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Abstract— The paper reviews recent work in the area of

high-k dielectrics for application as the gate oxide in advanced

MOSFETs. Following a review of relevant dielectric physics,

we discuss challenges and issues relating to characterization

of the dielectrics, which are compounded by electron trap-

ping phenomena in the microsecond regime. Nearly all prac-

tical methods of preparation result in a thin interfacial layer

generally of the form SiOx or a mixed oxide between Si and

the high-k so that the extraction of the dielectric constant is

complicated and values must be qualified by error analysis.

The discussion is initially focussed on HfO2 but recognizing

the propensity for crystallization of that material at modest

temperatures, we discuss and review also, hafnia silicates and

aluminates which have the potential for integration into a full

CMOS process. The paper is concluded with a perspective

on material contenders for the “end of road map” at the

22 nm node.

Keywords— high-k dielectrics, dielectric constant, interfacial

layer, hafnia, aluminates, silicates.

1. Introduction

The challenges around the search for a replacement for sil-

icon dioxide as the gate dielectric in the ubiquitous CMOS

technology are well known to the community. The unique

and excellent intrinsic properties of SiO2 together with its

compatibility with high temperature manufacturing process

and the natural abundance of silicon, have underpinned the

entire development of the $200B silicon industry. However,

the relentless miniaturization or scaling of the MOS transis-

tor and associated infrastructure on chip create the demand

for ever thinner gate oxides. There is a school of thought

that the rate of technology scaling is exceeding the rate

at which circuit designers can fully exploit the advantages

of a given technology node but the momentum behind the

industry and the customer demand for ever faster process-

ing, sets the paradigm. The well-known issue for the gate

oxide then, is that it must become vanishingly thin to con-

trol adequately the electrostatics of the MOSFET channel

and so win in the competition with the drain voltage en-

croachment, to minimise undesirable short channel effects.

In fact, the International Technology Roadmap for Semi-

conductors (ITRS) predicts equivalent oxide thicknesses of

1 nm in 2007, reducing to 0.35 nm for the 22 nm node [1].

Notwithstanding other issues, at least three mono-layers of

SiO2 are required so that “bulk” like properties can be

achieved giving a lower limit for the native oxide in any

event, of about 0.7 nm [2]. Such oxide thickness reduc-

tion comes at a price as the quantum mechanical current

leakage through the gate becomes prohibitively high and so

therefore is the stand by power dissipation in chips contain-

ing a billion individual transistors. The gate leakage must

be reduced without compromising the current drive (ION)

of the transistor so materials with higher dielectric con-

stant (k) are sought to allow a thicker oxide for the same

gate capacitance, so mitigating the leakage problem.

Silicon dioxide is a hard act to follow and any contender

must satisfy stringent requirements. We can summarize the

requirements [3] as relating to:

– thermodynamic stability in contact with Si;

– a high enough k to warrant the cost of R&D – in-

cluding a propensity to be scaled;

– band offsets for electrons and holes > 1 eV which

translates to band gap energies (Eg) > 5 eV tak-

ing into account the inverse relationship between Eg

and k;

– stability through a high temperature CMOS manufac-

turing process and finally, acceptable reliability and

wear-out attributes.

With these constraints in mind, the periodic table reveals

(perhaps not surprisingly) relatively few contenders. In the

short to medium term, taking account of ITRS performance

requirements, the metallic oxide HfO2 is the main con-

tender and its silicates and aluminates can reduce the ten-

dency for crystallization occurring at temperatures beyond

about 450◦C, at the expense of a slight reduction in the

k values. Looking at the requirements for the 22 nm node,

contenders such as Pr, La look to be promising, while Gd,

Ce and Sm oxides are also worthy of consideration in many

respects.

