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Abstract — In this article, we propose a lightweight, hierar-
chical multi-task learning framework designed for detecting
both high-level and fine-grained threats in IoT traffic. The devel-
oped model focuses on anomalies detectable through flow-level
metadata. The deliberate choice to prioritize computational ef-
ficiency by excluding content analysis scopes the approach to
payload-independent threats, while still enabling robust detec-
tion of key attack classes. To further enhance efficiency within
this metadata-driven paradigm, we introduce HC-MTDNN,
a hierarchical multitask model that integrates a gated feature
mechanism and feature reuse to significantly reduce redundancy
and computational overhead, improving upon previous hier-
archical architectures and achieving high performance while
dealing with volumetric and protocol-based attacks. The model
is evaluated on four benchmark datasets: CICIoT2023, N-BaloT,
Bot-IoT, and Edge-IIoTset. It demonstrates strong performance
in both binary and multiclass classification tasks, with an aver-
age inference time of 122 ps per sample and a compact model size
of 2.4 MB. The proposed framework effectively balances accura-
cy and computational efficiency, offering a practical and scalable
solution for securing resource-constrained IoT environments.

Keywords — anomaly detection, deep neural network, IoT security,
lightweight model, multitask learning, network traffic analysis

1. Introduction

The exponential growth of the Internet of Things (IoT) has
transformed conventional networks into vast interconnected
ecosystems spanning various domains such as smart homes,
healthcare, industrial automation, and smart cities [1]. By
2025, more than 75 billion IoT devices are projected to be
online, roughly 40% of them in smart home environments [2].
Although this expansion offers convenience and functionality,
it also increases vulnerability to attacks. Many IoT devices
operate under severe resource limitations and lack robust
security mechanisms, making them attractive targets for cyber
threats [3], [4]. In particular, high-profile attacks such as the
Mirai botnet [5] have demonstrated the dangers associated
with compromised IoT infrastructures.

IoT anomaly detection is particularly sophisticated due to the
heterogeneity, volume, and nonstationarity of the data gener-
ated from such applications. Traditional detection methods,
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such as rule-based systems and fixed thresholds, cannot cope
with the dynamic and multimodal characteristic of traffic in
IoT networks [6]. As a result, these methods frequently mis-
classify benign traffic as malicious, leading to an excessive
number of false alarms.

However, most of the existing approaches in IoT anomaly
detection handle each classification task independently, em-
ploying separate single-task models for binary classification,
attack-type categorization, and fine-grained subtype classifi-
cation. The authors of [7], [8] each deploy distinct single-task
models dedicated specifically to binary or multiclass scenar-
ios without exploiting task interdependencies. Such isolated
training can neglect beneficial shared representations across
tasks, potentially limiting generalization and computational
efficiency.

To address these challenges, we propose HC-MTDNN, a hi-
erarchical multitask model designed to tackle three core IoT
anomaly detection tasks in a single forward pass. Instead of
treating each task independently, the model cascades predic-
tions, refining the output at each level. HC-MTDNN performs
anomaly detection in a staged, multitask manner, progress-
ing from binary to coarse to fine classification. Each level of
the network is responsible for different interdependent tasks,
such as feature extraction, anomaly detection, and classifica-
tion. By cascading these tasks, the model can progressively
refine its analysis, leading to a more accurate identification
of anomalies. This structure allows the model to efficiently
process data and reduce false positives.

Incorporation of multitask learning (MTL) [9] enables the
HC-MTDNN to simultaneously learn and optimize multiple
related tasks. This approach leverages shared representations,
improving generalization between tasks, and enhancing the
model’s ability to detect various types of anomalies.

The primary advantage of the proposed hierarchical multitask
architecture lies in its ability to progressively refine classifi-
cation through shared supervision and structured information
flow. HC-MTDNN processes each IoT flow in three gated
stages:

e benign vs. malicious screening,

e attack-family categorization,
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e fine-grained subtype classification.

Intermediate logits from one task are concatenated or trans-
formed before being passed to the next stage, allowing down-
stream classifiers to condition on earlier decisions. The shared
encoder allows for generalization and reduces redundant com-
putation.

Additionally, the architecture strengthens feature reuse, sta-
bilizes rare subcategories, and diversifies error signals. The
model also maintains hierarchical consistency by using gating
and attention mechanisms to align predictions across levels,
thus minimizing contradictions like predicting “mirai.scan”
when the binary classifier identifies a sample as benign.

Finally, this multitask setup often leads to faster convergence
and improved generalization, as the shared encoder can absorb
additional tasks with minimal reconfiguration, making the
model adaptable to evolving threat landscapes in complex
IoT environments.

The proposed model is designed for flow-based anomaly
detection, using network metadata such as packet counts, flow
durations, and protocol attributes to identify threats. This
approach excels at detecting volumetric attacks (e.g., DDoS)
and protocol anomalies, but is inherently limited for payload-
intensive threats (e.g., SQL injections or XSS), where content
analysis is required. This trade-off ensures deployability on
edge devices, prioritizing speed and low resource usage over
comprehensive payload inspection.

With 245 249 total parameters, the model occupies just 2.4
MB of disk space. The average inference latency is 122 us
per sample, corresponding to roughly 8 200 predictions per
second, which falls within the real-time requirements for
gateway-level traffic inspection. This parameter sharing and
conditional gating eliminate redundant computation, allow-
ing HC-MTDNN to be deployable on memory and power
constrained IoT edge devices.

We evaluate the proposed model across four datasets: CI-
ClIoT2023 [10], N-BaloT [11], Bot-IoT [12], and Edgel-
IoT [13]. These datasets cover diverse environments and
traffic profiles. They span distinct deployment scenarios:
CICIoT2023 imitates modern smarthome traffic, N-BaloT
isolates single device compromises typical of consumer gad-
gets, Bot-IoT replicates campus-scale probing and DDoS,
while EdgelloT captures latency-sensitive industrial control
flows.

Across all experiments, HC-MTDNN delivers accuracy and
efficiency that match the practical constraints of edge hard-
ware. On the binary task, it attains macro F1 between 97%
and 100% on every dataset, while at the coarse-level it reaches
99.5% accuracy on CICIoT2023, 97% on EdgelloT and Bot-
IoT, and a near-perfect 99.99% on N-BaloT. Even at the most
demanding fine-grained level (34 classes in CICIoT2023, 9 -
10 classes on the other sets) the network keeps the weighted
F1 above 93% for Bot-IoT and the macro F1 above 83% for the
heavily imbalanced N-BaldT. The results demonstrate robust
multitask performance across all classification hierarchies,
highlighting the robustness and effectiveness in accurate-
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ly detecting and classifying anomalies within complex IoT
environments.

