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Abstract  This paper presents an adaptive QRD-M detection
algorithm designed to reduce the computational complexity of
MIMO systems while maintaining near-maximum likelihood
detection (near-MLD) performance. The proposed method intro-
duces a dynamic threshold mechanism based on a breadth-first
tree search, where pruning is guided by both symbol reliability
and interlayer interference derived from the upper-triangular
structure of the QR-decomposed channel matrix. The thresh-
old is further refined using a Babai estimate obtained from
Lenstra–Lenstra–Lovász (LLL) lattice reduction, allowing the
algorithm to adaptively adjust the candidate set at each detection
stage. The simulation results across 4 × 4 and 8 × 8 MIMO sys-
tems using 16-QAM and 64-QAM modulation schemes demon-
strate that the proposed Babai-guided interference-aware adap-
tive QRD-M (BIA-QRD-M) algorithm achieves near-MLD per-
formance. The proposed method achieves a reduction of up to
49% in the average number of branch metric computations at
high SNR and an approximately 29% reduction over the entire
0 – 25 dB SNR range, compared to conventional QRD-M in an
8 × 8 MIMO-OFDM system with 16-QAM modulation.

Keywords  LLL lattice reduction, MIMO-OFDM systems, QRD-
M detection

1. Introduction

Multiple input, multiple output (MIMO) systems are a key
technology of high-capacity wireless communication solu-
tions, offering substantial gains in spectral efficiency and link
reliability. However, the associated symbol detection task
becomes increasingly complex with high-order modulation
and large antenna configurations. While maximum likelihood
detection (MLD) [1] achieves optimal performance, it suf-
fers from exponential grooving computational complexity,
making it impractical for real-time implementations in most
scenarios.

By contrast, linear detectors offer low implementation com-
plexity but suffer from performance degradation under ill-
conditioned channels. Lattice reduction preprocessing can
partially mitigate this drawback [2]. To overcome this prob-
lem, a variety of suboptimal detection algorithms have been
developed to approximate MLD with reduced complexity.
Notable examples include sphere decoding (SD) [3], which
performs an efficient search within a hypersphere, and the

QRD-M algorithm [4], which limits the number of candidate
paths retained during detection.
These methods aim to strike a balance between detection
performance and computational feasibility, forming a basis
for ongoing research into adaptive and low-complexity MIMO
detection techniques.
Among these approaches, the QR decomposition with M al-
gorithm (QRD-M) has gained popularity due to its structured
tree search and consistent near-MLD performance. It first
applies QR decomposition to the channel matrix and then
selectsM most reliable candidates at each detection layer
based on the accumulated Euclidean distance. However, the
algorithm still incurs high and fixed complexity, particularly
when a largeM is needed to maintain accuracy under high
SNR or high-order modulation.
This paper addresses the performance-complexity trade-off
in QRD-M, i.e. maintains near MLD performance while
reducing the number of branch metric computations, using
a Babai-guided, interference-aware adaptive threshold that
scales with SNR.