A vast array of metrological techniques has been devel-

oped over the years for characterizing SiO2 both in terms

of very fundamental physics and also engineering perspec-

tives. The techniques represent a self-consistent methodol-

ogy for engineering highly reliable gate oxides in a mass

production environment and there is considerable confi-

dence in this technology. It soon became clear that the

new dielectrics have properties that require the experimen-

tal techniques to be reexamined and recalibrated. Taking

the case of HfO2, the rapid electron trapping which gives

rise to a significant threshold instability has required the es-

tablishment of high bandwidth measuring systems with data

capture times of the order of microseconds or less. Turning

to physical characterization, spectro-ellipsometry (SE) rep-

resents a very powerful tool for obtaining fundamental pa-

rameters and properties such as oxide thickness, dielectric
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constant and band gap. Studies of the losses (complex part

of the permittivity or absorption coefficient) can provide

information regarding defect levels in the oxide band gap

and importantly, at the band edges. The SE together with

standard C-V and I-V measurements can provide powerful

self-consistent, non-destructive schemes for characterizing

these materials.

To address the above points, we have structured the paper as

follows. In Section 2 we outline the dielectric physics that

underpins the engineering of the k value and in Section 3

we discuss methodologies for accurately determining exper-

imental k values from C-V, spectroscopic ellipsometry and

complementary techniques. We present a brief overview of

trapping effects in high-k materials in Section 4. Section 5

contains a review and appraisal of aluminates and silicates

of hafnia that allow for higher process temperatures. Sec-

tion 6 presents the case for likely materials for the 22 nm

node and the paper is concluded in Section 6.

2. How to increase k – dielectric physics

Figure 1 presents a useful description of the frequency de-

pendence of the dielectric function over a wide range of

frequencies. In general, the “zero frequency” value of the

dielectric constant can be seen to have two components:

a “high – frequency” one, where the contribution of elec-

tronic polarization dominates and one related to the ionic

Fig. 1. The frequency dependence of the dielectric function

(εr = ε
′
r + jε ′′r , where ε

′
r is the real part and ε

′′
r – imaginary part

of the complex dielectric permittivity) [4].

contribution [5]. In the CMOS frequency window, we can

see that electronic and ionic processes contribute to k and

we consider that the permittivity is given by the relation:

εox = ε∞ + εlatt , (1)

where εox is equivalent to k.

The electronic component, which arises from simple po-

larization of the atoms, is the main component for SiO2

and the simple relationship n ∼ √
ε∞ links the refractive

index, readily measurable in ellipsometry, to the permit-

tivity, giving εox ∼ ε∞. The essence of increasing k then

is to choose materials that can contribute a large lattice

component. Table 1 shows some values of these parame-

ters for different crystalline forms of hafnia. We can see

that εlatt can vary from about 2 to over 25 depending on

Table 1

The electronic (ε∞) and lattice (εlatt ) permittivity

components for different crystalline forms of hafnia [5]

Crystalline phase ε∞ εlatt εox(k)

c-HfO2 5.37 20.80 26.17

t-HfO2: parallel 5.13 14.87 20.00

t-HfO2: perpendicular 5.39 27.42 32.81

m-HfO2: yy – 10.75 10.75

m-HfO2: xx – 11.70 11.70

m-HfO2: zz – 7.53 7.53

m-HfO2: xz – 1.82 1.82

the crystalline form. Without going into details of the crys-

tallography, we can simply make the point that the permit-

tivity can vary over a wide range depending on the form

of the material and hence the method used to prepare it.

Furthermore, amorphous forms are preferred for process-

ing in any event. The variability of k with the structure

of various metallic oxides is pointed out from another per-

spective in [6], by consideration of the Clausius-Mossotti

(C-M) theory which links the k to the polarizability α , and

the volume of the unit cell, Vm as described in Eq. (2):

εr =

(

1 +
2

3
4π

α

Vm

)

1− 1

3
4π

α

Vm

. (2)

In essence, larger atoms yield more polarization and hence

higher k values. The C-M equation reveals that k raises

steeply as the ratio α/Vm increases demonstrating the strong

connection with the structure and nature of the material.

