regular busy periods, the
server operates at a service rate of x. In type I vacation
mode, the server continues to operate at a reduced rate 1,
and in type II vacation mode, at an even slower rate (o,
where p > (1 > po.
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Fig. 1. State transition diagram.

e Server behavior. After completing a busy period, the
server may enter a type I vacation with probability ; or
a type II vacation with probability v».

e Server breakdowns. Random breakdowns occur with
probability «, and the server undergoes repair at an expo-
nential rate 3.

o Customer balking. Customers may choose to balk depend-
ing on the server’s state, with a 30% balking probability
during type I vacation, 50% during type II vacation, and
70% during server breakdowns.

This model effectively captures real-world operational con-
straints such as fatigue, partial service availability, failure
events, and customer impatience, making it highly relevant
for the analysis and optimization of both traditional service
systems and next-generation wireless networks.

2.1. Model Framework

This study builds on the queueing model presented in [5],
which explored a steady-state M/M/1 system with differentiat-
ed working vacations, breakdowns, and balking. The current
model retains the structural foundation of that system but
introduces refined interpretations and supports simulations
required for validating performance.

Let N(t) denote the number of customers in the system at
time ¢, and let S(¢) € {0, 1,2, 3} represent the server’s state,
where:

e S(t) = 0 —server is busy,

e S(t) =1 - server is under breakdown,

e S(t) = 2 —server is on a type I working vacation,
e S(t) = 3 —server is on a type II working vacation.

The system is modeled as a continuous-time Markov pro-
cess S(t), N(t),t > 0 with state space A = {(i,5) : i =
0,1,2,3;j > 0}. Transition probabilities and the governing
balance equations are retained from the earlier model, with
minor notational refinements. For completeness, the main
steady-state equations and performance metrics, including the
expected number of customers in system and average waiting
time, are summarized in Appendix A.
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3. Practical Applications in Wireless
Networks

This section demonstrates how the proposed M/M/1 queueing
model with differentiated working vacations, server break-
downs, and customer balking can be effectively applied to
modern service systems. Two representative domains are
considered: customer service centers and next-generation
wireless networks (NGWN).

3.1. Customer Service Centers and Call Centers

In service-oriented platforms like call centers, help desks or
support chat systems, human agents act as servers processing
customer requests. The proposed model offers several relevant
analogies:

e Server breakdowns correspond to sudden unavailability
of agents due to technical issues, fatigue, or shift changes.

o Working vacations represent scheduled breaks or periods
of reduced service effort, e.g. multitasking, handling low-
priority tasks.

o Customer balking models real-world impatience such as
callers hanging up or users exiting queues when facing
perceived delays.

By implementing the proposed model, organizations may

design dynamic staffing policies to:

e Reduce call abandonment rates and improve response
times.

e Optimize agent workload while avoiding burnout.
e Adapt service capacity based on real-time traffic.

Strategically timed low-effort periods (type I vacations) can
preserve service quality while allowing recovery time, as long
as breakdown probability and balking are carefully managed.

3.2. Next Generation Wireless Networks

In wireless systems, particularly 5G/6G networks, IoT gate-
ways, and edge computing nodes, the model maps directly to
network elements and protocols in the following manner:

e Servers represent base stations or edge nodes that process
data packets or user requests.

o Working vacations correspond to energy savings or degrad-
ed operating modes during off-peak hours or congestion
periods.

e Breakdowns simulate hardware failures, link failures, or
shutdowns caused by overheating.

e Balking models packet drops or user session termination
due to degraded quality of service (QoS).

The model enables adaptive resource allocation and energy-

aware operations. It supports the following:

o Sleep/wake cycles in small cells or relay nodes for energy
efficiency,

e Fault tolerance mechanisms through predictive repair and
redundancy,
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Customer service center/call center 5G/6G wireless network
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requests
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breakdown
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e dynamic adaptation

® minimize wait
o reduce abandonment
® optimize schedule

Fig. 2. Analogies of the proposed queueing model used in call
centers and wireless network systems.

e Dynamic load balancing to reduce service delays and user
drop rates.

Benefits for network operators include improved resilience
and responsiveness, lower energy consumption without sacri-
ficing throughput, scalable performance modeling for smart
city infrastructure, vehicular networks, and cloud-edge or-
chestration.

