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Abstract  Millimeter-wave (mmWave) communication is a key
enabler of 5G and future wireless systems, providing vast band-
width for high-speed data transfers. However, high user mobility
leads to significant Doppler shifts, which can severely degrade
the performance of beamforming – an essential technology for
mmWave systems. The traditional hybrid beamforming (HBF)
technique faces challenges in adapting to rapid channel vari-
ations caused by Doppler effects. Therefore, this paper intro-
duces a deep learning framework to mitigate Doppler-induced
channel distortions in hybrid beamforming. We propose a long-
short-term memory (LSTM)-based neural network that predicts
Doppler shifts and dynamically adjusts the hybrid beamforming
vectors to compensate for these variations. This approach proac-
tively addresses channel distortion, enhancing both spectral and
energy efficiency. The simulation results and the performance
comparison of proposed model against conventional beamform-
ing and state-of-the-art techniques demonstrate the superiority
of deep learning-based solution in maintaining robust commu-
nication links under high-mobility conditions, showcasing its
potential to improve performance in next-generation wireless
networks.
Keywords  Doppler shift, hybrid beamforming LSTM, mmWave,
spectral efficiency

1. Introduction

The huge growth in mobile data traffic, driven by applications
such as ultra-high definition video, autonomous systems, and
the Internet of Things (IoT) [1] has resulted in demand for un-
precedented data rates and ultra-low communication latency.
This demand has propelled wireless communication into the
millimeter-wave (mmWave) (30 – 300 GHz) spectrum, [2]
a frontier defined by its vast contiguous bandwidth.
However, the mmWave spectrum presents physical challenges,
such as severe loss of path loss and susceptibility to block-
age [3]. To overcome these limitations, large-scale antenna
arrays are employed to achieve high-gain beamforming, focus-
ing signal energy into narrow, directional beams to establish
and maintain a robust communication link. To manage costs,
hardware complexity and power consumption with fully digi-
tal beamforming, hybrid beamforming (HBF) has emerged as
a consensus energy-efficient architecture [4]. By partitioning
the beamforming task between a high-dimensional analog
domain (using phase shifters) and a low-dimensional digital

domain (at baseband), HBF provides a balance of array gain
and system cost.
Despite its architectural merits, the efficacy of HBF depends
on accurate and real-time channel state information (CSI).
In high-mobility scenarios, such as vehicle-to-everything
(V2X) communication, high-speed rail, and drone networks,
this contingency becomes a bottleneck [5]. The movement
between the transmitter and the receiver causes significant
Doppler shifts manifesting as rapid phase variations in the
channel [6]. This phenomenon causes the channel to decom-
pose over time, invalidating the “quasi-static” assumption
upon which conventional, reactive beam-tracking algorithms
and codebook-based HBF solutions are built. It leads to se-
vere performance degradation, inter-channel interference, and
even link failure.
Coherence time shrinks at highway speeds, making reactive
beam updates insufficient [2], while classical Kalman filter
(KF) and extended Kalman filter (EKF) [7] trackers update
angles and recent deep learning works often predict beam
indices, they do not incorporate the hybrid analog-digital pair
at each slot from a predicted complex channel, thus leaving
a gap in Doppler-aware HBF design.
Researchers identified the time-series nature of the prob-
lem, applying recurrent neural networks (RNN) [8] and their
variants, such as LSTM and gated recurrent units (GRU), to
predict future channel states [9].
Despite that, the research gap persists. Most current works
focus on the prediction of the full-dimensional, unconstrained
CSI matrix. There is still a significant disconnect between
this high-dimensional prediction and its practical, real-time
application within the constrained HBF architecture. Recently,
research has moved to exploring alternatives, such as deep
reinforcement learning (DRL) for policy-based beam control
[10] and transformer-based models for long-range temporal
dependency. Although promising, DRL models can suffer
from training instability, and transformers carry a significant
computational overhead.
Conventional hybrid beamforming techniques, which rely
on the assumption of a quasi-static channel, fail in high-
mobility mmWave environments due to rapid channel decor-
relation [11]. Although recent deep learning models demon-
strate the ability to predict channel variations, there is a re-
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search gap in developing a framework that efficiently and
proactively integrates the predictive information into the phys-
ically constrained and latency-constrained hybrid beamform-
ing architecture in order to maintain robust, high-throughput
communication links [12].
In such a context, we propose a pipeline type, where an LSTM
predicts Ĥ(t + 1) from the past K channels, and next that
prediction drives analog and digital stages under constant
module constraints.
Recent works on mobility-robust mmWave links mainly tracks
beams with state-space filters, i.e. KF/EKF or learns beam in-
dices directly with neural networks, often without redesigning
the full hybrid analog-digital chain under motion.
The contribution of this paper can be summarized as follows:
• The impact of high Doppler shifts on the time-varying

