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Abstract  Acts of violence may occur at any moment, even in
densely populated areas, making it important to monitor human
activities to ensure public safety. Although surveillance cameras
are capable of detecting the activity of people, around-the-clock
monitoring still requires human support. As such, an automat-
ed framework capable of detecting violence, issuing early alerts,
and facilitating quick reactions is required. However, automa-
tion of the entire process is challenging due to issues such as low
video resolution and blind spots. This study focuses on detecting
acts of violence using three video data sets (movies, hockey game
and crowd) by applying and comparing advanced ResNet ar-
chitectures (ResNet50V2, ResNet101V2, ResNet152V2) with the
use of the bidirectional gated recurrent unit (BiGRU) algorithm.
Spatial features of each video frame sequence are extracted using
these pre-trained deep transfer learning models and classified
by means of an optimized BiGRU model. The experimental re-
sults were then compared with those achieved by wavelet feature
extraction approaches and other classification models, including
CNN and LSTM. Such an analysis indicates that the combina-
tion of ResNet152V2 and BiGRU offers decent performance in
terms of higher accuracy, recall, precision, and F1 score across
the different datasets. Furthermore, the results indicate that
deeper ResNet models significantly improve overall performance
of the model in terms of violence detection scores, relative to
shallower ResNet models. ResNet152V2 was found to be the ulti-
mate model across the datasets when it comes to a high degree
of accuracy in detecting acts of violence.
Keywords  bidirectional gated recurrent unit, deep learning, deep
transfer learning, video processing, violence detection

1. Introduction

Violence is defined as deliberate exertion of physical force
intended to harm, dominate, or manipulate individuals or
groups. Actions of this type are considered to constitute
criminal conduct that transgresses legal boundaries, soci-
etal expectations, and moral principles followed by global
communities. The effects of violence are multifaceted, en-
compassing not only bodily injury, but also deep emotional
and psychological distress which can, in extreme situations,
lead to fatal outcomes.
Currently, the use of closed-circuit television (CCTV) is in-
creasing because the solution is capable of providing non-stop
surveillance – a task humans cannot accomplish. Cameras
record all the events from various angles. As a result, a large

amount of video data still requires a human to identify un-
welcome types of activity, including violence. If performed
manually, this video-monitoring process requires significant
amounts of time and effort. Therefore, it is necessary to em-
ploy an automatic detection system that will accelerate the
entire procedure. One of the challenges faced when perform-
ing automatic detection is low resolution of the video feed
generated by CCTV cameras [1] (resulting from poor lighting,
ambient conditions, distance, and hardware constraints).
Automatic event detection has been possible for several years
now, and the process of detecting acts of violence is similar
to that of recognizing actions [2]. The difference is that
violence detection focuses not only on movement, but also
on the intention of that movement. In this case, the speed
of movement that occurs will determine whether a given
action is categorized as an act of violence or just an ordinary
movement.
The authors of [3]–[8] detect objects in CCTV video data.
However, not all acts of violence, such as hand-to-hand fights
or altercations, involve weapons. Therefore, it is necessary
to detect acts of violence that do not depend on a suspicious
object.
Several studies have been conducted that focused on detecting
acts violence, with various approaches relied upon in the
process. The author of [9] used a histogram of optical flow
(HOF) to extract valuable features from videos, while in [10],
HOF magnitude and orientation (HOMO) are used. In [11],
motion features are extracted from dynamic RGB images,
while in [12] convolutional neural network (CNN) models
(namely VGG-19, ResNet50 and Xception) are employed,
with each of them trained using the ImageNet dataset. The
results they achieve are reasonably good.
Studies [13] and [14] used VGG-16 for feature extraction
and a simple SVM classification algorithm. Better results
were obtained in 0, which used ResNet50 as the backbone
for three-dimensional CNNs and dense optical flow for the
region of interest.
Another difficulty encountered while detecting acts of vio-
lence with the use of surveillance cameras stems from the
presence of crowds in public places. The violent flow dataset,
also known as the crowd dataset, is one example of a dataset
containing videos of public crowds. Several studies have re-
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lied upon the crowd data set. For example, the author of [16]
used a violent flow (ViF) descriptor and then classified the
output using a linear SVM, achieving a precision score of
81.3%.
Using the same classification algorithm combined with HOF,
the researchers in [17] obtained an accuracy of 83.37%. That
result still needs to be improved to create a precise detection
system. This dataset is challenging because acts of violence
are sometimes not visible due to the density of the crowd.
On the other hand, crowded conditions often lead to false
positives. Therefore, in this study, acts of violence were
detected using the crowd dataset, with the overall aim of
improving the quality of the model in terms of its performance
and lead time.
To classify data into appropriate classes, a powerful classifi-
cation model is needed. the following solutions were used:
bidirectional gated recurrent unit model (BiGRU), long-short-
term memory model (LSTM), CNN, etc. The LSTM model
used images and also accepted other data types, such as text,
and achieved very good accuracy levels [18].
The main contribution of this work is a benchmark of ad-
vanced ResNet architectures (ResNet50V2, ResNet101V2,
ResNet152V2) against classical and other deep learning-
based feature extractors, when combined with various tem-
poral classifiers (CNN, LSTM, BiGRU). Our work pro-
vides a clear evidence-based pathway for selecting model
components, demonstrating that the synergistic combination
of ResNet152V2 and BiGRU delivers superior and consis-
tent state-of-the-art performance across diverse benchmark
datasets.
We used ResNet50V2, ResNet101V2, and ResNet152V2 to
extract vital features from video and wavelets. BiGRU was
selected as a classification algorithm, as it offers better results
than LSTM in terms of predicting the condition of a pulp
paper press [19]. In the classification of emotions in noisy
speech, BiGRU provides a shorter run time and a lower error
rate while removing noise, compared to LSTM [20]. For
comparison, this research also uses the LSTM and CNN
algorithms.
The structure of this paper is as follows. The description and
video pre-processing stages are detailed in Section 2. The
methods used for extracting violence-specific features are
explained in Section 3. Violence classification algorithms are
presented in Section 4. Experimental results and discussion,
including computational efficiency analysis, are provided in
Section 5. Ethical considerations are discussed in Section 6.
Conclusions and future work are described in Section 7.