4. Simulation Setup and Dataset
Description

A simulation was performed to evaluate the performance of
the system under the following parameters:

e Arrival rate A = 1.0,

e Service rates: u = 1.5 (normal), iy = 1.0 (type I vaca-
tion), pa = 0.5 (type II vacation),
e Vacation probabilities: y; = 0.1 (type I), 72 = 0.05 (type

1D,
e Breakdown probability o = 0.03,
e Repair rate § = 0.2,
e Balking probabilities: b; = 0.3 (type I), b2 = 0.5 (type 1),
and b = 0.7 (breakdowns).
The simulation ran for a total of 10000 customer events,
ensuring statistically significant results that capture typical
system behavior under varying server states.
This representative subset highlights how customer arrivals,
service commencement, and balking behavior are influenced
by the server’s state, providing practical insights into the
system’s dynamics.

5. Numerical Results and Validation

To evaluate the performance of the proposed M/M/1 queueing
system with differentiated working vacations, server break-
downs, and customer balking, we developed a Matlab-based
simulation. The simulation model mimics system behavior
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Tab. 2. Sample simulation output (first five events).

Arrival | Service | Service Server ..
. Decision
time start end state
0.47 0.47 1.08 Busy Joined
0.64 Vacation I Balked
2.65 2.65 2.66 Busy Joined
6.15 6.15 6.29 Busy Joined
6.36 6.36 6.73 Busy Joined
a) 20
g P
3 10 |
£ '

5} 5 . M| | |
. ol s,nif mur s UjJ'!‘ " I

0 100 200 300 400 500 600 700 800 900
Arrival time [units]

b) 800
= 600
2
2400
£
= 200

Breakdown Busy Vacation 1 Vacation 2
Server states

Fig. 3. Simulation outputs: a) service times for customers and b)
cumulative time spent in different server states.

over 10000 customer arrivals, ensuring statistical robustness
and replicability. The key outputs are visualized in Fig. 3.

In Fig. 3a, the x-axis represents individual customer arrival
times, while the y-axis shows their corresponding service
durations. The figure illustrates how service times vary de-
pending on server state: they are the shortest during busy
periods, longer during type I vacations, and the longest during
type 1I vacations or breakdown periods. Clusters of elevated
service times reflect transitions into low-efficiency or failure
states.

Figure 3b illustrates the time spent in different states. This
bar chart quantifies the cumulative time spent in each serv-
er state (busy, vacation I, vacation II, breakdown). It clearly
shows how working vacations and breakdowns reduce effec-
tive service capacity, helping identify bottlenecks and guide
parameter tuning (e.g. reducing 5 or improving [3).

These visualizations offer actionable insights into system dy-
namics and underscore the impact that server fatigue and
failures exert on customer experience. The simulation pro-
vides a practical validation layer to the analytical model,
confirming its relevance for real-world service systems and
telecommunication networks, where non-ideal behaviors like
balking and degradation are common.
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5.1. Simulation Environment

All simulations, including queue dynamics and particle swarm
optimization (PSO), were implemented in Matlab R2023b.
Matlab’s built-in functions and custom scripts were used to
model queue states, implement PSO algorithms, and generate
figures. Random number seeds were set to ensure consistency
across repeated runs.

6. Optimization Framework Using PSO

Particle swarm optimization is employed to minimize cost
functions and optimize key performance metrics, expected
queue length, waiting time, and server utilization, in an M/M/1
queue with working vacations, breakdowns, and customer
balking. PSO is particularly suitable for this problem due to
its fast convergence, simplicity, and robustness in non-linear,
high-dimensional search spaces. Compared to other meta-
heuristics (e.g. GA, ACO), PSO requires fewer parameters
and is more computationally efficient.

The objective of the PSO algorithm is to minimize cost
function C' that represents the trade-off between queueing
performance metrics, i.e. the average number of customers in
the system, and the average waiting time.