mmWave channel is modeled and effect quantified on
a conventional hybrid beamforming system.
• The predict-then-design deep learning framework is used,

centered on an LSTM-based predictive engine, which
proactively forecasts the evolution of the mmWave channel
and directly computes the required compensatory HBF
vectors.
• A dynamic HBF compensation algorithm is implemented

that translates the LSTM predictive output into real-time,
constrained analog and digital beamforming commands.
• A comprehensive simulation-based performance evalua-

tion is presented, benchmarking the proposed framework
against conventional (extended Kalman filter-based) and
orthogonal matching pursuit (OMP) methods in terms of
spectral efficiency, energy efficiency, and link robustness
under various high-mobility scenarios.

The paper is organized as follows. Section 2 reviews relat-
ed work. Section 3 presents the method concerned, while
Section 4 discusses the simulation results and evaluates the
performance. Section 5 concludes the paper.

2. Related Work

The authors of [7] provide a insight into extended Kalman
filters, which are solution for non-linear tracking problems.
In this context, EKF works in a two-step predict-update
loop. It uses the system’s mobility model to predict the next
channel state and the actual received pilot signal to correct the
prediction. Particle filters are a more robust, non-parametric
alternative to EKF. They represent the channel state not as
a single estimate with covariance (like EKF), but as a cloud
of thousands of weighted particles [7].
In both approaches, the computational complexity is extreme-
ly high. EKFs involve large matrix inversions at every time
step, and particle filters are more brittle, relying on an accu-
rate pre-defined mathematical model of the user’s movement,
which is not suitable in highly dynamic environments.
A hierarchical beam sweeping method is proposed in [12],
where instead of estimating the full channel matrix, the system
simply tries to find the best pre-set beam. A hierarchical search

avoids testing all beams. First, it uses wide beams to find
the general direction, and then zooms in with progressively
narrow beams. Unfortunately, such methods are difficult to
adapt. A high-speed user can travel out the optimal beam in the
time it takes the algorithm to complete its sweep-and-search
process. Hence, this method is fundamentally reactive. It can
only fix a beam misalignment after it has already occurred
and caused performance degradation.
The importance of using the HBF architecture is explained
in [4]. The analog beamformer has a large matrix of simple,
low-cost phase shifters but does the coarse beam steering,
while the digital beamforming has an expensive single antenna
element, dedicated, and power-hungry radio frequency chain.
Therefore, the hybrid beamforming architecture is considered
a compromise between analog and digital architecture with
few RF chains.
The HBF architecture using codebook-based precoding is
described in [13]. The codebook is a predefined set of high-
performance analog and digital beamforming vectors. The
system tracking job is reduced by selecting the best index
of this codebook. The problem with this method lies in the
codebooks designed for static and slowly varying channels.
The entire codebook is generated offline, assuming the chan-
nel is stable. The Doppler effect breaks this assumption. The
true optimal beam for high-speed user will likely lie in be-
tween any two precalculated beams in the codebook, leading
to a constant, suboptimal quantization error.
The authors in [10] mentioned that modern wireless channels
are so complex (with blocks, reflections, and mobility) that
model-based approaches from [7], [12], are no longer feasible.
They conclude that machine learning and deep learning act as
universal function approximates to learn the complex mapping
from received pilots to optimal beam directly from data,
without needing a perfect mathematical model.
Paper [6] is the first attempt to apply deep learning to the
problem. A convolutional neural network (CNN) is designed
to treat the channel matrix H(t) as an image. CNNs are
good at finding spatial features with the ability to detect,
in the channel matrix, patterns such as dominant paths and
their angles to determine the best beam at that instant. The
downside of this method is that CNNs are not inherently
designed to capture temporal dependencies. With no memory
of the past, a CNN cannot see the user movement trend and,
therefore, cannot predict the future.
The method of time series forecasting based on the require-
ment of the dynamic wireless channel is presented in [8]
and [9], which is exactly why RNNs like LSTM and GRU
are built. Unlike CNN, the LSTM has a memory that allows
it to process a sequence of past channels to learn the un-
derlying dynamics of the user’s motion. The goal of these
methods is purely prediction-oriented and they prove to be
highly accurate [9].
The critical gap in the methods described in [7] and [8]
is that they do not specifically address the integration of
these predictions into the hybrid beamforming framework for
Doppler mitigation. Both end at the prediction of Ĥ(t+ 1),
but they do not provide an answer as to what is going to be
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Tab. 1. Related literature vs. proposed method.