2. Related Works

To address the computational burden of QRD-M, various
improvements have been proposed. In [5], bounding tech-
niques were applied to constrain the search region and reduce
average complexity without significant performance degra-
dation. In [6], an adaptive threshold was introduced in the
K-best sphere decoding, dynamically adjusting the candi-
date list according to channel conditions. Within the QRD-M
framework, path elimination is pruned. This approach of-
fers complexity savings that are inherently dependent on the
modulation method proposed in [7], where branches with ac-
cumulated Euclidean distances exceeding the minimum at
each layer are of order.
In [8], a Babai-based thresholding approach was proposed,
where the candidate set is adaptively expanded when initial
pruning yields too few surviving paths. This method achieves
lower average complexity in many scenarios by combining
aggressive pruning with selective recovery of candidates.
However, its dynamic expansion behavior can introduce vari-
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ability in computational load and requires careful threshold
tuning.
In [9], the set was restricted to a modulation-specific neigh-
borhood centered around a QR-based estimate. While this
approach effectively reduces complexity, it lacks adaptability
across different modulation formats and does not account for
inter-layer interference or symbol reliability. The radius of
the neighborhood is manually configured per modulation for-
mat, limiting the flexibility in heterogeneous or dynamically
varying scenarios.
These limitations highlight the need for a more general prun-
ing strategy that takes advantage of standard preprocessing,
avoids heuristic dependencies, and adapts reliably to vary-
ing MIMO-OFDM configurations. Such trade-offs described
across prior works motivate the development of a pruning
method that offers adaptively bounded complexity across
SNR regimes and system configurations, without reliance on
modulation-specific thresholds.
Despite these efforts, achieving near-MLD performance with
low complexity and without relying on modulation-specific
structures or heuristics remains an open challenge. This paper
proposes an adaptive pruning strategy based on interference-
aware thresholding, which dynamically adjusts the candidate
set using symbol reliability and channel structure, and does
so without relying on modulation-specific heuristics.
Complementary research investigates iterative detectors aid-
ed by lattice reduction [10] and model driven deep learning
detectors [11]. These approaches typically require soft infor-
mation exchange or offline training, whereas the present study
advances the hard decision QRD-M family with a training-
free, rule-based threshold that directly reduces branch metric
(SED) counts.
Here, a Babai-guided, interference-aware adaptive threshold
with SNR dependent scaling is introduced for QRD-M to
adjust the survivor set per layer without training or soft output.
The algorithm integrates the deviation from the Babai point
with a normalized interlayer interference term derived from
the upper triangular matrix, thereby stabilizing pruning across
SNR regimes and channel conditions. The resulting detector
reduces branch metric (SED) counts while preserving near
MLD performance, and is validated on 4 × 4 and 8 × 8 MIMO-
OFDM with 16-QAM and 64-QAM under flat and frequency
selective channels.

3. System Description

A spatial multiplexing multiple input multiple output (MIMO)
system is modeled withNT transmit antennas andNR receive
antennas, under the assumption thatNR ­ NT . The received
signal vector y ∈ CNR is given by [12]:

y = Hx+ n , (1)

whereH ∈ CNR×NT denotes the complex-valued flat fading
channel matrix, the transmitted symbol vector x ∈ SNT is
drawn from a constellation set S, such as QAM or PAM, and

n ∼ CN (0, σ2INR) is additive white Gaussian noise with
variance σ2.
To enable efficient detection, QR decomposition is applied to
channel matrixH, yielding the following:

H = QR , (2)

whereQ ∈ CNR×NT is a unitary matrix (i.e.QHQ = INT )
andR ∈ CNT×NT is an upper-triangular matrix.
Multiplying both sides of Eq. (1) byQH results in an upper-
triangular form:

ŷ = QHy = Rx+ n̂ . (3)

Here, ŷ ∈ CNR is the transformed received vector and
n̂ = QHn retains the same statistical properties due to
the unitary nature ofQ.
Based on the triangular system model, the goal of MIMO de-
tection is to estimate the vector of the transmitted symbol vec-
tor x ∈ SNT from the transformed observation ŷ = QHy.
This is achieved by finding the vector that minimizes the dis-
crepancy between the received signal and its reconstruction
through the channel. Mathematically, the detection task is
formulated as an integer least squares (ILS) problem given
by:

x̂ = arg min
x∈SNT

∥ŷ −Rx∥2 , (4)

where R is the upper-triangular matrix obtained from QR
decomposition. Solution x̂ represents the closest point in
the lattice generated byR to observation ŷ, under the con-
straint that the components of x are drawn from a discrete
modulation set S.
Solving this problem exactly yields the maximum likelihood
(ML) estimate, but its computational complexity grows ex-
ponentially with NT and the constellation size. Therefore,
suboptimal but efficient detection algorithms such as SD and
QRD-M are typically used to approximate the ML solution.

3.1. QRD-M Detection

QRD-M is a breadth-first tree search algorithm designed to
approximate the solution of the integer least squares (ILS)
problem defined in Eq. (4), based on the representation of the
triangular system in Eq. (3). The detection objective is to find
that the transmitted vector x ∈ SNT minimizes the squared
Euclidean distance between the transformed received signal
ŷ and its reconstruction via the upper-triangular matrixR.
The squared Euclidean distance (SED) is given by:

SED = ∥ŷ −Rx∥2 . (5)

BecauseR is upper-triangular, each component of the residual
depends only on x1, . . . ,xNT . Hence Eq. (5) can be written
as:

∥ŷ −Rx∥2 =
NT∑
i=1

∥∥∥∥ŷi − NT∑
j=i

Rijxj

∥∥∥∥2 , (6)

whereRij denotes the element in the i-th row and j-th column
of matrixR, ŷi is the i-th received signal after nulling and
xj is the j-th transmit signal.
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This layer-wise expansion reveals the interference structure
embedded in each received component ŷi. Specifically, the

term
NT∑
j=i
Rij xj represents inter-layer interference from sym-

bols xj not yet decided in the detection process. As detection
progresses from stage i = NT (root node) to stage i = 1
(first layer), the interference accumulates and becomes more
significant, particularly in ill-conditioned channels.
The conventional QRD-M algorithm mitigates this by main-
taining a fixed numberM of candidate paths at each stage,
selecting the highestM symbol extensions with the smallest
partial Euclidean distance. Although conventional QRD-M
provides a computationally efficient approximation to maxi-
mum likelihood detection, its fixed candidate size does not
respond to variations in interference or noise conditions. This
limitation motivates the development of an adaptive approach.

3.2. Proposed Method

The proposed Babai-guided interference-aware adaptive
QRD-M (BIA-QRD-M) algorithm enhances the convention-
al QRD-M by adaptively pruning symbol candidates at each
detection layer based on the local structure of the received
signal. Unlike fixed m QRD-M, which retains a constant num-
ber of candidates regardless of channel or noise conditions,
BIA-QRD-M dynamically adjusts the pruning threshold us-
ing a combination of Babai point deviation and a normalized
interference plus noise term, both computed from the QR
decomposition of the LLL-reduced basis channel matrix.
This integration of lattice reduction enhances orthogonality
and improves the reliability of the Babai estimate used for
adaptive pruning.
The QRD-M algorithm improves detection accuracy over
linear detectors by exploring multiple symbol candidates at
each detection layer. However, the fixed-M QRD-M expands
a predetermined number of candidates regardless of signal
quality or interference level, resulting in either excessive
complexity or insufficient accuracy.
To address this, an adaptive pruning strategy is proposed
that dynamically adjusts the number of candidates in each
layer based on symbol reliability and the magnitude. At each
detection layer i, the pruning threshold ηi determines the
allowable deviation from the Babai estimate, taking into
account both symbol reliability and the impact of interlayer
interference.
The threshold at layer i is defined as:

ηi =

γ · |b̂i − ỹi|+ δ ·
( NT∑
j=i+1

∣∣R̃i,j∣∣∣∣R̃i,i∣∣
)

1 + α · SNRlinear
, (7)

where:
• Q̃ and R̃ are LLL-reduced basis obtained from the

complex-valued channel matrixH, while R̃i,j are entries
of the upper-triangular matrix R̃,

• b̂i is the Babai estimate at layer i, calculated from the ZF
solution x̂ZF = R̃−1b̂i, followed by nearest neighbour
rounding,
• ỹi = [Q̃Hy]i is the i-th component of the transformed

received vector,
• γ > 0 and δ > 0 are user-defined parameters,
• α ­ 0 is a scaling parameter that adjusts the overall pruning

aggressiveness with respect to SNR, ensuring that the
threshold becomes tighter at high SNR and looser at low
SNR,

• SNRlinear = 10
SNRdB
10 converts the SNR value from deci-

bels to a linear scale.
For all simulations, α = 0.5 is used for a flat-fading channel,
while α = 0.02 is applied to frequency-selective fading chan-
nels. Parameters γ and δ are fixed at 1.5 and 2.0, respectively,
in all scenarios.

In contrast to fixed thresholds based on Babai or neighbor-
hood margins, the proposed scheme determines the pruning
level from the deviation to the Babai point, together with
a normalized measure of interlayer interference computed
from the upper-triangular factor of the QR decomposition,
with explicit SNR dependent scaling. This rule-based, lay-
er adaptive mechanism reduces branch metric (SED) counts
while maintaining near-MLD candidates.

This formulation incorporates three key observations:

1. Symbol reliability. The term |b̂i − ỹi| quantifies the
deviation between the Babai estimate and the transformed
received symbol in the LLL-reduced domain. A smaller
value indicates that the Babai estimate closely aligns with the
underlying received symbol, suggesting high confidence in
rounding decision and allowing for tighter pruning.

