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Abstract — The paper discusses the problem of secure data ag-
gregation in wireless sensor networks (WSNs) — a procedure that
is of critical importance for reducing energy consumption, min-
imizing transmission overhead, and thus prolonging network
lifetime. Due to the limited computational and energy resources
of WSN nodes, traditional aggregation methods often fail to
perform effectively in dynamic heterogeneous environments.
With such a context taken into consideration, this study empha-
sizes the potential of artificial intelligence techniques, such as
neural networks, genetic algorithms, and fuzzy logic, to enable
adaptive aggregation approaches tailored to environmental and
network-specific parameters. Furthermore, the integration of
fuzzy logic, genetic algorithms, and artificial neural networks
into a hybrid system leverages the strengths of each approach,
resulting in enhanced adaptability and accuracy of the aggre-
gation process. As part of the investigation, a fuzzy inference
system (FIS) model was developed that incorporates attributes
such as energy, current load, distance to the base station, and
trust level. The model was implemented in Matlab using the
Fuzzy Logic Designer toolbox. To further improve system perfor-
mance, a genetic algorithm was applied to optimize membership
functions. In the final phase, the model was transformed into
an adaptive neurofuzzy inference system (ANFIS) which was
trained using simulated data within Matlab. The simulation re-
sults demonstrate that the proposed hybrid approach ensures
flexible, robust and energy-efficient control of the data aggrega-
tion process under dynamically changing conditions in which
WSNs operate.

Keywords — artificial intelligence, data aggregation, fuzzy logic,
security, wireless sensor networks

1. Introduction

Wireless sensor networks (WSNs) play an important role in
a wide range of applications, including industrial manufactur-
ing, smart cities, automotive, healthcare and environmental
monitoring [1]. In these environments, autonomous sensor
nodes are distributed to monitor various conditions. The sen-
sors gather data and transmit it to a central node for processing
and further analysis.

Scalability, self-organization, and adaptability are among
the characteristics of WSNs that make them effective tools
for processing data in real-time, particularly in potentially
hazardous or hard-to-reach situations. Data aggregation and
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routing are two essential processes in WSNs that contribute
to improving energy efficiency, extending network lifetime,
and minimizing communication overhead [2].

Data aggregation refers to the process of collecting useful
data. In WSNs, appropriate data aggregation procedures are
required to preserve limited resources. The primary objective
of aggregation algorithms is to collect data in a manner that
optimizes energy efficiency, thereby extending the network’s
lifespan.

As WSNs are characterized by restricted computational capa-
bilities, limited memory, and finite battery capacity, all this
complicates the development process. Moreover, in some cas-
es, this may result in applications that are tightly integrated
with network protocols [3]. Furthermore, data aggregation is
employed to address overlapping in data routing. When da-
ta from various sensor nodes converge at the same node on
their return to the sink, they are aggregated as if they pertain
to the same data.

In general, data aggregation methods relied upon in WSNs can
be classified into four categories: cluster-based, tree-based,
in-network, and centralized data aggregation [4].

In the cluster-based approach, the network is segmented into
clusters. Each cluster is made up of a group of sensor nodes,
with one node designated as the cluster head. The cluster head
is responsible for data aggregation, where the collected data
is combined and subsequently sent to the sink.

These clusters operate in two distinct phases: during the initial
(setup) phase the cluster selection process occurs and clusters
are established. The steady phase follows, in which the cluster
is functioning. Throughout the steady phase, all nodes within
the cluster, including the cluster head, continuously sense
their environment for specific data in a regular way.

All member nodes transmit the detected data to the cluster
head which aggregates the information and forwards it to
the sink. This strategy minimizes bandwidth usage by de-
creasing the number of packets that need to be transmitted.
Furthermore, the data aggregation process relied upon in this
method not only reduces the number of packets sent direct-
ly to the sink, but also lowers energy consumption due to
the shorter transmission distances. However, it suffers from
a drawback, namely increased latency. Cluster-based data
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Fig. 1. Diagram presenting the general data aggregation algorithm.

aggregation techniques include LEACH, HEED, SEP, and
PAgloT.