Approach Predicts/tracks
Uses prediction to

design both analog and
digital HBF each slot

Mobility
focus/Doppler Remarks

EKF beam tracking [7] Angles/kinematics No Vehicular EKF with
Jacobians

Model-driven; low
complexity; sensitive to

mismatch

DL beam tracking [6] Beam index No Mobility under
sounding

High accuracy; not coupled to
the hybrid precoder/combiner

Sub-6 mmWave
beam/blockage [8] Beam/blockage No Mobility/robustness Multiband features; no HBF

co-design

DL-HBF
surveys/reviews [11] – Varies Discuss challenges

Surveys DL for HBF; limited
Doppler-aware co-design

exemplars

This work
(LSTM-HBF) Channel (complex) Yes Explicit Doppler via

sequence prediction

Adds the SE-loss bound,
complexity, and full

reproducibility

H

RF chain

RF chain

RF chain

RF chain

Digital
baseband

beamformer

Digital
baseband
combiner

Analog beamformer Analog combiner

Ns

Nt Nr

NsNRF
t

NRF
r

Fig. 1. Hybrid analog-digital architecture with Nt antennas and N tRF RF chains at BS and Nr , NrRF at UE side.

done next. There is a gap in how to use this predicted full-
digital matrix Ĥ(t+ 1) to calculate constrained analog FRF
and digital FBB matrices. These calculations have to be done
quickly enough to proactively mitigate the Doppler effect.
The proposed method is based on these foundations, but it
is distinct in its focus on proactively mitigating the Doppler
effect in hybrid beamforming using a predictive LSTM model.
It aims to bridge the gap between deep learning-based channel
prediction and practical hybrid beamforming design for high-
mobility mmWave systems. Table 1 shows the comparison of
the proposed method with other articles.

3. Research Methodology

The proposed system consists of a massive mmWave MIMO
block with a hybrid beamforming architecture, as shown
in Fig. 1. The time-varying channel H(t) is modeled as
a sum of the multiple paths (multipath fading). Each path
is characterized by a Doppler shift fD,l which accounts for

the relative motion of the UE and the BS. The Doppler shift
fD,l for the l-th path is modeled using relative velocity v
and angle of arrival θi. This is important for high-mobility
scenarios, where the Doppler shift significantly impacts the
channel. Matrices FRF (analog precoder) andWRF (analog
combiner) are based on the SVD of the time-varying channel
matrix to align the strongest eigen modes.

3.1. System Model

We consider a single-cell downlink scenario with a base
station (BS) equipped with a uniform linear array (ULA)
NBS or Nt antenna. The mobile user (UE) has a ULA of
NUE orNr antennas. BS uses a hybrid beamforming structure
with NRF RF chains, where NRF ≪ NBS . Let Nt and Nr
denote the numbers of transmit and receive antennas, N tRF
and NrRF the number of RF chains. The Ns number of data
streams, where Ns ¬ min N tRF .
The analog precoder/combiner is defined as FRF ∈
CNt×NtRF ,WRF ∈ CNr×NrRF with constant-modulus en-
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tries: ∣∣ [FRF]ij ∣∣ = 1√
Nt
,
∣∣[WRF]ij∣∣ = 1√

Nr
.