2. Video Detection

A general scheme for detecting violent acts is illustrated
in Fig. 1. Initially, it is essential to pre-process the video
data, followed by a systematic categorization into training
and testing datasets utilizing k-fold validation. Subsequently,
the feature extraction stage is performed using ResNet50V2,
ResNet101V2, and ResNet152V2. We also compared the

features extracted using several methods: principal component
analysis (PCA), discrete wavelet transforms (DWT), VGG-16
and VGG-19.
The most effective method of extracting features from the
training data were used to develop a violence detection model
employing the BiGRU algorithm. We compared the clas-
sification model with several algorithms such as CNN and
LSTM. In the final stage, the model was assessed using the
test dataset. This evaluation utilized metrics such as accura-
cy, recall, specificity, G-mean, and CPU time to thoroughly
gauge the effectiveness of the model.
In addition to ResNetXV2, we also compared wavelet feature
extraction methods and non-feature extraction to compare
performance in terms of violence detection and extraction
processing time.

2.1. Dataset

Data from three datasets were used in this research to assess
the performance of the model in detecting violence in a video:
movies [21], hockey game [21], and crowd [16] (Tab. 1).
The videos in the movies dataset contain several movie scenes
and consist of 200 clips divided into 100 fight and 100 non-
fight sequences. The hockey dataset contains 1000 video
recordings of matches from the National Hockey League,
divided into 500 violent and 500 non-violent clips. The crowd
dataset is a real-time video recording of violence in a crowd,
containing 246 videos with 123 violent and 123 non-violent
clips. Each dataset was divided into training and test datasets
using k-fold validation.
Figures 2, 3 present sample frames from each dataset.

2.2. Pre-processing

Pre-processing phase is the preliminary step in building
a violence-detection system. In this step, each video is con-
verted into a series of RGB format images. These images are
subsequently resized to 224 × 224 pixels to align with the
input specifications of the ResNet models.
The next phase involves extracting the pixel intensities from
each set of images. In this scenario, we obtained a matrix
with dimensionsm× n× 224× 224× 3. In this scenario,
m signifies the total number of clips, n indicates the number
of images captured per recording session, and 224× 224× 3
specifies the dimensions of an RGB image in bytes.

Tab. 1. Brief description of datasets used to detect violence in video
footage.

Datasets Frame
size

No. of
clips Violence No vio-

lence Format

Movies
[21] 576 × 720 200 100 100 .mpg

.mp4
Hockey

[21] 288 × 360 1000 500 500 .avi

Crowd
[16] 240 × 320 246 123 123 .avi
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Fig. 1. Schematic of the violence detection system.

a)

b)

c)

Fig. 2. Sample frames of non-violent video benchmark datasets: a)
hockey dataset, b) crowd dataset, and c) movie dataset.

a)

b)

c)

Fig. 3. Sample frames of violent video benchmark datasets: a) hockey
dataset, b) crowd dataset, and c) movie dataset.