3. How to measure k – methodologies

The simplest, most convenient and appropriate way to mea-

sure k is from a C-V plot although care is required to ensure

that a genuine response is obtained which usually means

adjusting the data for a variety of frequency dependent par-

asitic phenomena such as series resistance [7], leakage cur-

rent [8] and lossy interfacial capacitance [9]. Furthermore,

in the case of ultra-thin gate dielectrics, the accumulation

capacitance does not readily saturate to the oxide capac-

itance Cox, because the oxide capacitance is large com-

pared to that of the space charge in accumulation and also

due to the quantization of energy levels in the accumula-

tion layer. The difference between the measured accumu-

lation capacitance and the true oxide capacitance must be

taken into account in the extraction of capacitance equiv-

alent thickness (CET) and the effective dielectric constant.
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The Maserjian technique [10] provides a simple method to

extract the oxide capacitance from a C-V plot under accu-

mulation conditions. Computer code is available to account

for accumulation layer related quantum mechanical effects

and oxide leakage [11]. Having obtained a genuine accu-

mulation and hence oxide capacitance, Cox (considered here

per unit area) and if no transition layer (SiOx) is present,

the permittivity can simply be obtained from the relation

that k = Cox tox, where tox has been measured from ellip-

sometry (see later). In practice, and usually intentionally,

a so-called transitional layer (TL) is present between the

substrate and the high-k layer and a two-capacitor model

(with perfect, planar interfaces, i.e., no roughness) can be

used to analyse the MOS structure which may be written:

EOT

εSiO2

=
tT L

εT L
+

thi−k

k
, (3)

where we extend the definition of equivalent oxide thick-

ness (EOT) to incorporate the TL. The electronic properties

of TL are dependent on the nature of its formation and it

can be designated SiOx in general where often x = 2 is used

and the permittivity of 3.9 is then considered. However, it

is important to note that x-values greater or less than 2 can

arise therefore affecting the permittivity value; for instance,

x > 2 for oxides that are heavily strained, and x < 2 for “un-

intentional” oxides that grow after an HF dip treatment. It is

important therefore to understand the nature of the oxide

and if possible measure its electrical and optical properties

independently. We have illustrated the importance of this

issue in a recent publication [12] and the main points are

summarized here. We considered four samples of varying

Hf stoichiometry with TLs produced by rapid thermal ox-

idation (RTO) and so-called chemical oxidation associated

with SC1/SC2 cleaning procedures. The chemical nature

of the TL plays a major role in the growth dynamics of

the HfO2 layer; it has been shown that the use of chem-

ical oxides, which are characterized by higher OH con-

centration, results in almost linear growth, while obtaining

a two-dimensional uniform coverage with HfO2 [13]. The

thickness of the TL was measured in situ prior to the depo-

sition by angle resolved X-ray photoelectron spectroscopy

(ARXPS), that of the hafnia layer by spectro-ellipsometry

and the Hf content by Rutherford backscattering spectrom-

etry (RBS). The SE measurements were performed in the

184–1700 nm spectral range, at three various angles of in-

cidence (65
◦, 70

◦, and 75◦) for an increased sensitivity.

A simple model was used for establishing the thickness of

the HfO2 film. The model incorporated a Si substrate and

a TL for which the optical properties were established on

a control sample together with a Cauchy layer for describ-

ing the hafnia layer. The thickness of the hafnia layer was

extracted in the spectral region where the HfO2 layer was

transparent.

The maximum capacitance was measured and the model

of [12] used to extract k using four values for εT L, in the

3–4.3 range. This choice of values for the εT L has been

observed in TL’s in our experience and also reported in

the literature. Figure 2 shows the results of the extraction

and it is striking that the spread of the k-values is rela-

tively large (10.6–19). When increasing the [Hf] concen-

tration in the layers, the spread of results is reduced sig-

nificantly from factors of ∼7 to ∼1. Furthermore, for the

same thickness of TL and nearly the same concentration

of Hf, the samples with the chemical oxide TL have signif-

icantly higher relative dielectric constant: (14–19), as com-

pared to 12–15. These results demonstrate the sensitivity of

Fig. 2. Relative dielectric constant of the HfO2 layer versus Hf

content calculated for different values of relative permittivity of

transitional layer [12].

Fig. 3. The absorption coefficient α versus energy for hafnia

layers prepared by different techniques [14].
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the extraction technique to the TL characteristics. Clearly

for low Hf density, there is doubt that the model of Eq. (3) is

valid and suggests a non-uniform or mixed TL and possible

poor morphology of the hafnia layer. This point was pur-

sued in the study of [14] where the effects of pre-treatment

were investigated. Figure 3 shows the absorption coeffi-

cient (α) extracted from the imaginary part of the complex

permittivity, measured with SE. The best result (lowest α)

is obtained with atomic layer deposition (ALD) on chem-

ical oxide TL with ALD on RTO exhibiting a sharp in-

crease in absorption at an energy E ∼ 4.7 eV. There is

some evidence that such an energy level is associated with

the oxygen vacancy in hafnia films [15]. The worst case

is for a film on chemical oxide with sub-stoichiometric Hf.