2. Normalized interference term. The summation
NT∑
j=i+1

∣∣R̃i,j∣∣ captures the cumulative effect of undecided

symbols from lower layers. Dividing this by the diagonal
term
∣∣R̃i,i∣∣ normalizes the interference with respect to the

signal strength at the current layer. A higher normalized val-
ue implies stronger residual interference, prompting looser
pruning to maintain detection robustness.

3. SNR-dependent scaling. The denominator term 1 + α ·
SNRlinear introduces a global control mechanism that tightens
the threshold as the signal-to-noise ratio increases. At high
SNR, where symbol estimates become more reliable, the
threshold becomes smaller, enabling more aggressive pruning.
At low SNR, the threshold is relaxed, ensuring robustness
under noise-dominant conditions.

Together, these three components allow the threshold to dy-
namically adapt based on both local layer conditions (symbol
confidence and interference) and global channel reliability
(SNR). This adaptive mechanism balances detection perfor-
mance and computational complexity more effectively than
fixed-M approaches.

Parameters γ, δ, and α serve as tuning knobs operating in the
following manner:
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• Increasing γ makes the pruning more sensitive to the Babai
point error, emphasizing symbol reliability,
• Increasing δ gives more weight to normalized interference,

relaxing the threshold in high interference layers,
• Increasing α intensifies the influence of SNR, imposing

a tighter threshold as channel conditions improve.
This design ensures that a larger number of candidates is eval-
uated only when necessary, achieving near-optimal detection
performance while significantly reducing average complexity
across a wide range of SNR and channel conditions.
The detection procedure is as follows:
Initialization. The detection process begins by applying the
QR decomposition to the channel matrix and transforming
the received vector accordingly.
Candidate evaluation and metric computation. Starting
from theNT -th layer, all constellation symbols are considered
as candidates. For each candidate, the squared Euclidean dis-
tance (branch metric) is computed relative to the transformed
received signal and the upper-triangular matrix.
Adaptive thresholding and pruning. Once the branch met-
rics are computed, a dynamic threshold ηi is calculated at
each layer to eliminate the unlikely candidates. The proposed
threshold formulation incorporates three components: the
mismatch between the Babai point and the transformed re-
ceived symbol, a normalized interference term derived from
the structure of the upper triangular matrix, and an SNR-
dependent denominator that adaptively tightens the threshold
magnitude under high SNR conditions. Complex LLL reduc-
tion is applied locally within the threshold computation to
improve pruning reliability. Symbol candidates with branch
metrics exceeding ηi are pruned. This process is repeated
from layer NT down to layer 1.
Path selection. After pruning is applied to layer NT down
to layer 1, each surviving path corresponds to a complete
symbol vector. Among these, the candidate with the lowest
branch metric in layer 1 is selected as the final estimate, and
the corresponding symbol vector is reconstructed by tracking
the selected path.
The pseudocode presented as Algorithm 1 describes the
detection procedure with adaptive pruning applied at each
layer. Branch metrics are computed for candidate symbols
and compared against a dynamic threshold which has been
derived from the Babai point, the upper triangular matrix,
and the SNR. This selective pruning reduces computational
complexity by eliminating unlikely candidates early in the
search.
The proposed algorithm dynamically adjusts the number of
candidates at each detection layer based on a symbol-wise re-
liability metric and an interference-sensitive threshold. The
threshold formulation incorporates SNR normalization, en-
abling the algorithm to prune the candidate paths more ag-
gressively when the symbol estimate is deemed highly reliable
and to retain more paths when uncertainty is greater. This
adaptive mechanism achieves a favorable balance between
detection performance and computational complexity.

3.3. Complexity Analysis

Computational complexity in MIMO detection algorithms
can be evaluated using different metrics, such as execution
time (latency) or analytical expressions like Big-O notation.
In this work, complexity is quantified in terms of the num-
ber of SED computations, which directly reflects the effort
required in evaluating candidates during detection. This met-
ric provides a practical measure of computational load and
allows meaningful comparison between different detection
schemes from a simulation-based perspective.
In this work, complexity is reported as the number of SED
evaluations. Each SED evaluation represents a metric com-
putation triggered by the expansion of the candidate and
reflects the actual search workload. Because it is indepen-
dent of the computing platform and memory configuration,
the SED count provides a consistent indicator of computa-
tional demand and is therefore more reliable than runtime
measurements, which can vary with simulation environment
and system resources.
In ML and near-ML detections, the primary contributor to
computational complexity is the repeated evaluation of SEDs
derived from the ILS equation. The complexity of the pro-
posed method is expressed in terms of total SED calculations
and compared with conventional QRD-M detection, forming
a basis for the subsequent performance–complexity trade-off
analysis.