Image Coeffcient lev. 1 Coeffcient lev. 2 Coeffcient lev. 3

Fig. 4. Feature extraction process using DWT.

3. Violence Feature Extraction

3.1. Discrete Wavelet Transform

In this research, level 3 wavelet decomposition was used to
compare the feature extraction methods. The mother wavelet
uses Daubechies 8, N (in Db), where N represents the
Daubechies polynomial order. The wavelet of the Daubechies
order N ­ 2 has 2N vanishing moments and a small-scale
support with an interval of [0, 2N − 1] [22]. The Daubechies
polynomial order N − 1 is defined as:

PN−1(y) =
N−1∑
k=0

(
2N − 1
k

)
yk(1−my)N−1−k . (1)

After obtaining a grayscale image, level 1 wavelet decompo-
sition is performed and then LL, LH, HL, and HH sub-bands
are obtained. The LL sub-band contains the approximate val-
ue of the image and is the input for the next decomposition
level. The sub-band used during the classification process is
the approximate value of the level 3 wavelet decomposition.
In this process, a matrix measuringm× n× 41× 41 is pro-
duced. The matrix is reshaped to adjust the input dimensions
in the classification process. The results of feature extraction
using the DWT are shown in Fig. 4.

3.2. Principal Component Analysis

Principal component analysis (PCA) is a transformation tech-
nique that converts and decomposes a large set of correlated
variables into a smaller set of uncorrelated variables. This
method effectively reduces the dimensionality of the data
while preserving essential information. Each image frame
is converted to grayscale and dimensioned into a row vec-
tor with dimension (1×m), wherem is n× n, and n is the
size of the image. For each dataset, all vectors were aggregat-
ed into a size matrix of size (N × 50 176), where N is the
number of images. The next step is to select the value of the
principal component with k percent of the total eigenvalues.
The results of the feature extraction using PCA are shown in
Fig. 5.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2025 79



Khaled Merit and Mohammed Beladgham

3.3. Residual Networks (ResNet)

ResNet is a deep learning approach and is an evolution of
a CNN. In the learning process, ResNet implements residual
connections that can connect layers to other layers by skipping
some middle layers. It is claimed to avoid the vanishing
gradient problems that occur during the training process [23].
More than the use of a deep learning architecture alone is
needed to increase the accuracy of the learning process.
Therefore, to improve recognition accuracy, transfer learning
is used.

Transfer learning is an approach to deep learning (and machine
learning) in which knowledge is transferred from one model to
another. A common misconception regarding transfer learning
is that training and test datasets must come from the same
source or have the same distribution. In practice, however, the
transferred tasks may differ in the same domain. In common
deep neural networks, models learn only from existing data.
With limited data, it will be difficult for the model to obtain
optimal recognition results. Deep transfer learning, on the
contrary, using pre-trained models trained on other datasets in
the same domain, can boost classification performance [24].

ResNet50V2, ResNet101V2, and ResNet152V2 are improved
versions of their respective ResNet families, incorporating
identity mapping and applying batch normalization and ReLU
activation before the weight layers, which enhances gradi-
ent flow and training stability [25]. The key characteristics
of these architectures, which form the basis of our feature
extraction comparison, are summarized in Tab. 2.

The ResNetXV2 architecture is illustrated in Fig. 6. In this
study, we used these models as feature extractors for the input
video. Subsequently, we advanced the learning process by
employing additional deep learning techniques, including
CNN, LSTM, and BiGRU, as classification methods. The
matrix resulting from block 5 for each ResNet variant is
characterized by dimensions ofm× n× 7× 7× 512.

The matrix is subsequently processed through the flatten and
dense layers, resulting in a matrix of size ofm× n× 4096.
The characteristic extraction procedure utilizing ResNet ends
at the dense layer and further processing is conducted using
an alternative classifier.

Original image

50 components, expla-
ined variance 99.89%

20 components, expla-
ined variance 95.82%

30 components, expla-
ined variance 98.67%

10 components, expla-
ined variance 86.62%

Fig. 5. Feature extraction process using PCA.

Tab. 2. Architectural comparison of the ResNetV2 models used to
extract features.