The digital baseband precoder/combiner is FBB ∈
CNt×NtRF ,WBB ∈ CNrRF×Ns and the transmit symbol
vector s ∈ CNs ,E

[
ssH
]
= P
Ns
I with the noise n ∼

CN
(
0, σ2nI

)
. The array response vector for a ULA can be

defined as:

aN (θ) =
1√
N

[
1, e jπd sin θ, e j2πd sin θ, . . . , e jπ(N−1) sin θ

]T
,

(1)

whereN is the number of antennas and θ is the physical angle
of departure or arrival.
Equation (1) defines the response vector for a ULA with N
elements, where each element of the array introduces a phase
change relative to others. The phase change is proportional to
the distance between the antenna’s elements, the wavelength
of the signal, and the angle of arrival or departure.
The antennas are assumed to be in a uniform linear config-
uration, which is typical for MIMO systems, and the phase
shifts depend on the angle of arrival (or departure) relative to
the array axis.
The signal received at the UE can be modeled as:

y(t) =WH
BBW

H
RF H(t)FRF FBB s(t) +W

H
BBW

H
RF n(t) ,

(2)

where:
• H(t) ∈ CNr×Nt is the time-varying mmWave channel

matrix,
• FRF ∈ CNBS×NRF and FBB ∈ CNRF×Ns are the analog

and digital precoders at the BS, respectively, where Ns is
the number of data streams,
• WRF ∈ CNUE×NRF and WBB ∈ CNRF×Ns are the

analog and digital combiners at the UE side,
• s ∈ CNs×1 is the transmitted symbol vector,
• n(t) ∼ CN

(
0, σ2nI

)
is the additive white Gaussian noise.

Equation (2) defines the hybrid beamforming system model,
where the signal received at the UE is a combination of
the transmitted signal through the analog precoding and
digital precoding matrices at the BS as well as the analog
and combining and digital combining matrices at the UE.
Additive white Gaussian noise (AWGN) is assumed at the
receiver with zero mean and variance σ2n [13]. The system
uses hybrid beamforming with separate analog and digital
precoding/combining matrices to achieve power and phase
control.
Figure 2 shows the concept of Doppler effect with an object
moving at relative velocity v and the path angle is defined as
θ between the source and direction of motion of the object.
The Doppler effect causes channel matrix H to vary over
time. We model such a channel using a clustered geometric
model, such as the Saleh-Valenzuela (SV) model [14] (Fig.
3). The channel matrix H(t) at time t is a superposition of
the L scattering paths:

Δd

Δt

λ

θ

Multiantenna
base station

28 GHz
64 antennas

High speed train
v= 30 ... 300 km/h

Motion 
direction

f  =     cos θD
v

Doppler shift
frequency

Fig. 2. Relative velocity v, path angle θ and Doppler shift.

H(t) =

√
NtNr
L

L∑
l=1

αle
j2πfD,ltaNr

(
θAOAl

)
aHNt
(
θAODl

)
,

(3)

where L is the number of paths, αl is the complex gain of the
l-th path, fD,l = vλ cos (θl) is the Doppler frequency of l-th
path, v is the user velocity, λ is the wavelength, and a(.) are
the array response vectors.
This is the clustered geometric channel model, common-
ly used for mmWave channels, especially in high-mobility
scenarios. Each path is associated with a complex gain αl,
and the Doppler shift fD,l introduces a time-varying phase
shift at the receiver. Vectors aNr (θAOAl ) and aHNt(θ

AOD
l ) are

the array response vectors for the UE and BS, respectively,
corresponding to the angles of arrival θr,l and departure θt,l.

3.2. LSTM-based Channel Prediction

The core of the proposed method is an LSTM network that
predicts the H(t) future state of the channel matrix. The
LSTM is particularly suitable for this task due to the ability
to model long-term dependence in sequential data, which is
essential for predicting channel variations in wireless com-
munication systems. The input to the LSTM at time step t is

Multiantenna
base station

Cluster 1 Cluster 2

Cluster 3

Ray 1

Ray 2

Ray 3

Ray 4

Ray 1

Ray 1

Ray 2

Ray 2

Ray 3

Ray 3

User 
equipment

(UE)

Fig. 3. Physical spread of the signal in the channel.
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a sequence of theK most recent channel matrices:

Xt = H(t−K), H(t−K + 1), . . . , H(t− 1) ,

where H(t) ∈ CNt×Nr is the channel matrix at time t,K is
the number of previous time steps considered for predicting
the channel matrix at the current time step.
These matrices are flattened and concatenated into a 2D tensor
which serves as the input to the LSTM network. The LSTM
network will use this sequence of channel matrices to predict
the future state of the channel matrix.
We use a stacked LSTM architecture which involves multiple
LSTM layers to capture both short- and long-term dependen-
cies in the channel evolution:
• Input layer – takes the flattened channel sequence from the

previous time steps.
• LSTM layer 1 – contains 128 LSTM units and processes

the sequence and captures short-term temporal features.
Using tanh as the activation function is standard.
• Layer 2 – with 64 LSTM units helps to learn more com-

plex and longer-term dependencies in the evolution of the
channel.
• Dense layer (fully connected) – with 256 neurons with