The remainder of this paper is structured as follows. Section
2 reviews related work and discusses the limitations of exist-
ing approaches. Section 3 presents, in detail, the proposed
architecture of the HC-MTDNN model. Section 4 describes
the datasets, experimental setup, and evaluation metrics used.
Section 5 reports and analyzes the experimental results, com-
paring them with established baselines. Finally, Section 6
summarizes the findings, implications, and suggests directions
for future research.

2. Related Work

The extensive deployment of IoT devices across various sec-
tors has significantly increased the prevalence of cyber attacks,
underscoring the need for effective anomaly and intrusion
detection mechanisms [14]. Traditional anomaly detection
strategies, such as rule-based systems and fixed threshold
methods, frequently encounter difficulties due to the hetero-
geneous, high-volume, and dynamically changing nature of
IoT-generated data. Such conventional methods often pro-
duce false alarms or fail to identify subtle attacks, particularly
in environments where multiple distinct data streams are
processed simultaneously. A summary of recent intrusion de-
tection studies is provided in Tab. 1 which categorizes the
approaches by model type, dataset, key contributions, and
gaps addressed by the proposed method.

2.1. Traditional Machine Learning Approaches

Several recent studies have applied traditional machine learn-
ing (ML) approaches using the CICIoT2023 dataset [10]. The
authors of [8] introduced a random forest-based intrusion de-
tection framework specifically addressing class imbalance,
achieving notable performance improvements of 3.72% in
precision, 3.75% in recall and 4.69% in F1 score compared
to existing methodologies. Their method also showed an en-
hancement of 7.9% in the F1 score for underperforming class-
es. In another comparative analysis, multiple machine learning
algorithms, including logistic regression, AdaBoost, percep-
tron, MLP, random forest (RF) and hist-gradient boosting,
were evaluated for different classification scenarios (binary,
eight class and 34-class), with RF outperforming others in ac-
curacy, while hist-gradient boosting excelled in computational
efficiency [15].

Addressing specific attack types, the researchers developed
a specialized intrusion detection system (IDS) that employs
hierarchical feature selection coupled with the CatBoost algo-
rithm, targeting DoS, DDoS, and Mirai attack variants. This
approach achieved fast prediction times and high accuracy,
significantly improving cybersecurity defenses against sophis-
ticated threats [16]. Similarly, a comprehensive evaluation, as
presented in [7], emphasized the broad spectrum of threats en-
capsulated by the CICIoT2023 dataset, reinforcing its utility
in benchmarking classification methods. Parallel, lightweight
ML models — such as decision trees, closest neighbors k, RF,

91



Mohamed Amine Beghoura and Younes Belouche

and naive Bayes — were evaluated, demonstrating impres-
sive precision and processing efficiency, notably the ability
of decision trees to classify nearly three million instances per
second [17].

In [18], refined preparation and feature selection phases are in-
vestigated through cooperative game theory, and RF achieves
99% accuracy on the original CICIocT2023 dataset. However,
the accuracy decreased slightly with novel features, high-
lighting complexities in feature engineering for IoT intrusion
detection. While these single-task machine learning approach-
es achieve high accuracy on balanced classes and specific
attack types, they often treat classification tasks independent-
ly, overlooking intertask dependencies such as shared patterns
between binary detection and multiclass categorization. This
leads to redundant computations and limited generalization
of diverse or evolving threats.

2.2. Multitask Learning and Lightweight Models

To overcome limitations inherent in single-task or parallel-
output-head models, researchers have explored multitask
learning frameworks, aiming to enhance anomaly detection
performance by leveraging interrelated tasks [19]. The CI-
ClIoT2023 dataset, a comprehensive and realistic benchmark,
has been widely utilized to evaluate the effectiveness of these
advanced models, particularly emphasizing improvements in
the detection of low-profile attacks [20]. Additionally, due to
the resource-constrained nature of many IoT devices, signifi-
cant research has focused on developing lightweight models
optimized for efficient deployment in such environments.

In resource-sensitive IoT scenarios, the authors of [21] in-
troduced DL-BiLSTM, integrating DNN and bi-LSTM net-
works, along with incremental PCA and dynamic quantization
to optimize model performance for limited-resource envi-
ronments. Furthermore, in [22], an innovative VGGIncepNet
model was proposed that converts non-image network data
into image format to leverage CNN feature extraction capa-
bilities, significantly outperforming established NLP-based
models such as BERT and XLNet in CICIoT2023.

In [23], edge-based deep learning models are presented that
employ 1D-CNN architectures optimized by preprocessing
techniques that address data imbalance and distribution dis-
crepancies, achieving a robust F1 score of 93.8%. Further-
more, the authors of [24] proposed a cost-sensitive autoen-
coder (CSAE)-based ensemble approach, demonstrating ex-
ceptional accuracy rates for both binary and multiclass clas-
sifications.

In article [25], a DGConv-IDS was developed. It is
a lightweight autoencoder and CNN-based model tailored for
resource-limited IoT environments. The model used sliding-
window techniques to manage computational overhead while
providing real-time DDoS detection. Similarly, in [26], the
convolutional Kolmogorov-Arnold network (CKAN) is in-
troduced which integrates Kolmogorov-Arnold layers into
convolutional neural networks, achieving high performance
with fewer parameters. The authors of [27] proposed hybrid
models, such as the autoencoder-CNN and transformer-DNN
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frameworks, emphasizing reshaping network traffic, handling
class imbalance, and improving feature extraction capabilities
across multiple datasets, including CICIoI2023.

Existing lightweight deep learning models prioritize com-
putational efficiency and edge deployment, but often lack
hierarchical structures for progressive refinement from bi-
nary to fine-grained classification, leading to potential error
propagation in multiclass scenarios. Moreover, they often in-
corporate conditional mechanisms such as dynamic gating to
adapt features based on prior task outputs.

2.3. Dataset-specific and Hybrid Models

The authors of [28] propose an efficient anomaly detection
mechanism for IoT architectures using DNN, with a specific
focus on feature selection through mutual information (MI).
The study uses the Bot-IoT 2020 dataset and evaluates the
performance of several deep learning models, including DNN,
CNN, RNN, and RNN variants. The authors demonstrate
that selecting the top 16 to 35 MlI-based features, instead of
using all 80 features, resulted in only negligible performance
degradation while significantly reducing model complexity.
The proposed DNN-based model achieves an accuracy of
99.01% with a false alarm rate (FAR) of 3.9%.