Model Depth
(layers)

Parameters
(millions)

Bottleneck
blocks Complexity

ResNet50V2 50 25.6 16
3×[3, 4, 6, 3] Medium

ResNet101V2 101 44.6 33
3×[3, 4, 23, 3] High

ResNet152V2 152 60.2 50
3×[3, 8, 36, 3] Highest

3.4. VGG

VGG represents a convolutional neural network (CNN) frame-
work that was developed using the ImageNet database [24].
VGG can handle massive datasets, as it contains several
weighted layers with millions of parameters. The difference
between VGG-16 and VGG-19 networks is the depth of the
weight layers, as shown in Fig. 7. In VGG-16, the number of
weight layers is 16, whereas VGG-19 has a layer depth of 19.
We used VGG-16 and VGG-19 as a comparison feature ex-
tractor for the input video. The output matrix from block 5 of
the VGG-16 model has dimensions ofm×n×7×7×512. Af-
ter being processed through both the flatten and dense layers,
the matrix is reconfigured to have dimensions ofm×n×4096.

4. Violance Classification
After acquiring the feature set from the trained ResNet models,
we compared several deep learning methods to detect acts of
violence in a given. The CNN in this study consists of three
convolution and max-pooling layers. The CNN architecture is
shown in Fig. 8a. The hyperparameter settings for the CNN
were an initial learning rate of 0.1, a batch size of 100, 200
epochs, a dense kernel size of 100, a loss function based on
mean squared error, and SGD optimizers.
LSTM is an advanced recurrent neural network that solves the
vanishing gradient problem [26]. Each LSTM cell has three
gates, namely a forget gate, an input gate, and an output gate
(Fig. 8b). In this study, the hyperparameter settings for LSTM
were as follows: an initial learning rate of 0.1, a batch size of
100, 100 epochs, a dense kernel size of 100, a loss function
based on mean squared error, and the Adam optimizer.
GRU was introduced in [27], with its design similar to that of
the LSTM but using a more straightforward memory unit to
simplify training and implementation. In this study, classifi-
cation was performed using a bidirectional GRU (BiGRU) to
better capture contextual information from both past and fu-
ture frames (Fig. 8c). The result of the feature extraction stage
using ResNet passes through the BiGRU layer in this pro-
cess. Furthermore, the resulting BiGRU matrix goes through
three dense layers and the last output goes through a dense
layer with two units using the softmax activation function.
This layer maps the classification results into two class labels:
violence or non-violence. The hyperparameter settings for
the BiGRU were an initial learning rate of 0.1, a batch size
of 100, 100 epochs, a dense kernel size of 100, a loss func-
tion based on mean squared error and the Adam optimizer.
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×6   for ResNet50V2

×4  for ResNet50V2

×23 for ResNet101V2

×4  for ResNet101V2

×36 for ResNet152V2

×8  for ResNet152V2

Fig. 6. Three-dimensional ResNetXV2 architecture.

a)

b)

Fig. 7. VGG architecture: a) VGG16 and b) VGG19.

The bidirectional architecture enables the model to capture
more comprehensive temporal patterns, which is particularly
beneficial for violence detection in video sequences, where
context from both preceding and subsequent frames is crucial
for accurate classification.

5. Results and Discussion

In this study, acts of violence were classified using the fol-
lowing publicly available datasets: movies, hockey game, and
crowd. We used a deep transfer learning approach based on
ResNet50V2, ResNet101V2, and ResNet152V2 to extract es-
sential features from the data. Furthermore, we compared the
experimental results using Daubechies-8 wavelet and PCA as

classical feature extraction methods, and VGG-16 and VGG-
19 as deep transfer learning-based feature extraction methods.
The pre-trained weights obtained from the ImageNet dataset
were used, since the images in ImageNet have a resolution
of 224× 224, which matches the CCTV image frame input.
Additionally, ImageNet has approximately 14 million images
grouped into 1000 various categories. The use of a model
pre-trained on ImageNet certainly improves learning out-
comes on violence datasets and ensures good recognition
performance.
We divided the training and test data using 10-fold cross-
validation. CNN, LSTM, and BiGRU classification algorithms
were used. The parameters used for the evaluation of the
model included the following: accuracy, recall, precision, and
F1 score. We also considered performance of the model in
terms of the time required for feature extraction, training, and
testing for each dataset. The experimental results are listed in
Tabs. 3, 4, and 5.
Table 4 indicates that a combination of ResNet152V2 and
BiGRU produces the maximum accuracy of 1.000 in the
hockey dataset. In addition to achieving the highest degree of
precision, the ResNet152V2-BiGRU combination produced
the best precision, recall and F1 score values of 1.000 in each
metric. This shows that the model’s ability to classify the two
classes is better than that of other algorithm combinations.
As in the hockey dataset, the best accuracy on the crowd
data set (1.000) is also obtained when the ResNet152V2-
BiGRU combination is used (Tab. 5). If reviewed further, the
use of ResNet152V2 for feature extraction improved model
performance, as evidenced by the increase in precision, recall,
precision, and F1 score, compared with classical and older
feature extraction approaches.
However, using deep transfer learning features yields signif-
icantly better results when compared with classical feature
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Fig. 8. a) CNN, b) BiGRU, and c) LSTM architectures.