ReLU activation function helps in mapping the learned
temporal features to the desired output dimension.
• Output layer – a dense layer with 2×NUE ×NBS neu-

rons (for real and imaginary parts) and a linear activation
function to output the flattened predicted channel matrix
Ĥ(t).

EachH(t) ∈ CNt×Nr is split into Re and Im and concate-
nated along the feature axis, yielding an input tensor of shape
(K, 2NrNt).
The LSTM outputs Ĥ(t + 1) with the same format, which
we reassemble into complex form. Beamformer update is
realized using Ĥ(t+ 1) in following way:
• Compute SVD of:
Hpred =WHRF Ĥ(t + 1)FRF ⇒ U

∑
V H ,

• Pick FRF ,WRF via OMP over steering-vector dictionar-
ies to approximate the dominant singular subspace under
constant-modulus,
• Set FBB = V(:,1:NS) andWBB = U(:,1:NS) with a nor-

malization to meet power. This predict-then-design loop
repeats every coherence block andK (history length) trades
delay for robustness.

For network feature and I/O mapping each complex channel
H(t) ∈ CNt×Nr is split into real/imaginary parts and con-
catenated, yielding an input tensor shape (K, 2NrNt). We use
a stacked LSTM with 128 and 64 hidden units (first returns
sequences, second returns last state), followed by a dense 250
(ReLU) and an output layer of size 2NrNt (linear) that recon-
structs Ĥ(t+1)CNr×Nt . ThenHeff =WHRF Ĥ(t+1)FRF
and design FBB ,WBB are formed via SVD subject to
constant-modulus analog constraints as shown in Fig. 4.
The training process is conducted using the scheme presented
below.

Input sequence
k × (2NN)

LSTM layer 1
128 units

LSTM layer 2
64 units

Dense + output
Dense 256 (ReLU)
output 2NN (linear)

Fig. 4. LSTM network features.

We generate thousands of channel evolution sequences under
various user velocities, angles, and scattering environments
to create a comprehensive training dataset. This dataset rep-
resents the realistic dynamics of the channel matrix over
time.
The loss function used to train the LSTM is the mean squared
error (MSE) between the predicted channel matrix Ĥ(t) and
the actual channel matrixH(t):

L = 1
M

M∑
i=1

∥∥∥Hi(t)− Ĥl(t)∥∥∥2
F
, (4)

whereM is the batch size and ∥.∥F is the Frobenius norm
which calculates the matrix difference between the predicted
and actual channel matrices.
The Adam optimizer is used for training the LSTM [15].
Adam is a popular optimization algorithm due to its adaptive
learning rate and is well suited for training deep networks [16].
The LSTM-based predictive hybrid beamforming is provided
as Algorithm 1, while Fig. 5 shows the flow of the predict-
then-design hybrid beamforming method.

Algorithm 1 LSTM-based predictive hybrid beamforming
Input: PastK channels {H(t−K + 1), . . . ,H(t)} ∈ CNr×Nt

1: Complex → real stack: [ℜ{H(.)},T{H(.)}] ∈ RK×(2NrNt)

2: LSTM prediction: output Ĥ(t+ 1)CNr×Nt
3: Analog dictionaries: At = {aNr (θm)} ,Ar = {aNt (φn)}

(ULA, d = λ/2)
4: OMP (analog stage): select FRF ∈ CNt×N

t
RF ,WRF ∈

CNr×N
r
RF with

∣∣[FRF]ij∣∣ = 1√
Nt
,
∣∣[WRF]ij∣∣ = 1√

Nr
to

best approximate the dominant subspaces of Ĥ(t+ 1)
5: Digital stage: Heff = WH

RF Ĥ(t + 1)FRF take SVD =
UΣV H ;FBB = V(:,1:Ns) andWBB = U(:,1:Ns)
Normalize ∥FRFFBB∥2F = Ns