In the tree-based approach, aggregation trees are established in
such a way that every data transmission requires the formation
of spanning trees. In this framework, the base station functions
as the root of the tree, whereas sensor nodes act as leaves.
Data are collected by the leaves and transmitted towards the
root with the parent nodes consolidating the data throughout
the networks.

In-network aggregation represents a comprehensive method
for collecting and processing data at intermediary nodes, in
addition to facilitating the routing of information through
multi-hop networks. Its primary objective is to minimize the
consumption of energy required to perform the process. This
method may either decrease the size of the data, leading to
a reduction in the amount of data that needs to be transmitted
subsequently, or maintain the width by combining all received
packets.

In the centralized approach, all sensors transmit the collected
data as data packets to a central node or base station via the
shortest available route. The function of the aggregator or
header node is to compile the data received from the other
nodes, after which the consolidated data are sent as a single
packet.

Figure 1 shows the general data aggregation algorithm through
different aggregation techniques [5]. The algorithm utilizes
sensor data from the sensor nodes and aggregates them using
several aggregation algorithms, including the centralized
approach, low energy adaptive clustering hierarchy (LEACH),
and tiny aggregation (TAG), among others. These aggregated
data are then transmitted to the sink node by selecting the
most efficient path.

However, various efficient aggregation protocols do not meet
the resource constraints. Moreover, numerous security threats
exist, including but not limited to snooping attacks, wormhole
attacks, black hole attacks, packet replication attacks, denial-
of-service (DoS) attacks, and distributed denial-of-service
(DDoS) attacks. In many cases, the process of optimizing per-
formance of WSNs concerns more than one of the metrics,
thus necessitating the application of multi-objective optimiza-
tion [6].
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2. Problem Definition

During the data aggregation process, several challenges must

be addressed. It is evident that it is difficult to overcome

all these challenges simultaneously. The most significant

challenges include the following [7]:

e Data redundancy. Sensor nodes often detect similar types
of data and even the same events, leading the sink node to
collect redundant information. This results in a waste of
time, energy, and other resources.

e Delay. In some cases, data from more distant nodes arrive
late at the sink or root node, causing the aggregation
process to commence later than intended. Additionally,
aggregations at intermediate levels can further increase the
delay.

e Accuracy. There are two primary types of accuracy-related
issues. Firstly, the aggregator function serves as an approxi-
mation mechanism. Therefore, some precision is inevitably
lost during the data forwarding process. Secondly, there
may be a compromised node that transmits false or in-
appropriate data to the aggregator node. The aggregator
node does not guarantee the correctness of these data and
proceeds to process them.

o Traffic load. In specific situations, the aggregator node may
become overloaded. This occurs when load balancing is not
effectively implemented or when clusters are of unequal
sizes.

o Aggregation freshness. Data from similar frames should
be aggregated, while the use of outdated stored data or
the aggregation of data from multiple frames across differ-
ent time periods should be avoided, as such an approach
compromises freshness.

e Security. As wireless sensor networks are often imple-
mented in hostile environments, security issues, particu-
larly involving data confidentiality and integrity, become
crucial.

Therefore, when a malicious node infiltrates the network,

ensuring the delivery of packets to the base station becomes

a challenge. Given the resource limitations inherent in WSNs,

it is essential to guarantee packet delivery while minimizing

energy consumption. Transmission of redundant data within
the network accelerates the depletion of energy in a node.

This leads to network partitioning which, in turn, results in

increased energy consumption and a consequent reduction in

the overall lifetime of the network.

Therefore, in conjunction with data aggregation, it is essential

to ensure the security of successful data transmission to the

base station through the efficient use of available resource
parameters.

To address a variety of challenges related to energy efficiency,

coverage maximization, and security provision in WSNss, ar-

tificial intelligence (AI) can be applied effectively in wireless

sensor networks by enabling smart decision making [8].