4. Results and Discussion
This section presents the symbol error rate (SER) performance
and computational complexity of the proposed adaptive QRD-
M detection method. Simulation results are provided to eval-
uate the method under various MIMO configurations and
modulation schemes. Performance benchmarking includes
sphere decoding (SD) for SER only, while both performance
and complexity are compared against conventional QRD-M
to isolate the effect of the proposed adaptive threshold.
Particular attention is given to the impact of the adaptive
threshold on pruning behavior and its influence on perfor-
mance across different SNR values. Table 1 lists the core
simulation parameters used in the performance evaluation
and complexity analysis.
Figure 1 illustrates SER performance of conventional QRD-
M detection compared to SD in a 4 × 4 MIMO system with
8-PAM modulation. The SD curve, adapted from [13], rep-
resents near-ML performance. With increasingM , QRD-M
approaches SD. At maximum list sizeM = 8, QRD-M is
equivalent to SD (near-ML) reference. This demonstrates
that a sufficiently largeM enables QRD-M to approximate
ML accuracy. In contrast, lower values (e.g.M = 4) show
noticeable performance degradation at higher SNRs. This
comparison validates the use of SD as a reference to assess
the effectiveness of suboptimal detection algorithms.
Figure 2 presents SER performance of the proposed BIA-
QRD-M method compared to conventional QRD-M with
fixedM values of 8, 12, and 16 in a 4 × 4 MIMO system using
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Algorithm 1 Pseudocode for the proposed BIA-QRD-M
Input: H, y, PAMtable,Minit,Mmin, γ, δ, α
Output: estimated symbol vector x̂

1: [Q,R] = QR(H) ▷ QR decomposition for detection
2: ŷ = QHy ▷ Transformed received vector for metric computation
3: [Q̃, R̃, T ] = LLL(H) ▷ Complex LLL for threshold computation
4: ỹ = Q̃Hy ▷ Transformed received vector for threshold computation

Step 1: Root layer (layer NT )
5: for each symbol x in the PAM table do
6: Initialize path with symbol x at layer NT
7: di = |ŷNT −RNT ,NT x|

2
▷ Compute branch metric

8: b̂ = round
(
ỹNT
R̃NT ,NT

)
▷ Babai estimate

9: interference = 0

10: ηi =
γ |b̂−ỹNT |+δ interference

1+αSNRlinear
▷ Threshold

11: if di ¬ ηi then
12: Add candidate to surviving paths
13: end if
14: if length(surviving paths) < Mmin then
15: M =Mmin
16: elseM = length(surviving paths)
17: end if
18: Store the topM surviving candidates for extension at the next layer
19: end for

Step 2: Remaining layers (from NT − 1 to 1)
20: for layer = NT − 1 down to 1 do
21: for each extended candidate (x ∈ PAM table) from layer +1 do

22: contribution_from_lower_layers =
NT∑

j=layer+1
Rlayer,j x̂j

23: di = | ŷlayer −Rlayer,layerxlayer − contribution_from_lower_layers |2

24: babai_term =
NT∑

j=layer+1
R̃layer,j x̂j

25: b̂ = round
(
ỹlayer−babai_term
R̃layer,layer

)

26: interference =

NT∑
j=layer+1

∣∣∣R̃layer,j

∣∣∣
|R̃layer,layer|

27: ηi =
γ |b̂−ỹlayer|+δ interference

1+αSNRlinear
▷ Threshold

28: if di ¬ ηi then
29: Add candidate to surviving paths
30: if length(surviving paths) < Mmin then
31: M =Mmin
32: else
33: M = length(surviving paths)
34: end if
35: end if
36: end for
37: Store the topM surviving candidates for extension at the next layer
38: end for

Step 3: Final decision
39: At layer 1, select the candidate with the minimum branch metric
40: Reconstruct the full symbol vector x̂ from the selected path
41: Return x̂
End
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Tab. 1. Simulation parameters.