In [29], XAI-IoT, an explainable AI framework is introduced
designed to enhance multi-class anomaly detection and defect
type classification in IoT systems. The framework incorpo-
rates seven explainable Al (XAI) techniques, including SHAP,
LIME, CEM, and LOCO, to evaluate the importance in mod-
el predictions. Experimental validation was performed on two
datasets: one collected from IoT-based MEMS sensors and the
other from IoT botnet attacks (N-BaloT). The results indicate
that single-model approaches delivered better performance
on the MEMS dataset, while ensemble-based models outper-
formed on the N-BaloT dataset. The use of XAl techniques
allowed the identification of critical features that influenced
model decisions in both contexts.

In [30], an IDS for detecting DoS attacks in IoT networks by
relying on ML algorithms is described. The study compared
four classifiers: decision tree (DT), RF, K-nearest neighbor
(kNN), and support vector machine (SVM), to determine
the most effective model for classifying DoS traffic. Feature
selection was enhanced using correlation-based feature selec-
tion (CFS) and a genetic algorithm (GA), with the IoTID20
data set used for training, which includes real-time traffic data
with simulated DoS attacks. The DT and RF classifiers, using
GA-selected features (13 features), achieved 100% accuracy,
precision, recall, and F1 scores. The DT model outperformed
RF in terms of computational efficiency. The study empha-
sizes the effectiveness of the IoTID20 dataset and the chosen
feature selection methods to improve the performance of the
model.

The authors of [31] introduce DeepDetect, a hybrid deep
learning model for anomaly detection in IoT networks which
combines CNN, GRU, and Bi-LSTM to improve network traf-
fic analysis. The hierarchical CNN structure captures spatial
features, while the problem of GRU mitigates the vanishing
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Tab. 1. Summary of recent intrusion detection studies in IoT environments.

’ Ref. ‘ Model type Dataset Key contribution
[8] RF CICIoT2023 Improved class performance; tackled class imbalance
(7] ML CICIST2023 Comprehensive benchmgrkmg across attack
categories
[18] RF + game theory CICIoT2023 Cooperative game theory feature selection
21] DL-BiLSTM+PCA CICIST2023 Resource-efficient B}LSTFM with dynamic
quantization
Converted traffic to images; outperformed
[22] VGGIncepNet (CNN-based) CICIoT2023 BERT/XLNet
(23] ID-CNN CICIST2023 Edge-based detec.tlon with preprocessing for
imbalance
[24] CSAE CICIoT2023 High accuracy for binary and multiclass tasks
[25] DGConv-IDS CICIoT2023 Real-time DDoS detection via sliding windows
[26] CKAN CICIoT2023 Low-parameter model with high performance
[27] AE-CNN, transformer-DNN CICIoT2023 Multi-dataset approach; class imbalance handling
(28] DNN, CNN, RNN variants BoT-IoT 2020 Mutual-information feature selection (top 16 — 35
features)
[29] Ensemble + SHAP, LIME N-BaloT, MEMS XAI-IoT with comparative model/XAI analysis
[30] DT, RF, kNN, SVM TIoTID20 GA-based feature selection; 100% metrics with DT
[31] CNN-GRU-BiLSTM NSL-KDD High accuracy; temporal modeling with low FAR
[32] XGBoost, RF 10T-23 combined PySpark-based scalable real-time IDS
[33] TinyML + DT, RF, KNN Custom + real IoT LAN data Energy/memory efficient IDS using TinyML
(34] | CNN+LSTM/-GRU/BILSTM | NSL-KDD, BoT-IoT, MQTTset | ‘‘ddressed class imbalance with SMOTE and class
weighting
[35] RF vs. DNN CICIoT2023 Multilevel classification and feature selection study
[36] Transforme%ggN +LSTM, CICIoT2023 Multi-class top accuracy with transformer
(37] PCA + expansion — compression UNSW-NB15, Bot-IoT Lightweight NN with NID loss; 99.99% binary
NN accuracy
[38] Multi-stage pipeline CIC_IDS_ZOI;(’)]CSSE_CIC_IDS_ Adjustable zero-day detection; low bandwidth/latency
. Edge-IoTset, IoTID20, ToN IoT, 99.81% average accuracy; attention helps
[39] MI + attention CNN CIC-IDS2017 low-instance classes
[40] Multitask LSTM + feature I0T-23, EU CEF VAR-IoT, Joint malware detection/identification; SMOTE-ENN
selection 18-device pcaps + XGBoost-/SULOV

gradients and learns sequential dependencies. The Bi-LSTM
captures long-term dependencies from both forward and back-
ward contexts, improving temporal analysis. Based on the
NSL-KDD dataset, DeepDetect achieved 99.12% accuracy
for binary classification and 99.31% for multiclass classifica-
tion, demonstrating superior performance with a lower false
positive rate and higher detection rate compared to other deep
learning-based IDS.

Paper [32] presents a real-time IDS for [oT networks using
multiclass ML techniques. Using the I0T-23 combined dataset,
which includes more than 1.4 million records of various types
and benign traffic, the class imbalance with SMOTE and the
applied SelectKBest is addressed. IDS was built on a PySpark
architecture to support scalable training and inference. Five
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ML models were tested using a one-versus-rest approach, with
XGBoost achieving the highest accuracy (98.89%) and RF
delivering the fastest inference time (0.0311 s), demonstrating
a strong balance between speed and accuracy.

In [33], an ML-based IDS is developed tailored for resource-
constrained IoT devices, emphasizing energy and memory
efficiency. By integrating TinyML with traditional ML mod-
els, the study addressed key challenges in limited resource
environments. A major contribution was the creation of a rich
validation dataset combining prior work, laboratory exper-
iments, and real-world metrics across IoT layers (end de-
vices, edge, cloud), including both normal and malicious
traffic. The system was tested in a LAN based setup with ex-
tended edge/cloud components, using models such as DT

93



Mohamed Amine Beghoura and Younes Belouche

(99.5% accuracy), KNN (96.5%), Naive Bayes (97.3%) and
RF (98.3%). The results highlighted a trade-off between accu-
racy and training time, with more accurate models requiring
longer training.