extraction. It can be found that the model built with the crowd
dataset using the ResNet152V2-BiGRU combination obtained
the best performance, as it achieves the best accuracy and
obtains the best metric results (all 1.000).
In contrast to the previous two datasets, the experimental
results on the movie dataset were 1.000 for most classification
methods and metrics. These excellent metric scores were
achieved by all combinations of algorithms, except for BiGRU
and its combination with Daubechies-8 wavelets and PCA.
This occurrence can be attributed to the fact that the video in
this dataset represents a particular instance of a film scene,
where the lighting and camera angles have been deliberately
configured. Therefore, the video is clear and does not contain
much noise. This differs from the hockey and crowd datasets,
which were obtained from surveillance cameras.
Tables 3 – 5 also present the time required to perform feature
extraction on a data set and the classification time. One may
notice that feature extraction using ResNet152V2 takes longer,
but for the training process, ResNet152V2 is faster than VGG-
16 and VGG-19. Table 3 also presents the CPU time required

to process one test video. The fastest time was obtained using
VGG-19. For the crowd data set, ResNet152V2-based feature
extraction improves model performance. However, this also
increases the time required to process the test data. Upon
further analysis, for an increase in accuracy of up to 0.25,
a time difference of 0.1 to 0.6 s can be tolerated.

Furthermore, one of the advantages of BiGRU is that in terms
of time, it is faster than LSTM, as fewer parameters are used
in BiGRU. Consequently, BiGRU is more efficient in terms of
memory and time. The results show that BiGRU can perform
successfully on all datasets in this study.

Although the proposed ResNet152V2-BiGRU model achieved
perfect evaluation metrics (1.000) on the hockey and crowd
datasets, it is important to contextualize these results. Its
good performance can be attributed to the model’s strong
capacity for spatio-temporal feature learning on these specific
benchmarks. We employed a 10-fold cross-validation strategy
to minimize the risk of overfitting and data leakage, and the
convergence of training and validation curves (Fig. 9) supports
the model’s generalization within these datasets.

82
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2025



AI-based Violent Incident Detection in Surveillance Videos to Enhance Public Safety

Predictions

210

028

00

0

1

1

c)d)
A

ct
ua

ls
EpochEpoch

00 2020 4040 6060 8080 100100
0

0.02

0.04

0.06

0.08

1.00

1.20

L
os

s

Training

Training
Validation

Validation

b)a)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
cc

ur
ac

y

False positive ratio

T
ru

e 
po

si
ti

ve
 r

at
io

0.00
0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fig. 9. Performance evaluation of the ResNet152V2 model: a) training accuracy, b) model loss, c) confusion matrix, and d) receiver operating
characteristic (ROC) curve.

However, these results, while indicative of a high degree of ef-
fectiveness, should be interpreted with the understanding that
real-world surveillance footage poses additional unmodeled
challenges. The following section discusses computational
trade-offs and the need for future validation on larger, more
complex real-world streams. The perfect scores show that the
ResNet152V2+ BiGRU model can learn optimally on a vio-
lent data set to recognize the patterns in each category very
effectively.
Figure 9 shows the accuracy and loss results during training
and validation. It can be seen that the performance of the
model decreased at the 50th epoch but stabilized by the 100th
epoch and did not experience overfitting when the results

between training and validation almost overlapped and were
not significantly different.

In addition, we compared the accuracy of the proposed method
with other studies that also used data sets from movies,
hockey games, and crowds. Violent event detection using
deep transfer learning provides excellent recognition, and
almost all models obtained perfect evaluation metrics.

However, not all classifier models correctly detect every
relevant class. In Fig. 10, we present a scatter plot of the
recognition results for each data instance in the crowd dataset.

Tables 3 – 5 reveal that the best recognition results were
obtained using the ResNet152V2 transfer learning model and
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Tab. 3. Experimental feature extraction results on the movies datasets – hockey.