The cost function is defined as:
C =w.BE(L) +ws. E(W) , (1)

where:
e E(L) - expected number of customers in the system,

o E(W) — expected waiting time from Little’s law:

BW) = 5,
e wi,wy € [0, 1] are user-defined weights such that:

w1 + we = 1, reflecting the relative importance of queue

length and delay.
For example, setting w; = wy = 0.5 gives equal weight to
both performance criteria.
The PSO algorithm searches for the parameter set § =
[ 1, 2, v1, Y2, @, B, b1, ba, and b] that minimizes this cost
function:

0" = arg r})lin c(0) . 2)

It is defined based on parameters such as arrival/service
rates \, u, j41, th2, breakdown and repair rates «, 3, vacation
probabilities 1, 2, and balking probabilities b1, b, and b.

Initialization of the algorithm includes swarm size, iner-
tia weight w, and coefficients c;, co. Parameter bounds are
defined, e.g., p; € [0.1, u]. Each particle encodes queue
parameters:

Particle; = [u1, p2, 71,72, @, B, balking par,...] . (3)

Atiteration ¢ + 1, particle velocities and positions are updated
as:

t+1
Uy

—wol+er (pBest; — xf) + ca2r2(gBest — xf) , @

t+1 t t+1
o =af ot ®)
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Tab. 3. Baseline vs. optimized performance.

Tab. 4. PSO parameter settings.

Metric Baseline PSO Improvement
optimized
Average queue | o, 3.48 1~43.1%
length
Average waiting | 5 ) 223 1~55.5%
time [units]
Server 78.4% | 85.7% T 47.3%
utilization

where r1,79 ~ U(0,1) are random factors, pBest; is the
best position of particle ¢, and gBest is the global best found
so far. The algorithm terminates when a maximum num-
ber of iterations is reached or the improvement falls below
a threshold.

6.1. PSO Results

To assess the impact of the PSO algorithm, we compared
performance metrics before and after optimization (Tab.
3). The PSO was applied to tune key parameters, e.g.
11, [h2, Y1, Y2, @, (3, and balking probabilities, with the objec-
tive of minimizing average queue lengths and waiting times.

These results confirm that PSO effectively identifies superior
parameter configurations reducing congestion and improving
response times.

The plot shown in Fig. 4 shows a smoothed trend of service
durations aligned with arrival times. It illustrates how opti-
mized parameters help maintain service times within a tighter
range, thus avoiding spikes observed under baseline settings.
This uniformity leads to greater predictability and reduced
customer waiting time.

6.2. PSO Parameter Settings and Cost Convergence

To validate the performance of the PSO algorithm in opti-
mizing the M/M/1 queue system with working vacations and
server breakdowns, Tab. 4 summarizes the parameter settings
used in the simulation.

The cost function used in optimization reflects a weighted
combination of average queue length and average waiting
time. These metrics capture the overall efficiency of the

1.10

1.05

1.00

0.95

Service duration [units]

0.90

0 5 10 15 20 25

Arrival time [units]

Fig. 4. Optimized service times across arrival times.
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Parameter ‘ Value ‘ Description

Swarm size 30 Number of particles in
the swarm

Maxi - :

Number of iterations 100 axtmum 1teFat10ns
of the algorithm
: . Controls influence of
Inertia weight w 0.7 Y

previous velocity

Weight toward

Cognitive coeflicient ¢y 1.5 o
personal best position

. . Weight toward global
Social coefficient ¢ 1.5 g .\ £
best position
10
;g 8
«
>
g ¢
3]
=1
& 4
g
@]
2
0
0 20 40 60 80 100
Iterations

Fig. 5. Convergence of the PSO cost function.

system and customer satisfaction under varying conditions,
for example, vacations, breakdowns, and balking.

A cost convergence plot was generated to visualize the per-
formance of the PSO algorithm in the individual iterations.
As shown in Fig. 5, the cost steadily decreases and stabilizes
as the algorithm converges toward an optimal parameter set.

The convergence curve demonstrates that the algorithm reli-
ably reduces the cost within 100 iterations, indicating success-
ful optimization of the queue parameters under the defined
constraints.

7. Conclusions

This article presents an enhanced M/M/1 queueing model
that integrates differentiated working vacations, server break-
downs, and state-dependent customer balking, offering a re-
alistic framework for analyzing and optimizing performance
in modern telecommunication systems. The model captures
essential operational dynamics often encountered in environ-
ments such as call centers, wireless base stations, and edge
computing nodes, where service degradation, unreliability,
and impatient user behavior are common.