Al denotes the ability of a system to perform tasks that require

human-like intelligence, emulating human thought processes

or concepts. It is regarded a significant domain within com-
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puter science that aims to enhance machine intelligence. The
predominant techniques employed in Al include search algo-
rithms, learning methodologies, fuzzy systems, knowledge
representation, and reasoning processes [9].

Al finds application in addressing numerous intricate issues
across diverse fields such as security, finance, healthcare,
and transportation, leveraging its proficiency in managing
incomplete and noisy data, tackling nonlinear problems, and
demonstrating suitability for prediction and accelerated post-
training generalization. The different Al techniques used to
tackle WSN-related challenges comprise fuzzy logic, artificial
neural networks, evolutionary computation, nature-inspired
approaches, swarm intelligence, deep learning, reinforcement
learning, and hybrid models [10].

3. Literature Review

This section discusses various publications associated with
the application of Al used for data aggregation in WSNs.

Study [11] proposed a fuzzy-based secure data aggregation
protocol which improves the lifetime of the network, maxi-
mizes the packet delivery ratio, and minimizes the end-to-end
delay. Paper [12] introduces a fuzzy-based data aggregation
technique to ensure energy efficiency in wireless sensor net-
works. A similarity-aware data aggregation process using
a fuzzy c-means approach is discussed in [13].

Current secure data aggregation protocols represent a trade-
off between security and the shortest path. To address this
problem, the protocols mentioned in [15] are developed by
integrating the distributed k-means algorithm and the fuzzy c-
means algorithm. In work [15], a data aggregation algorithm
was constructed based on a self-organizing feature mapping
neural network.

In [16], a machine learning-based approach for an energy ef-
ficient data aggregation model in WSNs was described. The
security feature can also be incorporated into the proposed
model. Study [17] presents four algorithms for data aggre-
gation. Three of them are based on backpropagation neural
networks.

To mitigate energy consumption and ensure data aggregation
in WSNs, study [18] presents a cluster-based data aggregation
routing approach with a genetic search algorithm. This method
aims to reduce energy use. In [19], a novel hybrid LEACH
algorithm was introduced for data aggregation based on
a genetic algorithm to optimize WSN parameters, including
energy consumption.

As different Al-based techniques for data aggregation in
WSNs have their own pros and cons [20], a combination of
these approaches may be beneficial, as it leverages the com-
plementary strengths of the different models, thus overcoming
the limitations of individual methods.

Here, the authors propose using a hybrid approach for data
aggregation in wireless sensor networks that combines three
Al technologies: fuzzy logic, artificial neural networks, and
genetic algorithms. This integration allows one to account
for the uncertainty and incompleteness of the sensor data as
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Fig. 2. Diagram presenting the proposed FIS architecture.

Membership
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well as dynamic changes in the network and the surrounding
environment. The proposed approach ensures a high level of
adaptability and reliability while making data aggregation-
related decisions.

4. Methodology

In this section, a fuzzy inference system (FIS) intended for
data aggregation in WSNs will be developed. A common
FIS consists of four functional units: fuzzification, rule base,
decision making, and defuzzification (Fig. 2).

The fuzzification unit transforms crisp inputs into linguistic
variables. A rule base consists of a collection of fuzzy if-then
rules. The decision-making unit conducts inference based on
the fuzzy if-then rules. The defuzzification unit converts the
fuzzy results generated by the inference system into precise
outputs [21].

To develop an FIS, input in the form of linguistic variables
along with their corresponding terms must be established.
Then, the membership functions associated with these inputs
are to be defined. The inputs include all conceivable states of
the process being controlled, whereas the output represents
all potential control actions. Subsequently, a rule base must
be specified, consisting of a set of if-then fuzzy rules to
characterize the controlled states. Finally, to evaluate the
performance of the FIS, a simulation is performed.

The inputs of the (FIS) proposed in this study include the
following: energy level of the node, distance from the base
station or the sink node, load, and node trust level. Its output
variable is the aggregation priority of the node.