Classifier Feature
extraction

Extraction
time [s]

Training
time [s]

Testing
time [s] Accuracy Recall Precision F1 score

LSTM

PCA 0.043 12.046 0.522 0.810 0.764 0.862 0.811
Wavelet 0.013 11.514 0.582 0.940 0.915 0.968 0.941
VGG-16 0.112 43.465 0.536 0.950 0.950 0.951 0.950
VGG-19 0.106 27.753 0.438 0.970 0.970 0.970 0.970

ResNet50V2 0.231 22.164 0.415 1.000 1.000 1.000 1.000
ResNet101V2 0.378 22.300 0.420 1.000 1.000 1.000 1.000
ResNet152V2 0.492 22.500 0.425 1.000 1.000 1.000 1.000

BiGRU

PCA 0.043 2.079 0.264 0.755 0.806 0.708 0.756
Wavelet 0.013 3.266 0.900 0.865 0.783 0.957 0.866
VGG-16 0.112 27.863 0.873 0.975 0.975 0.975 0.975
VGG-19 0.106 26.900 0.388 0.965 0.965 0.965 0.965

ResNet50V2 0.231 22.430 0.697 1.000 1.000 1.000 1.000
ResNet101V2 0.378 22.600 0.700 1.000 1.000 1.000 1.000
ResNet152V2 0.492 22.800 0.705 1.000 1.000 1.000 1.000

CNN

PCA 0.043 3.700 0.438 0.810 0.886 0.736 0.811
Wavelet 0.013 15.453 1.060 0.945 0.934 0.957 0.946
VGG-16 0.112 262.702 0.885 0.915 0.915 0.915 0.915
VGG-19 0.106 263.022 0.318 0.900 0.900 0.901 0.900

ResNet50V2 0.231 142.571 0.751 0.990 0.990 0.990 0.990
ResNet101V2 0.378 143.000 0.760 0.995 0.995 0.995 0.995
ResNet152V2 0.492 144.000 0.770 1.000 1.000 1.000 1.000

Tab. 4. Experimental feature extraction results on the movies datasets.

Classifier Feature
extraction

Extraction
time [s]

Training
time [s]

Testing
time [s] Accuracy Recall Precision F1 score

LSTM

PCA 0.043 2.525 0.535 0.825 0.882 0.750 0.822
Wavelet 0.013 2.904 0.459 1.000 1.000 1.000 1.000
VGG-16 0.112 13.067 0.592 1.000 1.000 1.000 1.000
VGG-19 0.106 12.243 0.423 1.000 1.000 1.000 1.000

ResNet50V2 0.231 12.050 0.429 1.000 1.000 1.000 1.000
ResNet101V2 0.378 12.180 0.435 1.000 1.000 1.000 1.000
ResNet152V2 0.492 12.350 0.440 1.000 1.000 1.000 1.000

BiGRU

PCA 0.043 5.178 0.530 0.825 0.842 0.800 0.825
Wavelet 0.013 5.484 0.440 0.975 0.950 1.000 0.975
VGG-16 0.112 22.319 0.526 1.000 1.000 1.000 1.000
VGG-19 0.106 13.120 0.362 1.000 1.000 1.000 1.000

ResNet50V2 0.231 10.503 0.394 1.000 1.000 1.000 1.000
ResNet101V2 0.378 10.650 0.402 1.000 1.000 1.000 1.000
ResNet152V2 0.492 10.800 0.408 1.000 1.000 1.000 1.000

CNN

PCA 0.043 3.324 0.267 1.000 1.000 1.000 1.000
Wavelet 0.013 4.519 0.902 1.000 1.000 1.000 1.000
VGG-16 0.112 49.161 0.225 1.000 1.000 1.000 1.000
VGG-19 0.106 82.547 0.157 1.000 1.000 1.000 1.000

ResNet50V2 0.231 30.721 0.540 1.000 1.000 1.000 1.000
ResNet101V2 0.378 31.000 0.550 1.000 1.000 1.000 1.000
ResNet152V2 0.492 31.500 0.560 1.000 1.000 1.000 1.000
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Tab. 5. Experimental feature extraction results on the movies datasets – crowd.

Classifier Feature
extraction

Extraction
time [s]

Training
time [s]

Testing
time [s] Accuracy Recall Precision F1 score

LSTM

PCA 0.043 3.438 0.554 0.490 0.474 0.375 0.474
Wavelet 0.013 2.797 0.526 0.625 0.583 0.667 0.624
VGG-16 0.112 23.860 0.435 0.980 0.980 0.981 0.980
VGG-19 0.106 23.441 0.402 0.939 0.939 0.946 0.939

ResNet50V2 0.231 11.406 0.757 1.000 1.000 1.000 1.000
ResNet101V2 0.378 11.550 0.760 1.000 1.000 1.000 1.000
ResNet152V2 0.492 11.700 0.765 1.000 1.000 1.000 1.000