The model demonstrates significant improvements in per-
formance, offers a reduction in average waiting time (up to
55%) and a 43% decrease in queue length. These results un-
derscore the potential of intelligent queue management and
metaheuristic optimization approaches, as these are capa-

83



S. Muthukumar, J. Ebenesar Anna Bagyam, and K. Basarikodi

ble of improving responsiveness and energy efficiency in
resource-constrained networks. The proposed framework of-
fers actionable insights for designing adaptive scheduling
policies, optimizing energy usage, and enhancing user satis-
faction in 5G/6G, IoT gateways, and customer-facing service
platforms.

Although PSO has proven effective in optimizing the proposed
queueing model due to its fast convergence and simplicity,
it is beneficial to briefly consider alternative metaheuristic
approaches. Genetic algorithms (GAs), for instance, offer ro-
bustness and flexibility, particularly for discrete optimization
problems, but often require more computational effort and
parameter tuning.

Reinforcement learning (RL), on the other hand, enables
adaptive learning in dynamic environments and is well-suited
for online decision making. However, its applicability is
limited in settings where training data is sparse or where
system states evolve slowly.

PSO was selected for this study because of its ease of imple-
mentation, compatibility with simulation-based optimization,
and lower computational overhead in static system scenarios.
Future comparative studies may further explore the trade-offs
among these techniques to guide optimization choices across
various application domains.
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Appendix A.
Local Balance Equations

Let p; ; denote the steady-state probability of being in server
state ¢ with j customers in the system.

The balance equations for the continuous-time Markov pro-
cess are as follows:

(A1) poo = p1po1, (6)

A+ p+a)po,n =Y1D2,n + V2 P30 + BP1n

+ 1pon+1 + Apon—1, n =2, @

(A +B)p11=apo,, ®)

(Ab+ B) pron = apon +Abp1n_1, n =1, )
(Ab1 +71) p2,0 = p1 p2,1 + 1P Po,o (10)

(Ab1 + 71 + 1) P2,n = pa P21 + Ab1P2n—1, n 21, (11)
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Ab2 P30 = Y1 p2,0 + g Po,0 + K2 P3,1 , (12)

(Ab2 + v2 + p2) p3.n = Ab2p3n—1 + 2 Pant1, n =1, (13)
Generating functions

Using corresponding probability generating functions

Pi(z) = Zpi,nzn
n=0
the expressions are:
(b — az)poo — [P1(2)]82 + [p2.0 — Po(2)| 12
A2 —(A+put+a)z+p

[p3.0 = Ps(2)] 722
A2 —(A+pt+a)z+p’

P() (Z) =

(14)

Pi(s) = Olpeo = D) 15

1(2) = Nz — (M +B) 15)

Pz(z) _ H1P2,0 — H12P2,0 — HP ZP0,0 7 (16)

TOAb122 — (Aby + pr 1)z

Py(z) = H2 P30 — 2 pso0(p2 +v2) — Y12 P2,0 — 1GZ Po,o
3 Ab222 — (Aba + 2 + 72)z + po

)

a7
Steady-state probability at idle state
Y172
= , 18
P00 e ¥ (2 ip + 28 + 2L+ 1 pq) 1®
where:
___kpz=
pi(z1—1) 7

2 (s +pq)
22 (72 + p2) — po

and:
21 is the positive root of

Ab1z® — (Aby + g1 4 1)z + pa
2z is the positive root of

Ab2z® — (Ab2 + p2 + 72)z + piz
Expected system lengths by state

Busy state:
b + 2 (Ab2 —
E(Ls) = Y172 Ab2 P30 + [y17y2 p1 + Y1 (Ab2 — p2)] p2,o
Y17Y2 &
n [v2 pp(Ab1 — p11) + 71 g(Ab2 — p2) + 7172A] Po,o
Y2 @ ’
(19)
Breakdown state:
(0% E(LB) — Po,o
E(L,) = w ) (20)
Type-I vacation:
Aby — +
(L) = [0 (Ab1 — 1) Po,o + 11 p1p2,0 e

v:
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Type-II vacation:

_ Y2 Ab2 p3,0 + Y1 (Ab2 — p2) p2,o + q(Ab2 — p2) po,o

E(L )
(Ls) 7
(22)
Expected waiting time
Using Little’s law:
BW) = E(Lg)+ E(L1) ;L E(L2) + E(Ls3) . 23
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