6: Apply: use FRF ,FBB ,WRF ,WBB at slot t+ 1
Complexity: OMP O

(
Ns
(
|At|Nt + |Ar|Nr

))
;

SVD of NrRF ×N tRF
LSTM inference O (K,NrNtdLSTM )

3.3. Predictive Hybrid Beamforming

The objective of predictive hybrid beamforming is to use
predicted future channel states Ĥ(t) in order to adjust the
beamforming matrices in a proactive manner, thus aiming
to maximize spectral efficiency. This approach is especially
beneficial in dynamic environments where the channel evolves
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Past K channels
[Re{H}, Im{H}]

stacks

Complex to real
Shape: k × (2NN)

LSTM predictor
2-layer LSTM + dense

Output: H(t+1)

Analog stage
OMP over steering

dictionaries

Digital stage

H =W H(t+1)Feff RF RF

Fig. 5. Predict-then-design pipeline.

over time, such as high-mobility scenarios with significant
Doppler shifts. By predicting the future state of the channel
matrix, we can preemptively adjust the beamforming vectors
to better align with the expected future channel conditions,
improving the system performance.
In hybrid beamforming, the goal is typically to maximize the
spectral efficiency, which quantifies the data rate achievable
over a given bandwidth.
Let us define the effective channel as:

Heff (t) =WH
RF H(t)FRF .

With digital processing, the per-slot spectral efficiency is:

R(t) = log2 det

(
Ns +

ρ

Ns

(
WH
BBWBB

)−1 ·
WH
BBHeff (t)FBB F

H
BBH

H
eff (t)WBB

) , (5)

where R(t) is the spectral efficiency in bits/sec/Hz and Ns is
the number of data streams and ρ = P

σ2n
.

In Eq. (5) the expression inside the logarithm is the effective
channel capacity of the system, taking into account both
transmit power and noise. The determinant represents the
total capacity available in the system, considering the effective
channel gain, interference, and noise.
The formulation assumes AWGN at the receiver and perfect
channel state information at the transmitter. Term P

Ns σ2n
is

the SNR per data stream. The determinant and logarithmic
form comes from the Shannon capacity formula for MIMO
systems, where the capacity grows logarithmically with the
SNR, and the determinant represents the overall gain from
the eigenvalues of the system which are captured by the SVD
of the channel matrix.
We define FRF ,FBB ,WRF ,WBB using the predicted Ĥ(t+
1) from the LSTM, subject to constant-modulus constraints on
FRF , WRF and a transmit-power constraint ||FRF FBB ||2F =
Ns.
The optimization problem is non-convex due to the constant-
modulus constraint on the analog beamforming matrices
[17], [18]. The constant-modulus constraint arises because
the analog beamforming matrix (implemented using phase
shifters) can only adjust the phase of each antenna element,
but cannot control the amplitude.
The iterative approach is as follows:
• The first step is to design analog precoder FRF and ana-

log combiner WRF to align with the dominant channel

paths. This is achieved by selecting the columns from ar-
ray response matrix α(φ) from Eq. (1), which describes
the response of the antenna array to different angles that
maximize the projected channel gain.
• Once the analog beamformers FRF and WRF are fixed,

the effective channel matrix at the receiver is:

Ĥeff =WH
RF ĤFRF . (6)

This effective channel matrix represents the combined effect
of analog beam formation at both the transmitter and the
receiver.
Next, we develop the digital precoder FBB and combiner
WBB by performing singular value decomposition (SVD) on
the effective channel Ĥeff :

Ĥeff = Ueff ΣVHeff Σ . (7)

whereUeff andVeff are the left and right singular matrices
Σ = diag (σ1, . . . , σNS ).
The digital precoder FBB and digital combinerWBB are
derived from the right and left singular vectors of the effective
channel:

FBB = Veff , (8)

WBB = Ueff . (9)

These digital matrices align the signal with the strongest eigen
modes of the effective channel and ensure optimal data stream
transmission.
The key advantage of the predictive hybrid beamforming
approach is that the beamforming matrices FRF andWRF
are adjusted proactively based on the predicted future channel
matrix Ĥ(t). This allows the system to track the mobile user
effectively even in the presence of significant Doppler shifts.
By predicting the future state of the channel, the system
can pre-emptively compensate for the variations caused by
mobility, leading to more robust communication in high-
mobility environments.
Per slot LSTM inference is O (K, NrNt dLSTM ). OMP on
steering dictionaries scales as O (Ns (|At|Nt+ |Ar|Nr)).
The digital SVD runs on Heff ∈ CNrRF×NtRF (RF chain
domain), costing O

(
min
{
(NrRF )

2
N tRF , (N

t
RF )

2
NrRF
})

not on full Nr × Nt. Unlike full-digital beamforming, no
large matrix inversion at antenna dimension is required, power
normalization uses small NS ×NS matrices.