Parameter Value

No. of subcarries
(FFT size) 64

OFDM symbols
per frame

14, used only for Monte Carlo averaging,
not per-symbol detection

Channel model

Rayleigh flat-fading (1 tap i.i.d.) and
frequency-selective (5 taps, Rayleigh
fading with exponential power-delay

profile)
Number of

channel taps 5

Modulation
scheme 16-QAM, 64-QAM

MIMO system 4 × 4, 8 × 8
Detection
methods

Conventional QRD-M,
proposed BIA-QRD-M
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Fig. 1. Comparison of QRD-M detection withM = 4, 6, and 8, and
SD in a 4 × 4 MIMO system using 8-PAM modulation.

16-QAM modulation. A largerM in QRD-M detection gen-
erally improves accuracy by retaining more candidate paths.
In this 16-QAM scenario, the proposed method achieves
SER performance that closely matches that of conventional
QRD-M withM = 12. This demonstrates that the proposed
approach achieves near-optimal detection performance while
significantly reducing computational complexity, particularly
in the medium-to-high SNR regime.
Figure 3 illustrates SER versus SNR for various MIMO con-
figurations and modulation schemes of the proposed BIA-
QRD-M system. As shown in Fig. 3, the 4 × 4 MIMO sys-
tem employing 64-QAM achieves superior SER performance
compared to the 4 × 4 MIMO system with 16-QAM, high-
lighting the advantage of higher-order modulation in terms of
detection accuracy.
However, this improvement comes at the expense of increased
computational complexity (see subsequent results). Further-
more, comparing 16-QAM, the 8 × 8 MIMO demonstrates
enhanced SER performance due to the increased spatial di-
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Fig. 2. SER of conventional QRD-M detection with M = 8, 12,
and 16, versus the proposed method in a 4 × 4 MIMO system using
16-QAM modulation.
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Fig. 3. SER performance of the proposed BIA-QRD-M detection
method for 4 × 4 and 8 × 8 MIMO-OFDM systems using 16-QAM
and 64-QAM modulation schemes over a flat-fading channel.
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Fig. 4. SER performance of the proposed BIA-QRD-M detection
method for 4 × 4 and 8 × 8 MIMO-OFDM systems using 16-QAM
modulation over a frequency-selective fading channel.

versity, although with a significantly higher computational
cost.
Figure 4 shows SER performance of the proposed BIA-QAD-
M detection method for 4 × 4 and 8 × 8 MIMO-OFDM sys-
tems over frequency-selective Rayleigh fading channels. In
both configurations, SER decreases consistently with increas-
ing SNR, showing that the proposed method maintains reliable
detection accuracy across a wide SNR range.
Following the analysis of the symbol error rate performance,
the subsequent focus is on computational complexity. The
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Fig. 5. Average number of branch-metric computations per detec-
tion versus SNR for the proposed BIA-QRD-M algorithm in 4 × 4
and 8 × 8 MIMO-OFDM systems using 16-QAM and 64-QAM
modulation schemes over a flat-fading channel.
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Fig. 6. Average number of branch-metric computations per detection
versus SNR for the proposed BIA-QRD-M algorithm in a 4 × 4
and 8 × 8 MIMO-OFDM systems using 16-QAM modulation over
a frequency-selective fading channel.

computational cost of the proposed BIA-QRD-M detection
algorithm is evaluated under various modulation schemes
and MIMO configurations, measured in terms of the average
number of branch-metric computations.
The average number of branch metric computations as a func-
tion of SNR for the proposed method in 4 × 4 and 8 × 8 MIMO
systems using 16-QAM and 64-QAM modulation schemes is
presented in Fig. 5. As expected, the computational complex-
ity increases with modulation order. The results confirm that
both higher-order modulation and increased antenna count
lead to higher computational demands, which is consistent
with theoretical expectations.
Figure 6 presents a complexity analysis of the proposed BIA-
QRD-M detection method for 4 × 4 and 8 × 8 MIMO-OFDM
systems under frequency-selective fading conditions. The re-
sults show that the proposed method achieves a substantial
reduction in the average number of branch metric compu-
tations compared with the conventional QRD-M approach,
particularly in the high-SNR region. This reduction is more
pronounced for the frequency selective channel due to the
enhanced pruning effectiveness at higher SNR, confirming
the method’s ability to maintain detection accuracy while
significantly lowering computational requirements.
A comparison of the average number of branch-metric com-
putations for the proposed method with conventional QRD-M
detection using fixed m values of 8, 12, and 16 in a 4 × 4
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Fig. 7. Comparison of the average number of branch metric compu-
tations of conventional QRD-M detection withM = 8, 12, 16, and
the proposed method in a 4 × 4 MIMO system with 16-QAM.