The authors of [34] propose a DL-based anomaly detection
framework for IoT networks, utilizing a combination of RNN
and CNN. Their study developed lightweight models that em-
ploy LSTM, BiLSTM, and GRU architectures to perform
binary and multiclass classification tasks. CNNs were al-
so incorporated for feature selection to enhance detection
performance. Models were trained and evaluated on several
widely used datasets, including NSL-KDD, BoT-IoT, IoT-NI,
IoT-23, MQTT, MQTTset, and IoT-DS2. To address the issue
of class imbalance within these datasets, the authors applied
class weighting techniques during training and employed the
Borderline-SMOTE algorithm to generate synthetic samples
and balance the training data distribution.

In [35], an anomaly detection study is conducted in IoT-based
healthcare systems using the CICIoT2023 data set. Their
investigation involved multilevel classification architectures,
including 2-class (binary), 8-class, and 34-class models. The
authors explored two training approaches: one using the full
set of features and the other using a reduced feature subset.
To address class imbalance, they applied SMOTE. Their
evaluation demonstrated that, on both training paths and on the
balanced CICIoT2023 dataset, the RF classifier consistently
outperformed the DNN model.

These dataset-specific and hybrid models demonstrate strong
performance on individual benchmarks but typically do not
integrate multitask hierarchies for handling interdependent
classification tasks, such as simultaneous binary and fine-
grained detection. This results in missed opportunities for
shared learning and efficiency in resource-constrained set-
tings.

2.4. Advanced Hybrid and Attention-based Models

The authors of [36] propose a transformer-based IDS eval-
uated on the CICIoT2023 dataset. Their model leveraged
self-attention mechanisms to effectively handle multi-class
intrusion detection, achieving a high accuracy of 99.40%.
After comparing seven neural network models, they found
the transformer to be the most effective solution for multi-
class tasks, while DNN and CNN+LSTM models performed
best for binary classification.

In [37], a lightweight neural network-based IDS is presented
that uses PCA for feature dimensionality reduction. It relies
on an expansion compression classifier architecture with
inverse residual blocks and channel shuffle operations to
minimize computational cost, and a loss of NID to mitigate
class imbalance. Evaluated on UNSW-NB15 and Bot-IoT, it
achieves a precision of up to 99.99% (F1 98.81%) for binary
detection and multiclass accuracies of 86.11% and 96.15%,
respectively, without altering its core architecture.

Work [38] introduces a multi-stage approach for hierarchical
IDS with a three-stage anomaly detection pipeline: fast filter-
ing by anomaly score, confidence-based attack classification,
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and strict thresholding to separate unknown attacks from false
positives, enabling efficient, adjustable detection of binary
and multiclass intrusions, including zero-day attacks, in the
CIC-IDS2017 and CSE-CIC-IDS-2018 datasets. Each stage
can be deployed independently to minimize bandwidth usage
and prediction latency without requiring retraining.

The authors of [39] propose an attention-based CNN for IDS,
using MI for feature selection and an attention mechanism
to improve learning in low-instance classes. The proposal
is evaluated in Edge-IoTset, IoTID20, ToN IoT, and CIC-
IDS2017. It achieves an average accuracy of 99.81%, with
98.02% precision, 98.18% recall, and an F1 score of 98.08%.

In [40], a multitask LSTM is proposed for the detection
and identification of IoT malware through behavioral traffic
analysis, performing both benign/malicious classification and
malware type prediction on 145 pcaps from 18 devices and
on the 10T-23 and EU CEF VARIGT datasets. Features are
organized into flow-, flag-, and payload-related modalities,
each subjected to recursive XGBoost and SULOV feature
selection before merging, with class imbalance addressed
using SMOTE-ENN and extensive experiments on imbalance
techniques, feature selection, and modality fusion.

Advanced hybrid and attention-based models enhance tem-
poral and spatial feature analysis, but often miss conditional
feature modulation, where prior task outputs dynamically in-
fluence subsequent processing. This can limit adaptability in
hierarchical scenarios.

Although significant progress has been made in IoT anomaly
detection, existing approaches typically address tasks individ-
ually, deploying separate single-task models, thus overlook-
ing valuable shared information among related classification
tasks. Moreover, hierarchical cascading, progressively refin-
ing anomaly classification from broad to detailed levels, has
rarely been explicitly combined with computational efficiency
strategies optimized for deployment in resource-constrained
IoT environments. Most lightweight models neglect hierar-
chical classification or fail to incorporate dynamic feature
gating and hierarchical feature reuse mechanisms necessary
for efficiency in real-time scenarios.

Table 1 summarizes mentioned studies on intrusion detection.

3. Proposed Method

3.1. Model Architecture

The proposed architecture, as illustrated in Fig. 1, is a multi-
stage neural network processing incoming IoT sensor streams
using a shared feature encoder that learns a common represen-
tation. The data are then refined by three task-specific heads:
a binary anomaly detector, a coarse (categorical) classifier,
and a fine-grained (subcategorical) classifier.

This hierarchical structure enables the model to progressively
refine the predictions: first, by identifying anomalies, then
by categorizing broad attack types, and finally by distinguish
specific subcategories.
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Fig. 1. Overall architecture of the proposed HC-MTDNN model.

The core of the architecture is a deep neural backbone that
extracts general-purpose features from raw IoT data. This en-
coder is hard-shared across all tasks, ensuring that early layers
capture patterns common to anomaly detection, while later
layers refine these features for task-specific objectives. Shared
encoders are a standard approach in multi-task learning to
reduce redundancy and improve generalization.

The binary branch is the lightweight head that receives the
shared features and outputs a scalar anomaly probability
indicating whether the input is normal or anomalous. The
output is also reused as a gating signal to modulate down-
stream processing. Gating mechanisms are commonly used
in attention-based architectures to dynamically suppress ir-
relevant features.

The coarse branch performs coarse-grained anomaly clas-
sification. It applies an attention mechanism to the shared
features, refining them using the binary gating signal and pre-
liminary category logits. The attention mechanism computes
feature-wise importance weights, focusing on dimensions
most relevant to distinguishing broad anomaly categories.
The fine-grained branch identifies fine-grained anomaly sub-
types. It takes as input a fusion of attention-refined features
from the coarse branch, the binary gating signal, and the pre-
dicted category. This hierarchical design mirrors strategies
used in multilevel classification tasks, where coarse predic-
tions inform finer distinctions.