4. Results and Discussion

Simulations are carried out in Matlab. Table 2 shows the
simulation parameters and their values used to generate the
results and discuss the concepts presented in this section.
The baseline models used for comparison are as follows.
• Orthogonal matching pursuit (OMP) based hybrid beam-

forming – a well-known iterative algorithm for hybrid
precoding that does not account for Doppler effects [13],
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Tab. 2. Simulation setup parameters.

Parameter Value

Transmitting antenna Nt 64, tunable from 16 to 128
Receiving antenna Nr 16, tunable from 4 to 4
Transmitter RF chains

N tRF
4, tunable from 2 to 8

Receiver RF chains NrRF 4, tunable from 2 to 8
Data streams Ns 4
Carrier frequency 28 GHz
Antenna spacing λ

2

Number of channel paths 5

Mobility
Standardized mobility model
(e.g. 3GPP urban mobility)

30, 120, 300 km/h

• Kalman filter-based hybrid beamforming (KF-HBF) –
a conventional approach for tracking time-varying channels
[7].
• Perfect CSI (upper bound) – an ideal case where instanta-

neous CSI is perfectly known at the transmitter [19].
We consider a mmWave system operating at 28 GHz with
a 100 MHz bandwidth. The BS has a 64-element uniform
linear array (ULA), and the UE has a 16- and 64-element
ULA. We simulate the user velocities from 30 km/h to 300
km/h for different Doppler spreads.
Figure 6 shows the spectral efficiency (SE) plot as a function of
SNR. At low SNR (–10 dB), all methods exhibit nearly equal
performance (∼ 4.5 bits/s/Hz). This convergence is expected
due to noise dominance and limited beamforming gain. As
SNR increases, divergence in performance becomes visible.
At 0 dB, LSTM-HBF at 30 km/h achieves approximately
8.1 bits/s/Hz, which is slightly higher than KF-HBF (∼ 7.9
bits/s/Hz) and OMP (∼ 7.8 bits/s/Hz).
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Fig. 6. Comparison of spectral efficiency for 64T and the 16R
configuration and velocity.
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Fig. 7. Comparison of energy efficiency for 64T and 16R configura-
tion and velocity.