BiGRU

PCA 0.043 2.120 0.522 0.500 0.500 0.250 0.433
Wavelet 0.013 2.537 0.511 0.656 0.690 0.625 0.657
VGG-16 0.112 14.332 0.360 1.000 1.000 1.000 1.000
VGG-19 0.106 22.837 0.360 1.000 1.000 1.000 1.000

ResNet50V2 0.231 11.975 0.368 1.000 1.000 1.000 1.000
ResNet101V2 0.378 12.100 0.375 1.000 1.000 1.000 1.000
ResNet152V2 0.492 12.250 0.380 1.000 1.000 1.000 1.000

CNN

PCA 0.043 3.302 0.355 0.592 0.563 0.750 0.574
Wavelet 0.013 3.752 0.329 0.667 0.750 0.583 0.661
VGG-16 0.112 82.546 1.384 0.898 0.898 0.915 0.897
VGG-19 0.106 57.631 0.164 0.694 0.694 0.691 0.690

ResNet50V2 0.231 41.594 0.937 0.980 0.980 0.980 0.980
ResNet101V2 0.378 42.000 0.945 0.985 0.985 0.985 0.985
ResNet152V2 0.492 42.500 0.950 1.000 1.000 1.000 1.000

recognition comparisons were performed using the BiGRU,
LSTM, and CNN models. On the 49th test data, four were
miss-classified when the CNN+ ResNet152V2 model was
used, while neither the BiGRU+ ResNet152V2 model nor the
LSTM+ ResNet152V2 model output any misclassifications.
Figure 11 shows the detection results for each video in the
video test data, by including the probability of recognizing
violence and non-violence. The recognition results show the
prediction results of the BiGRU+ ResNet152V2 combination,
which is the best of the compared models. This model was
then tested in the crowd, movies, and hockey datasets. Each
image in the left column has a ground truth class of “violence”
and each image in the right column has a ground truth class
of “non-violence”. The prediction results for each video show
that the detection results are the same as the ground truth,
with a high confidence rate for each class.

5.1. Computational Efficiency and Real-time Feasibility

Computational efficiency is a critical consideration for the
deployment of AI models in real world systems. As shown in
Tab. 3, there is a clear trade-off between model performance
and processing time. Although ResNet152V2 has the longest
feature extraction time (0.492 s per image), it yields the
highest accuracy. To assess real-time feasibility, we consider
the processing time per video clip. For the crowd dataset, the
total test time for the ResNet152V2-BiGRU model was 0.38 s
per video. Assuming a standard video clip length of a few

seconds, this demonstrates good potential for near-real-time
analysis in a processed clip-based system.
However, for true real-time streaming at standard frame rates
(e.g., 25 – 30 fps), the current model requires optimization.
Future work will focus on employing more efficient feature
extractors (e.g., MobileNet, EfficientNet) and model com-
pression techniques (e.g., pruning, quantization) to bridge
this gap without a significant sacrifice in accuracy. BiGRU’s
faster training and testing time compared to LSTM, due to
its simpler gating mechanism, is a positive step towards this
goal.
In terms of the complexity and time consumption of the
proposed model, it can be seen in Tabs. 3 – 5 that each
deep-transfer learning model has a different extraction time.
The longest feature extraction time was obtained using
ResNet152V2 with an execution time of 0.492 s for each
image, while the fastest feature extraction execution time was
achieved for the wavelet, with an execution time of 0.013
s. ResNet152V2 has the longest extraction time, where the
transfer learning process is quite complex because it uses
many residual networks, causing the learning process to take
longer than in the case of other transfer learning models.
The longest training process was that of CNN with VGG-
19 feature extraction (263.022 s). A comparison with other
studies is presented in Tab. 6. In the movies dataset, the
proposed method outperforms the other methods with the
highest scoring accuracy of 100%.
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Fig. 10. Scatter plot of: a) BiGRU + ResNet152V2, b) LSTM +
ResNet152V2, and c) CNN +ResNet152V2.

6. Ethical Considerations

The deployment of AI-based violence detection systems in
public spaces requires a serious discussion focusing on ethi-
cal implications. Continuous video monitoring and analysis
inherently raise privacy concerns. It is imperative that such
systems are deployed in compliance with data protection reg-
ulations (e.g., GDPR). Strategies such as on-edge processing,
where video data is analyzed locally without being stored or
transmitted, can help mitigate privacy risks.
AI models can perpetuate and amplify societal biases if trained
on non-representative data. Future work must include rigorous
bias auditing across different demographics to ensure that the
model does not disproportionately target specific groups.

a)

b)

c)

Violence: 0.992
Non-violence: 0.008

Violence: 0.004
Non-violence: 0.996

Violence: 0.006
Non-violence: 0.994

Violence: 0.005
Non-violence: 0.995

Violence: 0.998
Non-violence: 0.002

Violence: 0.978
Non-violence: 0.022

Fig. 11. Detection performance of BiGRU + ResNet152V2 in the:
a) crowd, b) movies, and c) hockey datasets.