All components are jointly trained end-to-end. The shared
encoder is updated by all three tasks, encouraging it to learn
useful features in binary, categorical, and subcategorical
decisions. Selective feature flow ensures that computational
effort is focused where needed the most (e.g., suppressing
processing for benign samples).

3.2. Input Representation and Shared Encoder

The model processes a static feature vector x € R, which
encapsulates critical IoT traffic characteristics.

These include network flow statistics (e.g., packet counts, byte
rates), packet-level attributes (i.e., protocol types, payload
sizes), and temporal dynamics such as traffic variations over
sliding windows. The shared encoder consists of three dense
layers with ReLLU activation (256, 256, and 128 neurons,
respectively), designed to extract foundational representations
while minimizing redundancy between tasks. The final output
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of the shared encoder is defined as:

Xshared = ReLU [Del’l86128 (ReLU(Denseg56 (x)))] , (D

where nested ReLU activations ensure non-linearity at each
layer.

This design aligns with multitask learning principles, enabling
knowledge transfer by learning task-agnostic representations.

3.3. Binary Classification Branch

The binary classification branch employs a shallow struc-
ture comprising a single dense layer (128 neurons, ReLU
activation) followed by a softmax output:

Ybin = softmax [Denseg (Denselzg(xshared))] . 2)

This prioritizes computational efficiency for edge deployment,
balancing accuracy and inference speed. The output Y,
serves dual purposes: direct binary anomaly detection (normal
vs. anomalous) and generating a gating signal pmaticious tO
modulate downstream processing.

3.4. Gated Coarse Classification Branch

To refine predictions, the malicious probability pmalicious 1S
extracted from ¥, via a lambda layer:

Pmalicious = A (Z = Z[:7 1]) (ybiﬂ) ’ (3)

where z[:, 1] isolates the probability of the anomalous class.

A sigmoid-activated dense layer then generates gating weights
g € [0,1]%8:

g= U(DGHSGIQS(pmalicious)) . )

These gating weights dynamically modulate shared features by
selectively emphasizing relevant dimensions and suppressing
irrelevant ones, particularly for benign samples. Formally, this
modulation is implemented as element-wise multiplication
between gating weights and shared features.

Xgated = Xshared © & - ©)

Dynamic gating significantly reduces unnecessary compu-
tations by minimizing redundant feature processing for be-
nign inputs, enhancing computational efficiency crucial for
resource-constrained 10T environments. The gated features
are then processed by two dense layers (128 neurons, ReLU)
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to produce coarse-grained classification outputs:

Feouse = softmax [Densecourse (Denserss (Xguea)) | - (6)

3.5. Fine-grained Classification Branch

The fine-grained classification branch incorporates two com-
ponents:

Semantic projection is the 8-class output, where Ycoarse iS
projected into the shared feature space to embed coarse-
grained priors:

Xproj = ReLU (Denseas (Feourse) ) - (7

This projection aligns the semantic context with latent fea-
tures, enhancing cross-task knowledge transfer.

The cross-task attention mechanism fuses Xgharea and Xproj:
Xau = Attention (Xshared, Xproj, Xproj) » 8)

where queries Xghareq and keys/values x;,,; compute feature-
wise importance weights.

The attended vector x, is concatenated with Xggeq:

Xconcat — COHC&E(Xgawm xalt) . (9)

This combined representation is passed through a dense layer
(ReLU) and batch normalization:

Xnorm = BatchNorm [ReLU (Denselzs(xconcm))] ) (10)

before yielding the final fine-grained prediction:
Yiine = softmax [Denseﬁnc (xnorm)] . (11)

This hierarchical fusion takes advantage of coarse-level con-
text to constrain fine-grained predictions, improving robust-
ness for closely related subtypes.

4. Experimental Setup and Evaluation

4.1. Dataset Overview

CICIoT2023 [10] is a comprehensive benchmark data set
that captures network traffic from 105 real IoT devices in
a laboratory environment. It includes 33 distinct attacks across
seven categories (DDoS, DoS, Reconnaissance, Web-based
attacks, BruteForce, Spoofing, Mirai botnet) and benign traffic
(e.g., video streaming, sensor data). Features such as flow
duration, packet length, and protocol types are extracted from
pcap files and stored in CSV format. Baseline models (LR,
RF) have been evaluated on binary, 8-class, and 34-class
tasks, making it ideal for comparative studies.

Bot-IoT [12] combines real and simulated IoT traffic with
various cyberattack scenarios. Developed using a realistic
testbed, it addresses limitations of older datasets (e.g., out-
dated attack patterns, poor labeling). Its validity has been
confirmed through statistical analysis and ML experiments.

N-BaloT [11] focuses on botnet detection, containing traffic
from nine commercial IoT devices infected with Mirai and
Bashlite malware. It includes over 7 million records with 115
features, classified into ten categories (primarily DDoS and
remote access attacks).
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Edge-IloTset [13] is a cybersecurity data set for IoT/IIoT
applications, supporting centralized and federated learning.
Generated using a custom testbed, it includes 14 attack types
across five categories (DoS/DDoS, information gathering,
MITM, injection, malware). Of 1 176 initial features, 61 were
selected based on correlation and domain knowledge, ensuring
efficient model training.

4.2. Evaluation Metrics

The performance of the hierarchical multitask DNN is as-
sessed using accuracy, precision, recall, F1 score, and AUC-
ROC. The definitions of the aforementioned terms are pro-
vided below:

Accuracy = TP+TN (12)
YT TPYTN+FP+FN’
TP
Precision = TPLFP’ (13)
TP
Recall = m y (14)

Precision x Recall
F1 =2X — 15
seore x Precision + Recall ’ (15

where TP, TN, FFP, and F'N denote true/false posi-
tives/negatives.

The F1 score is prioritized due to class imbalance in IoT
security datasets.

4.3. Model Training

The model is trained on 80% of the data (64% training, 16%
validation), with 20% held for testing. Pre-processing includes
label mapping and feature normalization. Hyperparameters
are tuned iteratively: learning rate 10~> (Adam optimizer),
batch size 512, epochs 127 (one CSV file per epoch to manage
memory).

The loss function is:

[«lolal = Abin Ebin + Aim Acim + )\ﬁne Acﬂne B (16)

with Apin, Aint, and Aspe as task-specific weights.

Figure 2 shows training/validation curves. The binary head
converges faster than multiclass heads, reflecting its simplici-
ty. The validation accuracy plateaus earlier for coarse tasks,
suggesting diminishing returns beyond 80 epochs.