The energy level of a sensor node is the remaining battery
capacity which directly influences its suitability for perform-
ing energy-intensive tasks, such as data aggregation. Nodes
with higher energy levels are preferred to act as aggregators
to prolong the overall network lifetime. From a security per-
spective, maintaining a minimum energy threshold is critical,
as low-energy nodes are more vulnerable to exhaustion at-
tacks and may be less reliable in executing secure aggregation
protocols.

For the energy input variable F such linguistic terms as “low”
and “high” are applied. These may be regarded intuitive cate-
gories offering a general assessment and facilitating decision
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making. Thus, we obtain the following:
E — {ug"“(E), uy*"(E)} . 1)

The distance between a sensor node and the base station or the
sink node impacts energy consumption and transmission la-
tency. Therefore, nodes located closer to the sink are generally
better suited for aggregation due to reduced communication
costs and lower risk of packet loss. From a security standpoint,
longer distances may increase the exposure of transmitted
data to interception or manipulation, thereby necessitating
stronger encryption or trust mechanisms.

For the distance input variable D such linguistic terms as
“near” and “far” are applied as:

D — {up* (D), pi" (D)} . 2

The traffic load of a sensor node corresponds to the volume
of data packets it processes or forwards over a given time
interval, which significantly impacts its efficiency in data
aggregation operations. High traffic load can lead to increased
latency, buffer overflows, and reduced aggregation accuracy
due to packet collisions or losses. From a security point of
view, excessive traffic may signal potential threats, such as
flooding or spoofing attacks.

For the load input variable L such linguistic terms as “small”
and “large” are applied in the following way:

L— {pz""(L), (L)} - ©)

Node trust is a quantified reliability of a sensor node. High-
trust nodes are prioritized to serve as aggregators in order to
ensure that the fused data is accurate, timely, and free from
manipulation. From a security perspective, incorporating trust
evaluation helps mitigate the risks posed by compromised
or malicious nodes, leading to enhanced robustness of the
aggregation process.

For the trust input variable 7" such linguistic terms as “low”
and “high” are applied as follows:

T — {u*(T), uy®"(T)} . “

Aggregation priority can be regarded as a level of preference
assigned to a given sensor node when it comes to performing
data aggregation tasks within the wireless network. From
a security point of view, this priority should be determined
by evaluating factors such as node trustworthiness, energy
availability, and exposure to potential threats, ensuring that
only reliable and resilient nodes are selected.

Prioritizing secure nodes for aggregation reduces the likeli-
hood of data tampering, spoofing, or compromised fusion,
thus enhancing the overall integrity and confidentiality of
aggregated information. For the aggregation priority input
variable P, we propose to apply 8 linguistic terms: “no pri-
ority”, “very weak”, “weak”, “medium weak”, “medium”,

“medium strong”, 7, “very strong”. Thus, we obtain

strong’,
the following:

P — {up°(P), pp" (P), pp(P), uy (P),

©)
1y (P), '™ (P), wp(P), ™ (P)} -
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Fuzzification is the process of transforming crisp input values
into degrees of membership by mapping them onto predefined
fuzzy sets through membership functions. The trapezoid shape
has been selected for membership functions of input values
because they are quite simple to use, easy to comprehend,
and can help in smooth transitions between different phrases.
Thus, the membership functions for the inputs are defined as
follows:

For the energy input E, we have:

1 if E<04
08— FE
ow(E) ={ ——=_if0. <0.8, 6
Hiow (E) og o TO4<E<08 (6)
0 if E>038
0 if E<04
E—04
won(B) = { ——= <08, 7
Hnign(E) = § c=—— if 04 <E <08 @)
1 if E>08

For the distance input D, we have:

1 if D <0.3
0.7—D
near(D) = s A5 < s 8
I (D) 5703 if 0.3 < D <0.7 8)
0 if D> 0.7
0 if D<0.3
D —-0.3
ar(D) = — if D < ) 9
par(D) 07 o3 03< 0.7 )
1 if D > 0.7
For the load input L, we have:
1 if L <02
0.6 —L
smalt(L) = Y < ) 10
Msmatt (L) 0602 if0.2<L <06 (10)
0 if L>06
0 if L <02
L—-0.2
(L) =4 ——"2 if02<L<06, 11
tar(L) GG og 02<L<06 (11)
1 if L>0.6
For the trust input 7', we have:
1 if T<0.25
0.75 —-1T
ow(T) =4 —"—~_ jf0. <0.75, 12
fiow (T) 075 ggs 1025<T <075 (12)
0 if T >0.75
0 if T <0.25
T —0.25
in(T) = —— =2 jf 0. <0.75, 1
Erigh(T) D75 — 0.0 if 0.25 < T <0.75 (13)
1 if T>0.75

The thresholds used to define the membership functions
were analytically selected by the authors. To enhance their
accuracy and validity, they will be corrected by means of
genetic optimization and neural training.

In this investigation, we propose to utilize a Sugeno-type fuzzy
inference system, as it offers computational efficiency and ease
of mathematical analysis due to its use of “crisp” singleton
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outputs and linear functions, making it highly suitable for
real-time and embedded applications. Unlike Mamdani FIS,
in which a defuzzification phase involves complex centroid
calculations, Sugeno FIS produces output through weighted
averages, thus resulting in faster and more precise decision-
making. Compared to Tsukamoto FIS, which restricts output
membership functions to be monotonic and performs rule-by-
rule defuzzification, Sugeno FIS provides greater flexibility.
Therefore, the P membership functions of the aggregation
priority output are singletons. They are defined as:

P) 1 ifP=0 (14)
MUNo - )
0 otherwise

(P) = 1 if P=0.14 (15)
frone 0 otherwise
(P) = 1 if P=0.29 (16)
fo B 0 otherwise
1 if P=043
mw(P) = (17)
prn (P) {0 otherwise
(P) = 1 if P=0.57 (18)
fom 0 otherwise
1 if P=0.71
,U/sm(P) = . > (19)
0 otherwise
(P) = 1 if P=0.86 20)
He 0 otherwise
1 if P=0.1
MUS(P) = . 5 (21
0 otherwise

The inference engine in a fuzzy inference system applies
logical reasoning to map fuzzified inputs to corresponding
fuzzy outputs based on a predefined set of fuzzy rules. It
determines the degree to which each rule is activated, and
combines their outcomes to generate an aggregated response,
thus representing the system’s behavior.

In general, a fuzzy rule for our FIS is as follows:
R :if E=Apand D= Ap and L = L}

‘ . 22)
and T = A% and then P = 2" .

The firing strength of a rule is:

w' = (B) - fip” (D) - py* (L) - pp ™ (T) . (23)
The suggested FIS for data aggregation operates according
to an 8-rule base shown in Tab. 1. These rules were deduced
after the preliminary calculation performed by the authors.
To enhance their accuracy and validity, they will be corrected
by neural training. If needed, they can also be corrected while
applying the genetic optimization.
Defuzzification is the process of converting the fuzzy reason-
ing result into a crisp numerical output. Sugeno FIS performs
defuzzification through a weighted average of singleton out-
puts, where weights correspond to the firing strengths of the
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rules. For this case, we get:

p=2=___ (24)

However, FISs often lack the adaptive learning capability
and they may not be able to adjust to new circumstances, as
the rules and membership functions are quite rigid. Overall,
this makes FISs less efficient in the dynamically changing
environment of modern wireless heterogeneous networks.
That is why, in many technical applications, fuzzy inference
systems are being integrated with a neural network or genetic
algorithms. Inspired by biological neurons, neural networks
are computer models that can recognize patterns and relations
in real-world data [22].

In this investigation, the authors propose to utilize an adaptive
neurofuzzy inference system (ANFIS). ANFIS is classified
as a hybrid artificial intelligent system whose characteristics
place it between neural network and FIS. Therefore, it com-
bines the benefits of fuzzy logic and those of neural networks,
enabling it to learn and adapt its rules to increase accuracy
compared to conventional FIS [23].

ANFIS is a more appropriate technique for real-world issues
where data patterns are not always easily captured by classical
fuzzy rules, since it can handle, unlike regular FIS, compli-
cated and non-linear interactions between input and output
values. Mapping between the specified input values and the
intended output values is performed using ANFIS training.