A false positive, where a non-violent act is flagged as violent,
could lead to unnecessary alarm, wasted security resources,
and potentially serious confrontations. Therefore, achieving
high precision is not just a technical goal but an ethical
imperative. In practice, such systems should function as an
assistive tool for human operators who make the final decision,
rather than as a fully autonomous response trigger.
Transparency in system capabilities and limitations, along
with clear governance frameworks, is essential for the respon-
sible development and deployment of this technology.

7. Conclusions
In this study, a comparative analysis of various solutions ca-
pable of detecting acts of violence in videos was conducted.
The key finding is that the combination of ResNet152V2 for
spatial feature extraction and BiGRU for temporal modeling
represents a highly effective and efficient architecture, as val-
idated by its top-tier performance with the use of the movies,
hockey, and crowd data sets. ResNet50V2, ResNet101V2 and
ResNet152V2 were used for feature extraction, while clas-
sical (wavelet and PCA), and other deep transfer learning
methods (VGG-16 and VGG-19) were used as comparison
methods.
Furthermore, CNN, LSTM, and BiGRU algorithms were used
for classification. The best precision results in the hockey
dataset were obtained when using the ResNet152V2-BiGRU
combination. Furthermore, in the movies dataset, all combi-
nations of algorithms achieved excellent performance (1.000).
Similarly to the hockey dataset, the best accuracy on the crowd
data set was achieved using the ResNet152V2-BiGRU com-
bination. Furthermore, ResNet152V2-BiGRU provides the
best accuracy, recall, precision, and F1 score performance.
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Tab. 6. Comparison of the proposed violence detection system with
state-of-the-art approaches.

Accuracy [%]

Ref. Method Movies Hockey Crowd

[10] HOMO – 89.3 76.8

[15] Violence4D (4D-CNN) 100 100 97.29

[16] ViF 96.7 81.6 81.2

[28]
MoWLD + BoW – 91.9 82.5

MoWLD +
SparseCoding – 93.7 86.3

[29] ConFeat 96.5 94.4 80.9

[30] sHOT – – 82.9

[31] DIMOLIF – 88.6 85.8

[32] LHOF + BoW – – 86.5

[33] BoW (MoBSIFT) + MF 98.9 90.3 –

[34] AlexNet + 3D-CNN 98.7 92.9 88.0

[35]
Xception + LSTM – 91 88

InceptionV3 + LSTM – 90 89

[36] OViF – 84.2 76.8

[37] 3D CNN + interest
frames 100 99.4 97.49

[38] Hough forest + 2D CNN 99 94.6 –

[39] Modified 3D CNN 99.97 98.96 –

[40] Object detection +
LSTM – 98 98.21

[41] Object detection + 3D
CNN 99.9 96 98

[42] Two-cascade TSM – 98.995 97.959

[43] Dual-stream CNN +
echo state network – 99 99.01

[44] Vision-based fight
detection 100 98 –

[45] Edge Vision – 98.5 –

[46] EvoKeyNet +
DeepkeyFrm – 98.98 99.29

[47] 2D CNN + ESM + STA 100 99.7 98.53

Pro-
posed ResNet152V2 + BiGRU 100 100 100

The experimental results obtained in the course of this study
show that BiGRU performs better in terms of time than LSTM.
BiGRU also achieves good performance on all data sets
used in this study. The ResNet152V2-BiGRU combination
achieves the best accuracy and F1 score values on all datasets.
In general, using ResNet152V2 for feature extraction im-
proves the performance of the model on all datasets, but this

increases the time required to process the test data. A differ-
ence of approximately 6 s can still be tolerated for the crowd
dataset considering that the accuracy obtained increased to
0.263.

Limitations and Future Work

Despite the promising results, this study is limited by the
scale and scope of the benchmark datasets used. The models
were trained and tested on controlled datasets which may not
fully capture the challenges of real-world surveillance, such
as severe occlusions, extreme lighting variations, dynamic
camera angles, as well as dense and complex crowd behav-
ior. Consequently, the performance reported here might not
directly translate to operational environments.
A primary direction for future research is to validate and
retrain the proposed model on larger, more diverse, and more
challenging real-world video datasets. Furthermore, exploring
the model’s robustness to attacks and its performance in low-
resolution, long-duration video streams will be essential for
practical public safety applications.
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