5. Experimental Results

The proposed lightweight multitask DNN demonstrates ro-
bust performance across the IoT datasets used. With 245 249
parameters (2.4 MB in size) and an average inference time of
122 ps per flow, the model is optimized for real-time deploy-
ment on resource-constrained devices. Hierarchical classifi-
cation tasks are evaluated, with macro and weighted average
metrics summarized in Tab. 2.

5.1. Binary Classification

The binary classification results (Tab. 3, Fig. 3) show near-
perfect or perfect separation between benign and malicious
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Fig. 2. Performance of training and validation of the proposed model on the CICIoT2023 data set: a) binary classification b) 8-class category

classification, and c) 34-class fine-grained subtype classification.

Tab. 2. Summary of the macro- and weighted-average metrics results
on the test splits of the four datasets.

M Weighted
Dataset Level acro cehte
P R Py P R P
Binary 96.0 | 97.0 | 97.0 | 100.0| 100.0| 100.0
CICIoT
2023 Category | 92.0 | 78.0 | 82.0 | 99.0 | 99.0 | 99.0
Subtype | 83.0 | 75.6 | 77.2 | 99.2 | 99.2 | 99.2
Binary 100.0{ 100.0| 100.0| 100.0| 100.0| 100.0
N-BaloT | Category | 100.0| 100.0| 100.0| 100.0| 100.0| 100.0
Subtype | 97.0 | 89.0 | 87.0 | 91.0 | 88.0 | 83.0
Binary 98.5 | 96.7 | 97.6 | 99.3 | 984 | 98.8
Bot-IoT | Category | 99.2 | 95.1 | 97.0 | 99.2 | 97.1 | 98.1
Subtype | 904 | 87.9 | 87.7 | 95.0 | 93.7 | 93.6
Binary 100.0|{ 100.0| 100.0| 100.0| 100.0| 100.0
EdgelloT
Category | 89.0 | 87.0 | 87.0 | 98.0 | 97.0 | 97.0

traffic across all data sets. N-BaloT, Bot-IoT, and Edge-IloT
report 100% precision, recall, and F1 score, confirmed by
diagonal dominance in confusion matrices. For CICIoT2023,
4% of benign flows are misclassified as malicious. This occurs
because low-level attacks (i.e., reconnaissance scans) mimic
benign behaviors, creating subtle overlaps in header-level
features like packet size distributions and interarrival times.
These patterns suggest that the model struggles to distinguish
benign traffic from low-intensity adversarial activities that
exploit normal protocol behaviors, such as slow port scans or
HTTP GET requests.

5.2. Coarse-grained Classification

Coarse-grained classification (Tab. 4 and Fig. 4) identifies
broader attack families (e.g., DDoS, DoS, Mirai, Reconnais-
sance). On CICIoT2023, the model attains 99.5% weighted
accuracy, but struggles with underrepresented classes like
web-based (40% recall) and BruteForce (24% recall). These
errors arise from feature overlap in HTTP methods and port
usage, where web-based attacks share characteristics with re-
connaissance activities (e.g., POST requests, standard ports
80/443). Edge IIoT achieves 97.13% accuracy, though pass-
word attacks and SQL injections exhibit sub-80% precision.
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Fig. 3. Confusion matrices for binary anomaly detection across
the four benchmark datasets. Each matrix shows the distribution of
predicted versus actual classes (benign vs. malicious).

This reflects structural similarity in authentication-related be-
haviors, such as repeated log-in attempts over TCP, which the
model conflates with other high-frequency traffic.

Bot-IoT and N-BaloT maintain near-perfect scores across
all categories, with dominant classes (DDoS, DoS, Mirai)
classified with over 99% precision and recall. Confusion
matrices highlight diagonal dominance for major categories,
confirming the strength in distinguishing broad attack types
through rate-driven features, e.g., packet-per-second rates,
and flow duration.

5.3. Fine-grained Classification

Fine-grained classification (Tab. 5, Fig. 5) targets specific sub-
types (DDoS UDP Flood, OS Fingerprinting). Although the
weighted accuracy remains high (99.24% on CICIoT2023),
the performance varies significantly for rare or overlapping
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Tab. 3. Performance of the binary classification of the proposed model across four benchmark data sets.

Dataset Class/metrics Precision Recall F1 score Support
Benign 92.00% 95.00% 93.00% 126215
Malicious 100.00% 100.00% 100.00% 5232168
CICIoT2023 Accuracy 100.00%
Macro avg 96.00% 97.00% 97.00% 5358383
Weighted avg 100.00% 100.00% 100.00% 5358383
Benign 100.00% 100.00% 100.00% 111186
Malicious 100.00% 100.00% 100.00% 1301336
N-BaloT Accuracy 100.00%
Macro avg 100.00% 100.00% 100.00% 1412522
Weighted avg 100.00% 100.00% 100.00% 1412522
Normal 97.1% 93.5% 95.2% 107
Attack 100.00% 100.00% 100.00% 733598
Bot-IoT Accuracy 100.00%
Macro avg 98.5% 96.7% 97.6% 733705
Weighted avg 99.3% 98.4% 98.8% 733705
Normal 100.00% 100.00% 100.00% 323129
Attack 100.00% 100.00% 100.00% 120712
EdgelloT Accuracy 100.00%
Macro avg 100.00% 100.00% 100.00% 443 841
Weighted avg 100.00% 100.00% 100.00% 443 841

subcategories. Dominant subtypes like DDoS TCP Flood and
Mirai achieve an F1 score, driven by distinctive volumetric
patterns (sustained high packet rates, unique combinations of
TCP flags).

However, minority classes such as XSS (12.18% recall) and
Uploading attack (0% precision/recall) are systematically mis-
classified. In CICIoT2023, Sqllnjection, CommandInjection,
and BrowserHijacking are frequently conflated due to shared
HTTP methods (POST) and common port usage, which the
flow-level metadata cannot disentangle. The Bot-IoT OS fin-
gerprint class is largely absorbed by the service scan and TCP
categories, likely because the aggregate statistics do not cap-
ture TTL variations critical to fingerprinting. N-BaloT TCP
flag variants (ACK flood) exhibit 0% recall, indicating insuf-
ficient feature representation for flag-based distinctions, such
as ACK-ratio thresholds.

5.4. Ablation Study

An ablation study in CICIoT2023 (Tab. 6) underscores the
importance of architectural components in ensuring good
performance. Removal of the shared encoder, a core element
that enables MTL, degrades category classification by 10.41
percentage points and subcategory classification by 5.8 points.
This highlights the necessity of shared representations to
propagate discriminative features across hierarchical tasks.