MIMO system with 16-QAM modulation is illustrated in Fig.
7. Although conventional QRD-M exhibits constant complex-
ity regardless of SNR, the proposed method demonstrates
a clear SNR-dependent reduction in computational cost. At
high SNR levels, the proposed method approaches the com-
plexity of QRD-M with M = 8, the lowest fixed setting,
while at low SNR, it maintains a complexity level below that
of QRD-M with M = 12. This adaptive behavior enables
significant complexity savings while preserving detection
performance, making it especially attractive for scenarios
with dynamic channel conditions.
To summarize the performance–complexity trade-off, see
Tab. 2 presenting a comparative analysis of the proposed and
conventional QRD-M methods under various MIMO config-
urations and modulation schemes at low (10 dB), moderate
(15 dB), and high (25 dB) SNR levels. Under 16-QAM mod-
ulation, the proposed method consistently outperforms the
conventional QRD-M in both 4 × 4 and 8 × 8 MIMO settings.
At 10 dB, the 4 × 4 system achieves a lower SER (0.1214 vs.
0.1341) while reducing the branch metric count by more than
20% (424 vs. 541). This efficiency becomes more prominent
at 15 dB and 25 dB, where the proposed algorithm cuts com-
plexity by nearly 50% in the 4 × 4 case and by more than 35%
in the 8 × 8 case, without compromising SER performance.
For 64-QAM modulation in the 4 × 4 configuration, the trade-
off becomes even more evident. At 10 dB, the proposed
method significantly reduces SER (0.1250 vs. 0.5697) while
requiring only 8.5% of the metric computations (1068 vs.
12 508), indicating substantial gains in both accuracy and effi-
ciency. These benefits are maintained at higher SNR levels. At
15 dB, the SER drops below 10–3 with only 818 metric eval-
uations, i.e. far below the conventional method’s complexity
threshold.
Across all scenarios shown in Tab. 2, the proposed
interference-sensitive pruning strategy enables scalable com-
plexity control while maintaining high detection accuracy. The
improvements are particularly pronounced under high-order
modulation and larger MIMO sizes, confirming effectiveness
in the performance-complexity trade-off for MIMO-OFDM
systems.
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Tab. 2. Performance–complexity trade-off of conventional and proposed QRD-M detection methods under various MIMO configurations and
modulation schemes.

SNR [dB] MIMO Modulation Complexity
(QRD-M)

Complexity
(proposed) SER (QRD-M) SER (proposed)

10 4 × 4 16-QAM 784 518 0.222 0.1315
15 4 × 4 16-QAM 784 425 0.07625 8.398 × 10–3

25 4 × 4 16-QAM 784 400 2.75 × 10–3 1.116 × 10–4

10 4 × 4 64-QAM 12 352 1068 0.5697 0.1250
15 4 × 4 64-QAM 12 352 818 0.3725 0.0079
25 4 × 4 64-QAM 12 352 784 0.0295 0
10 8 × 8 16-QAM 1808 1420 0.1003 0.01965
15 8 × 8 16-QAM 1808 1163 0.0115 0.0013
25 8 × 8 16-QAM 1808 923 8.75 × 10–4 5.859 × 10–5

5. Conclusions

This paper presents an adaptive QRD-M detection algorithm
enhanced by an interference-aware pruning strategy, designed
for scalable and efficient MIMO-OFDM systems. By dy-
namically adjusting the candidate set based on symbol re-
liability and inter-layer interference, the proposed method
reduces computational complexity while maintaining near-
MLD performance. Unlike previous approaches that rely on
fixed m configurations, modulation-specific heuristics, or
noise-dependent tuning, the proposed scheme adapts to the
detection structure itself, ensuring robustness across a wide
range of MIMO sizes and modulation formats. The simulation
results confirmed that the proposed method improves both
detection accuracy and computational efficiency, especially
in large-scale and high-order MIMO settings.
These results affirm the practicality for modern wireless
systems that require high spectral efficiency under constrained
computational resources. This paper reports evaluations for
4 × 4 and 8 × 8 configurations, reflecting the scope commonly
adopted in non-linear MIMO detection studies.
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