Genetic algorithms are evolutionary optimization techniques
inspired by natural processes [24]. The combination of a ge-
netic algorithm with the FIS involves optimizing fuzzy rule
parameters and membership functions to improve system ef-
ficiency. This approach works especially well for complicated
issues, allowing the optimized FIS to attain greater accuracy.

The genetic algorithm systematically produces populations
of parameter sets, implements selection, crossover, and muta-
tion operations, and progresses towards optimal solutions. It
processes encoded parameters of the membership functions
and applied evolutionary operators to minimize an objective
function and to iteratively search for the optimal solution.
This iterative process persists until the convergence criterion

Tab. 1. Fuzzy rules.

e ol v [P |
1 L F s L VW
2 H F s L W
3 L F L L No
4 H N L L | Mw
5 L N L H M
6 H N s H VS
7 L F S H MS
8 H N L H S
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Type 1 S

P (8 MFs)
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T (2 MFs)

Fig. 3. Fuzzy inference system developed in Matlab.

is satisfied, at which point the most effective parameter set is
chosen for the ultimate implementation of the fuzzy inference
system.

The objective function is defined as:
1 N
~ 12
10) = > w0 -9 (25)
=1

where y; is an actual output from the FIS for the ¢-th training
sample, g; is a desired output for the ¢-th training sample,
N is a total number of training samples, and 6 is a vector of
membership function parameters.

5. Simulation

Matlab software can be utilized effectively to validate the
functionality of the developed FIS for data aggregation in
WSNs. In general, Matlab serves as a comprehensive platform
for the visualization and fine-tuning of membership func-
tions, rule bases, and output surfaces, thereby facilitating the
development of more accurate and reliable decision-making
systems. Simulation of FIS offers key advantages, includ-
ing rapid prototyping, systematic performance evaluation,
and streamlined experimentation. Furthermore, Matlab pro-
vides the integration of FIS with machine learning techniques
such as neural networks and with optimization toolboxes,
which enhance the adaptability and efficiency of fuzzy infer-
ence systems, enabling their refinement and deployment in
complex real-world scenarios.

The first step was to specify the membership functions for
the inputs and the output. Four inputs and one output vari-
ables were specified. Figure 3 illustrates the interface of the
suggested FIS for data aggregation. Here, the FIS editor out-
lines the main information about the designed fuzzy inference
system.

Then, the rule base was assigned. Next, we assigned the input
values and ran the simulation process to produce outputs to
check the operability of the developed FIS.

100

Fig. 4. Visualization of the control surface.

The control surface of an FIS provides a three-dimensional
visualization of the system’s output behavior based on two
selected input variables. In the model developed, the control
surface is defined with the z-axis representing the energy
level E, the y-axis representing the trust level of node 7, and
the z-axis representing the resulting aggregation priority P,
as shown in Fig. 4. This surface plot illustrates how variations
in energy and trust jointly influence the aggregation priority,
offering an intuitive understanding of the system’s decision-
making logic and enabling the evaluation of its responsiveness
to changes in critical node parameters.

In the first case, energy value E was 0.46, distance value D
was 0.36, load value L was 0.54, and the trust value equaled
0.15. According to Fig. 5, it yielded the aggregation priority
of the node equal to 0.215. This means that this sensor node
has a very low priority when it comes to choosing it as the
aggregation node.

In the second case, energy value E was 0.76, distance value D
was 0.22, load value L was 0.77, and the trust value equaled
0.62. According to Fig. 6, it yielded the aggregation priority

System: sec-aggreg

Input values | [0.46 0.36 0.54 0.15]

[ Jial] |
el ] ]
TN - |
I
I -
[ Jnel |
77777 ) w1
””” 1 [ Il ]

1

L]

i

S
S
S

Fig. 5. Simulation results for the first case.
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System: sec-aggreg

Input values | [0.76 0.22 0.77 0.62]
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Fig. 6. Simulation results for the second case.
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Fig. 7. FIS optimization results showing the training convergence
process.

of the node equal to 0.732. This means that this sensor node
has quite a high priority when it comes to being selected as
the aggregation node.