At 10 dB, LSTM-HBF reaches∼ 13.7 bits/s/Hz, outperform-
ing OMP and KF-HBF by ∼ 0.5 bits/s/Hz, with a consistent
margin across mobility variations. At 20 dB, LSTM-HBF
peaks at approximately 19.2 bits/s/Hz, while OMP and KF-
HBF saturate closer to 18.6 bits/s/Hz, suggesting that LSTM-
based learning preserves marginal advantages even under
high-SNR ceilings. Classical OMP/KF beamforming indeed
performs well at high SNRs with low mobility. Our experi-
ments target high-mobility Doppler where analog beams lag;
the predictive design preserves alignment, yielding non-trivial
throughput gains even when baselines appear near-optimal at
20 dB. This is consistent with the coherence-time limits at
mmWave and supports proactive design rather than purely
reactive tracking.
All methods are evaluated on identical channel realizations
with identical power normalization. The mild divergence
near 15 dB is the transition region from noise-limited to
interference/quantization-limited operation, where analog
dictionary granularity and prediction error interact, producing
slightly different slopes across various methods.
Figure 7 shows energy efficiency (EE) as a function of SNR.
At –10 dB SNR, all models operate near 0.9 Mbits/J, with
LSTM-HBF at 60 km/h being slightly lower due to marginal
underperformance in SE. From 0 dB onward, the EE curve
shows more separation, at 5 dB, LSTM-HBF at 30 km/h
achieves ∼ 2.3Mbits/J, leading OMP and KF-HBF by ap-
proximately 0.1 – 0.2 Mbits/J.
At 10 dB, LSTM-HBF continues its linear climb to ∼ 3.4
Mbits/J, surpassing traditional methods by ∼ 0.3 Mbits/J.
By 20 dB, the advantage of EE becomes more noticeable
with LSTM-HBF reaching ∼ 4.2Mbits/J, compared to OMP
(∼ 4.0) and KF-HBF (∼ 4.05). The EE of LSTM-HBF at 120
km/h closely matches the results at 30 and 60 km/h, which
is a strong indicator of model generalization under different
Doppler conditions. KF-HBF shows slight degradation at
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higher SNRs, likely due to estimation errors accumulating
over time, especially under high mobility.
Figure 8 illustrates the variation of spectral efficiency (SE)
with respect to SNR for the proposed LSTM-HBF model at
three different vehicular speeds: 30 km/h, 120 km/h, and 300
km/h, and compares it with two baseline methods: KF-HBF
and static OMP. At an SNR of –10 dB, all schemes exhibit
nearly identical SE, approximately 7.8 bits/s/Hz, as the sys-
tem performance is primarily noise-limited. However, as the
SNR increases, the LSTM-HBF method begins to demon-
strate superior performance. At 0 dB, LSTM-HBF operating
at 30 km/h achieves approximately 13.7 bits/s/Hz, slightly
outperforming KF-HBF and OMP, which reach 13.3 and 13.2
bits/s/Hz, respectively. The performance gap becomes more
pronounced at higher SNR values. At 20 dB, the LSTM-HBF
model at 120 km/h attains a spectral efficiency of approx-
imately 28.6 bits/s/Hz, outperforming KF-HBF and static
OMP by roughly 1.1 and 1.3 bits/s/Hz, respectively.

Figure 9 presents the energy efficiency results for the same
configurations. At an SNR of –10 dB, all models achieve
comparable EE values of ∼1.6 to 1.7 Mbits/J. This similarity
is expected given the low throughput and high relative power
cost in this regime. As SNR increases, the LSTM-HBF model
exhibits a more rapid improvement in EE. At 10 dB, the
LSTM-HBF at 300 km/h achieves an EE of approximately
4.2 × 10−6 Mbits/J, slightly ahead of KF-HBF and OMP,
which remain around 3.9 × 10−6 and 3.8 × 10−6 Mbits/J,
respectively. By 20 dB, the LSTM-HBF model at 120 km/h
reaches the highest energy efficiency of approximately 6.1×
10−6 Mbits/J. In contrast, KF-HBF and static OMP attain
5.9×10−6 and 5.8×10−6Mbits/J, respectively. These results
highlight the dual advantage of LSTM-HBF in maximizing
both spectral and energy efficiency.

5. Conclusions
This paper presents an LSTM-based hybrid beamforming
(LSTM-HBF) approach that aims to improve performance of
mmWave communication under varying mobility and SNR
conditions. The method was benchmarked against traditional
approaches such as static OMP and KF-HBF across various
spectral and energy efficiency metrics.
The results demonstrate that LSTM-HBF consistently
achieves higher performance. Especially, at 20 dB SNR, it
delivers a spectral efficiency of up to 28.6 bits/s/Hz, com-
pared to 27.5 bits/s/Hz for KF-HBF and 27.3 bits/s/Hz for
static OMP. In terms of energy efficiency, LSTM HBF reach-
es 6.1× 10−6 Mbits/J, surpassing the closest benchmark by
a margin of ∼ 0.3× 10−6 Mbits/J. The LSTM-HBF mod-
el exhibits robust performance across all mobility profiles,
spanning from 30 to 300 km/h, with minimal deviation in
both SE and EE, indicating strong resilience to Doppler ef-
fects and time-varying channel conditions. Future work could
explore more complex neural network architectures and in-
vestigate the impact of imperfect channel estimation on the
performance of the proposed model.
By integrating a predictive LSTM network into a hybrid
beamforming framework, we have shown through detailed
modeling and simulated results that significant gains in both
spectral and energy efficiency are achievable, particularly
in high-mobility scenarios where traditional methods fail.
This proactive approach ensures a robust communication
link, making reliable multi-gigabit mobile communication
a practical reality.
The future of this work involves real-life signal analysis with
available datasets by extracting temporal channel slices along
user trajectories and by using the same analog/digital design
steps to compute SE/EE with identical power normalization.
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