Other samples in the study incorporated HF surface prepa-

ration and inferior properties are apparent for both ALD

and metal organic chemical vapour deposition (MOCVD)

hafnia deposition.

We can summarise this section by reinforcing the impor-

tance of taking careful consideration of the TL when ex-

tracting k from C-V data and would advocate the use of

error bars and a clear description of methodology when

quoting experimental values.

4. Parasitic charges: measurement

challenges

A key advantage of the SiO2 system is the excellent electri-

cal properties in terms of electron and hole traps. As-grown

and appropriately annealed thermal oxide contains very

low trap levels with relatively small capture cross-sections.

As well as being virtuous for integrated circuit engineer-

ing, it has made far easier the characterization and study

of the properties of these traps. Investigation of trapping

in SiO2 has been a major activity for nearly 50 years with

specialist conferences (e.g., INFOS, SISC) over much of

this time. It soon became apparent, when studying haf-

nia and other high-k dielectrics, that electron trapping in

particular was extremely severe and there was a need for

specialized measurement configurations to characterize the

extremely fast trapping kinetics. An analogue based tech-

nique whereby the drain current is monitored across a small

drain load resistance and fed to an oscilloscope is a typ-

ical set-up [16] although the technique has been refined

further [17].

A study by Zhao et al. [18] illustrates effectively the trap-

ping time constants and it can be seen that data capture of

the order of 10’s of microsecond are required to capture the

full extent of the trapping, as shown in Fig. 4. Translating

the time-dependence of the voltage shifts with first order

trapping theory reveals for as-grown electron traps, two ef-

fective capture cross-sections of the order of 10
−15 cm2

with concentrations of the order of 10
12 cm−2; these be-

ing very large values relative to SiO2. It is important

to point out that such trap concentrations confined within

such thin films imply very closely spaced traps – of the

order of nm’s which makes the use of first order trapping

theory controversial. However, the values at least convey

the rapid nature of the trapping and are useful for providing

a representation of the time constants associated with the

phenomenon.

Fig. 4. Energy band diagrams of as-grown e-traps in HfO2.

(a) e trapping at Vg > 0 V. (b) e detrapping at Vg < 0 V. (c) Dy-

namic behavior of electron trapping measured by different tech-

niques. The data represented by symbol “o” was measured by the

traditional DC Id −Vg with Vg increasing with a step of 0.1 V

for each point. The data in other symbols were obtained by the

pulsed Id −Vg technique [18].

Other trapping studies show also that the films are rich

in fixed positive charge with similar concentrations, as

shown in Fig. 5. It is possible also to create positive

charge by stressing, with similar concentrations to the

as-grown ones [19]. The measurements are usually car-

ried out on MOSTs but there is a great advantage to

employing MOS capacitors due to the simplicity of the

structure. Capacitor based measurements can be employed

for rapid screening of new materials. We have devel-

oped a novel measurement system based on pulsing MOS

capacitors [20]. Using this technique, which involves

a deep-depleting voltage step, we can observe a positive
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charge which would not readily be apparent from transistor

based measurements which involve an inverted surface with

a ready supply of minority carriers. The rapid removal of

compensating electrons in the film reveals the influence of

positive charge and the associated centroid induces an im-

age charge in the substrate which is realized by a further

extension of the depletion region.

Fig. 5. A schematic illustration of the defect and physical pro-

cess responsible for the ∆Vth of PMOSFETs. (a) Under Vg = 0 V,

the donor-like defects are neutral. (b) Under Vg < 0 V, electrons

tunnel away, leaving positive charges in the dielectric. (c) As-

grown positive charge (PC) and generated PC. As-grown PC was

measured by pulsed Id −Vg technique and generated PC was mea-

sured by traditional DC Id −Vg technique (after C. Z. Zhao et al.,

unpublished).