The gating mechanism, which propagates features from bi-
nary tasks to category tasks, improves the category F1 score
by approx. 4 points, while attention and batch normaliza-
tion contribute approx. 3-point gains across multiclass tasks.
These findings emphasize the interdependence of architec-
tural elements in maintaining hierarchical consistency and
mitigating the propagation of errors.
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5.5. Baseline Comparison

Baseline comparisons (Tab. 7) further validate the model’s
superiority. Against classical methods like RF and Adaboost
[10], multitask DNN achieves higher recall and F1 score,
particularly in high-granularity settings. For example, in the
34-class classification on CICIoT2023, the model outperforms
RF by 10 percentage points in the recall and 4 points in F1
score.

This gap widens with class imbalance and feature overlap,
demonstrating the advantage in leveraging shared patterns
across tasks to mitigate data scarcity in minority classes.

6. Discussion

The proposed lightweight multitask deep neural network
(DNN) demonstrates robust performance across diverse IoT
intrusion detection tasks, validating its suitability for real-
time deployment in resource-constrained environments. Using
shared representations across hierarchical classification levels,
the model achieves high accuracy (up to 100% weighted F1
score) while maintaining computational efficiency. These re-
sults affirm the advantages of multitask learning in balancing
generalization and specificity. However, limitations emerge
in distinguishing rare or structurally similar subcategories,
highlighting critical areas for improvement.

The model excels at identifying dominant attack patterns,
particularly volumetric floods such as DDoS UDP_Flood,
Mirai and protocol-driven anomalies, e.g., SYN floods. Across
all datasets, these classes achieve near-perfect precision (over
99%) and recall (> 99%), driven by rate-based features (flow
duration, packet-per-second rates) and distinct TCP/UDP flag
patterns. For example, N-BaloT and Bot-IoT exhibit 100%
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Fig. 4. Confusion matrices for coarse-grained attack classification across the four datasets: CICIoT2023, N-BaloT, Bot-IoT, and Edge-IIoT.
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Fig. 5. Confusion matrices for fine-grained attack subtype classification across the CICIoT2023, N-BaloT and Bot-IoT datasets.

binary classification accuracy, reflecting a flawless separation
between benign traffic and large-scale attacks. Similarly,
CICIoT2023 achieves 99.5% weighted accuracy in coarse-
grained classification, with DDoS, DoS, and Mirai categories
showing diagonal dominance in confusion matrices.

These successes stem from the model’s ability to exploit tem-
poral and volumetric signals, eg, burst traffic patterns, high
packet rates, that distinguish dominant attacks from normal
behavior. The shared encoder further enhances generalization
by propagating discriminative features across tasks, as evi-
denced by the ablation study: removing the shared encoder
degraded category classification by 10.41 percentage points.

Minority classes (XSS, BruteForce, SQL injection) suffer
from poor recall (< 40% in CICIoT2023), exacerbated by
two interrelated factors. First, severe data imbalance plagues
these categories, with minority classes such as XSS (427 sam-
ples in CICIoT2023) outnumbered by dominant attacks by
1 -3 orders of magnitude. Second, feature ambiguity arises
from shared protocol fields (e.g., HTTP POST methods, stan-
dard ports 80/443) and negligible inter-packet gaps, creating
overlaps that obscure distinctions between classes.

For example, CICIoI'2023’s Web-based and BruteForce class-
es are frequently misclassified due to indistinguishable header-
level statistics, even though precision remains above 90%.
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In N-BaloT, TCP flag variants (e.g. ACK floods) exhibit 0%
recall, revealing a lack of explicit flag-based features, e.g.
ACK-ratio thresholds. Similarly, Bot-IoT’s OS Fingerprinting
class (3 621 samples) is misclassified as Service Scan due to
aggregate statistics failing to capture TTL and window-size
variations. These errors underscore the model’s inability to
isolate subtle protocol behaviors when critical discriminative
features are absent from the input representation.

Flow-level metadata lacks critical granular cues (e.g., pay-
load entropy, token sequences) for low-volume attacks. In
CICIoT2023, SQL Injection, Command Injection, and Brows-
er Hijacking are conflated due to shared HTTP methods and
port usage, achieving only 19 —43% recall. This limitation
highlights the inherent constraints of header-only analysis in
distinguishing attacks that rely on nuanced payload content
or application-layer logic.

The ablation study underscores the importance of key archi-
tectural components. The gating mechanism, which propa-
gates binary-to-category features, improves F1 scores by 4
points, while attention contribute 3-point gains in multiclass
tasks by enhancing feature adaptability.

In the 34-class CICIoT2023 classification, DNN outperforms
RF by 10 percentage points in recall and 4 points in F1
score, demonstrating the advantage in mitigating data scarcity
through shared representations.
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Tab. 4. Coarse-grained classification performance on datasets.

Class/metrics Precision  Recall F1score Support
CICIoT2023
Benign 92.00% 96.00% 94.00% 126215
DDoS 100.00%  100.00% 100.00% 3900126
DoS 100.00%  100.00% 100.00% 928707
Mirai 100.00%  100.00% 100.00% 302220
Spoofing 87.00% 83.00% 85.00% 55813
Recon 83.00% 81.00% 82.00% 40963
‘Web-based 90.00%  40.00% 55.00% 2804
BruteForce 83.00% 24.00% 37.00% 1535
Accuracy 99.50%
Macro avg 92.00% 78.00% 82.00% 5358383
Weighted avg 99.00% 99.00% 99.00% 5358383
EdgelloT
Normal 100% 100% 100% 323129
MITM 100% 100% 100% 243
Uploading 90% 68% 77% 7527
Ransomware 82% 90% 86% 2185
SQL_injection 80% 57% 67% 10241
DDoS_HTTP 93% 90% 91% 9982
DDoS_TCP 99% 93% 96% 10012
Password 52% 79% 63% 10031
Port_Scanning 86% 94% 90% 4513
Vulnerability_scanner 100% 92% 96% 10022
Backdoor 97% 96% 96% 4972
XSS 68% 85% 75% 3183
Fingerprinting 91% 55% 68% 200
DDoS_UDP 100% 100% 100% 24314
DDoS_ICMP 100% 100% 100% 23287
Accuracy 97.13%
Macro avg 89% 87% 87% 443841
Weighted avg 98% 97% 97% 443 841
Bot-IoT
Normal 98.0% 92.5% 95.2% 107
DDoS 98.9% 99.3% 99.1% 385309
DoS 99.2% 98.8% 99.0% 330112
Reconnaissance 99.9% 99.1% 99.5% 18163
Theft 100.0% 85.7% 92.3% 14
Macro avg 99.2% 95.1% 97.0% 733705
Weighted avg 99.2% 97.1% 98.1% 1467410