Next, in this investigation, we utilized a genetic algorithm
to optimize the parameters of the FIS developed in Matlab.
Overall, the optimization procedure seeks to improve FIS
performance by adjusting rule weights and membership func-
tions. As genetic algorithms can handle non-linear search
spaces, they are frequently employed as optimization tools.
Matlab provides an appropriate environment to combine fuzzy
logic systems with various optimization techniques. This is
expected to result in increased system stability and control
accuracy.

The optimization process involves the establishment of an
objective function that assesses the efficacy of a fuzzy in-
ference system according to particular criteria, such as error
minimization.
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Fig. 8. Structure of the developed ANFIS.

A standard genetic algorithm is employed to optimize the
parameters of the FIS. For our case, the optimization specifi-
cally targeted membership function parameters, while the rule
base structure remained unchanged to preserve expert-defined
logic. To perform genetic optimization, a test sample of input
and output parameters was utilized.

The genetic algorithm converged after 97 iterations, resulting
in a refined set of membership functions (Fig. 7). Here, the
convergence of the genetic algorithm indicates that the opti-
mization process has successfully reached a stable solution
where successive generations no longer produce significant
improvements and that the error between the FIS output and
the target output is minimized.

This implies that the parameters of the membership functions
have been effectively adjusted, thereby enhancing the accuracy
of the FIS. Therefore, the simulation result confirmed that
the genetic algorithm effectively tuned the parameters of the
membership functions.

To further enhance the system’s adaptability, the developed
FIS was converted into an adaptive neurofuzzy inference sys-
tem (ANFIS) using the ANFIS edit tool. This transformation
enabled the integration of neural network learning capabil-
ities with the interpretability of fuzzy logic, thus allowing
the system to automatically adjust its parameters based on
training data.

The structure of the generated ANFIS is shown in Fig. 8.
The ANFIS model was trained using the backpropagation
optimization method which adjusts the parameters of the
membership functions by minimizing the error between the
predicted and target outputs through gradient descent. Un-
like the hybrid method, this approach relies solely on back-
propagation to iteratively update both the premise and the
consequent parameters, based on the computed error signals.
Although computationally more intensive, this method of-
fers full control over the learning process and ensures that all
parameters are optimized in a unified framework driven by
error minimization.

The ANFIS was trained considering the data from the WSN-
DS dataset, specialized for intrusion detection in WSNs.
Training the ANFIS optimizes its parameters by iterative-
ly adjusting them to minimize the difference between the
predicted and target outputs. Two types of parameters are op-
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timized, i.e. the shape of the membership functions and linear
function coefficients in the fuzzy rules.

The training persisted for 300 epochs until the error reached
a relatively low level. Error assessment was conducted using
the root mean square error method. Figure 9 shows this
procedure, illustrating the decrease in RMSE in successive
epochs, thereby signifying the effective training of the ANFIS
model. Figure 10 presents the testing error represented by
asterisks and the training error indicated by dots.

A decrease in training error signifies a progressive improve-
ment in parameter adjustment. This decrease indicates that
the ANFIS has effectively learned from the training data,
resulting in optimized membership functions and rule param-
eters.

The simulation results support the relevance of the application
of the proposed hybrid optimized fuzzy inference system in
WSNs with security issues.

The combination of fuzzy logic with genetic algorithm op-
timization methods and neural network learning processes
emphasizes the significant potential of the proposed approach
for being applied in highly dynamic and resource-limited
wireless sensor network environments.
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Fig. 11. Structure of the wireless sensor network tested.
6. Comparative Analysis

To perform a comparative analysis of the proposed data
aggregation technique with a classic approach, a simulation
in Matlab was performed for the wireless sensor network.
The simulated WSN consists of 30 sensor nodes which are
distributed within a 100 m x 100 m area. A base station is
located in the monitored region at coordinates (50, 150). This
corresponds to a practical deployment scenario, since the
base station is located in a more accessible location for data
collection and processing. The simulated WSN is shown in
Fig. 11.