7. Conclusions

Comprehensive experiments on four benchmark data sets
demonstrate the robustness of the proposed model across mul-
tiple classification levels. Despite its strengths, HC-MTDNN
encounters challenges with fine-grained detection of struc-
turally similar or low-prevalence attacks, such as XSS and
SQL injection. This low effectiveness is not merely a limita-
tion in feature discriminability or class imbalance, but a direct
consequence of the model’s reliance on flow-level metadata,
excluding payload analysis. This is a conscious design trade-
off to maintain the lightweight nature, enabling deployment
in resource-constrained IoT settings where full packet inspec-
tion may be infeasible due to encryption, privacy concerns,
or computational overhead.

Future work will be focused on augmenting the feature space
with lightweight payload-derived statistics (e.g., entropy met-
rics, token frequencies), temporal behavior modeling, and
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Tab. 5. Coarse-grained classification performance.

Class/metrics Precision Recall ¥ Support
score
CICIoT2023
Benign 92.00% 96.00% 94.00% 126215
DDoS-ICMP_Flood 99.96% 99.96% 99.96% 826914
DDoS-UDP_Flood 99.85% 99.94% 99.90% 618833
DDoS-TCP_Flood 99.89% 99.92% 99.91% 516498
DDoS-PSHACK_Flood 99.98% 99.96% 99.97% 471782
DDoS-SYN_Flood 99.83% 99.90% 99.87% 466143
DDoS-RSTFINFlood 99.98% 99.93% 99.96% 463864
DDoS-SynonymIP_Flood 99.92% 99.87% 99.89% 412675
DDoS-ICMP_Fragmentation | 99.53% 99.26% 99.40% 52443
DDoS-UDP_Fragmentation 99.01% 99.38% 99.20% 32820
DDoS-ACK_Fragmentation 98.97% 99.16% 99.07% 32211
DDoS-HTTP_Flood 98.16% 97.95% 98.05% 3216
DDoS-SlowLoris 87.02% 96.11% 91.34% 2727
DoS-UDP_Flood 99.90% 99.83% 99.87% 380875
DoS-TCP_Flood 99.97% 99.82% 99.90% 306346
DoS-SYN_Flood 99.84% 99.76% 99.80% 233180
DoS-HTTP_Flood 98.69% 98.03% 98.36% 8306
Recon-HostDiscovery 76.94% 83.96% 80.30% 15479
Recon-OSScan 62.74% 38.84% 47.98% 11304
Recon-PortScan 56.25% 59.77% 57.96% 9590
Recon-PingSweep 73.08% 7.09%  12.93% 268
VulnerabilityScan 94.47% 97.27% 95.85% 4322
MITM-ArpSpoofing 88.89% 81.47% 85.02% 35240
DNS_Spoofing 72.19% 69.28% 70.71% 20573
DictionaryBruteForce 68.48% 29.58% 41.31% 1535
BrowserHijacking 81.07% 20.33% 32.50% 674
XSS 29.71% 12.18% 17.28% 427
Uploading_Attack 0.00%  0.00%  0.00% 137
Sqllnjection 55.56% 19.13% 28.46% 575
CommandInjection 53.55% 43.21% 47.83% 611
Backdoor_Malware 39.02% 25.26% 30.67% 380
Mirai-greeth_flood 99.00% 99.63% 99.31% 113958
Mirai-udpplain 99.94% 99.94% 99.94% 102242
Mirai-greip_flood 99.52% 98.64% 99.08% 86020
BenignTraffic 90.74% 97.01% 93.77% 126215
Accuracy 99.24% 99.24% 99.24%
Macro avg 82.99% 75.63% 77.21% 5358383
Weighted avg 99.21% 99.24% 99.21% 5358383
Bot-IoT
normal 99.0%  93.5%  96.2% 107
HTTP 98.6%  97.6%  98.1% 504
Keylogging 72.2%  92.9%  81.3% 14
OS_Fingerprint 76.9%  34.1%  47.3% 3621
Service_Scan 86.0% 97.0% 91.1% 14542
TCP 99.9%  100.0% 100.0% 318337
UDP 100.0% 100.0% 100.0% 396580
Macro avg 90.4%  87.9%  87.7% 733705
Weighted avg 95.0%  93.7% 93.6% 1467410
N-BaloT
Benign 100.00% 100.00% 100.00% 128410
Combo 100.00% 100.00% 100.00% 111186
Junk 100.00% 100.00% 100.00% 103311
Scan 100.00% 100.00% 100.00% 52146
TCP 100.00% 100.00% 100.00% 158466
UDP 100.00% 100.00% 100.00% 146498
ACK 100.00% 0.00%  0.00% 172261
SYN 72.00% 100.00% 83.00% 435529
udpplain 100.00% 100.00% 100.00% 104715
Accuracy 87.80%
Macro avg 97.00% 89.00% 87.00% 1412522
Weighted avg 91.00% 88.00% 83.00% 1412522
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Tab. 6. Ablation study results in the CICIoI'2023 dataset, evaluating
the contribution of key architectural components to the proposed

model.
Binary Category Subcategory
Variant F1. AUC | Fy A F1 A
[%e] [%e] [%e] [pts] [%o] [pts]
HC-
MIDNN | 9984 9995 | 8153 — 7721 —
No attention | 99.77 99.92 | 7848 —3.05 | 74.06 | -3.15
Nobatchnor- | g 26 9995 | 7709 _354 | 74.00 | —321
malization
Nogating | 9976 99.92 | 7743 —4.10 | 73.72 | —3.49
Nogating, 1 9905 9993 | 7893 260 | 73.86 | -3.35
no attention
Noshared 1 577 9986 | 7112 -1041 | 7141 | -5.80
encoder

sequence-aware components. These additions could improve
classification fidelity without sacrificing real-time capabili-
ty. Addressing encrypted traffic detection through enhanced
metadata analysis and equipping the model with mechanisms
for continuous learning and uncertainty estimation would
further expand its applicability.
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