Here, each sensor node is characterized by four parameters:
residual energy, distance to the base station, traffic load,
and trust level. To model security threats, 20% of the nodes
were randomly designated as malicious with low trust values
of 0.1...0.3, representing potential threats such as packet
dropping or data manipulation.

This simulated topology served as a basis for comparing two
data aggregation approaches: the proposed intelligent secure
aggregation and a simple energy-based aggregation. The latter
is a base approach that selects aggregator nodes solely based
on their residual energy levels, ignoring other factors.

The simulation results shown in Fig. 12 demonstrate how the
intelligent secure aggregation method performs compared to
the simple energy-based aggregation approach.

Figure 12a refers to intelligent secure aggregation. The aggre-
gator nodes (red stars) are well-distributed, avoiding malicious
nodes (black circles). The color gradient shows the priori-
ty of the aggregation, with the selected nodes having high
scores. Figure 12b refers to the simple aggregation method.
Here, the aggregator nodes (green stars) may overlap with
malicious nodes. Color shows the energy levels only, and the
selection ignores such factors as trust and load levels.

Figure 13 illustrates the comparison of data aggregation meth-
ods in the form of bar graphs. Thus, the visualization of results
confirms that by avoiding malicious nodes and balancing the
load, the proposed intelligent scheme distributes aggregation
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tasks more evenly, reduces packet loss, and extends network
lifetime.

The simulation results demonstrate a significant advantage of
the intelligent approach. On average, the proposed method
selected 0.06 malicious aggregator nodes per run, leading to
a packet loss of 1%, while the simple method selected 1.80
malicious aggregators, causing approximately 36% of packets
to be lost. Furthermore, the intelligent approach exhibited
better energy efficiency, with an average residual energy of
0.71, compared to 0.66 in the simple aggregation scheme.

7. Conclusions

Data aggregation contributes to minimizing the volume of
message transmissions within a wireless sensor network,
thereby lowering overall energy consumption. To address this
challenge, the proposed system implements an Al approach for
selecting an optimal node based on its proximity to the sink,
its available resources, and its trust (security). The selection
of an energy-efficient node minimizes energy usage across
the wireless sensor network, thus contributing to an extended
network lifetime. The designated node is responsible for
collecting and aggregating data from all member nodes within
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the cluster. Since a malicious node cannot be chosen as data
aggregators, secure data aggregation is ensured in the WSN.

The fuzzy inference system developed in the Matlab envi-
ronment was designed to assess the suitability of a given
sensor node for participation in the data aggregation process
within a wireless sensor network. The FIS operates based on
a real-time evaluation of four key parameters: residual energy,
distance from the base station, node load, and trust level.

These parameters serve as input to the FIS, thus enabling both
adaptive and context-aware decision making under dynamic
conditions of a wireless network. To improve the accuracy
of the system, the membership functions of the FIS were
optimized using a genetic algorithm, while preserving the
original rule base. This evolutionary optimization approach
allowed for fine-tuning of the fuzzy model to better reflect
the non-linearities of WSN parameters.

Subsequently, the developed FIS was transformed into an
ANFIS which can learn from data and autonomously adjust
its parameters in response to changes in the network. The
ANFIS model was trained in Matlab using the backpropaga-
tion optimization method, which iteratively minimized the
output error by adjusting the parameters of the membership
functions through gradient descent. This learning capability
enhanced the responsiveness and robustness of the solution.

The authors claim that this study offer a contribution in the
form of the considered methodology for developing genetic
neuro-fuzzy inference systems which can be further utilized
for designing real hybrid intelligent solutions to be imple-
mented, for various purposes, in wireless sensor networks.

The authors admit, however, that this study lacks experimental
testing which will be the subject of continued investigations.

In addition, other network parameters can be taken into
account to enhance the potential of the developed FIS. In
future inquiries, the data aggregation mechanism used in
WSNs will be improved by implementing other Al techniques
as well.
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