This image charge then manifests itself as an extension to

the depletion edge causing an undershoot in the capaci-

tance (see Fig. 6b). The undershoot region can be further

interrogated to reveal the rate at which the electrons are

de-trapped; that is to say, the rate at which the positive

charge is uncovered. As time progresses, the capacitance

relaxes as electron-hole pairs are created in the depletion

region. The oxide field also increases during the relax-

ation as the voltage across the depleted semiconductor is

transferred to the oxide allowing tunnelling of minority

Fig. 6. (a) Energy band diagram showing positive charges are

generated by electrons detrapping from pre-existed oxide defects.

(b) Capacitance-transient curves of an HfO2 sample showing un-

dershoots [20].

carriers into the oxide and associated compensation of the

positive charge. The method could be easily employed

in “stress and sense” methodologies, for investigating trap

creation.

5. Materials for manufacturability

Despite the advantages that HfO2 possesses as a candi-

date for alternative high-k dielectric, one major problem

associated with HfO2 is the thermal instability. To min-

imise electrical and mass transport along grain bound-

aries and stabilise the interface between Si and metal ox-

ide, it is preferable that the gate oxide remains amorphous

throughout CMOS processing. Unfortunately, HfO2 films

crystallize at low temperatures of 450
◦C when deposited

by molecular beam epitaxy (MBE) [21] to 530
◦C when

deposited by ALD [22].
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5.1. Aluminates

It has been reported that the crystalline temperature of HfO2

can be increased by the incorporation of Al2O3 to form an

HfAlO alloy, which will still have a relatively high dielec-

tric constant (typically k ∼ 15) whilst remaining amorphous

up to high processing temperatures [23, 24]. It has been

shown that Hf-aluminate film with 7% Al deposited by

MOCVD remains amorphous up to 900
◦C [24]. Another

group [25] also reported that Hf-aluminate film deposited

by ALD can stay amorphous up to 1000
◦C rapid thermal

anneal.

When incorporating Al2O3 into HfO2, the large band gap

of Al2O3 (∼ 9 eV) also increases the band gap of the

compound. Yu et al. [26] showed that the band gap of

the HfAlO films (estimated by XPS) varies linearly from

5.25 to 6.52 eV with Al concentration from 9.6 to 33.9%.

Using the spectro-ellipsometry we demonstrated that the

band gap of HfAlO films deposited by MOCVD can be

increased up to 7.9 eV with 38% Al [27]. When com-

bined with electrical measurements, the ellipsometry data

can provide valuable information related to the relative di-

electric constant of the layers. Our results demonstrated

the possibility of adjusting the relative dielectric constant

of the layers in a wide range (9–17), when the aluminium

concentration varies between 4.5% and 38%. This result is

consistent with the results of Zhu et al. [28], who also re-

ported the dielectric constant of HfAlO films deposited by

jet vapour deposition decreases from 19.6 for HfO2 to 7.6

for Al2O3.

Another feature for HfAlO is the high density of fixed oxide

charge. Results reported by Bae et al. [29] show negative

fixed charge of 1.5 ·10
12 cm−2 for HfAlO with 38% Al and

1 ·10
12 cm−2 for HfAlO with 20% Al. Our results [30] ex-

tended this relationship to HfAlO with Al concentration

from 4.5 to 38%; the fixed charge density varies almost

linearly from 4.8 · 10
11 to 1.1 · 10

12 cm−2. This feature

shows the possibility to adjust the threshold voltage simply

by adjusting the ratio of precursors. Recent work [31] suc-

cessfully demonstrated the attainment of symmetry thresh-

old voltage in HfAlO based complementary MOSFETs by

adjusting the Hf/Al ratio.

A few papers [24, 32] have reported large amounts

of hysteresis observed in C-V measurements, indicat-

ing high densities of oxide traps in the HfAlO films.

The measurements of the Doppler broadening spectra

of annihilation radiation and the lifetime spectra by

Uedono et al. [33] shows strong oxygen deficiency in the

compound. Driemeier et al. [25] found that the oxygen

deficiency increases with increasing Al/Hf ratio. The ox-

ide traps may induce additional leakage and therefore the

advantages of larger band gap and thermal stability may

be traded off. In [27], the HfAlO film with 31.7% Al

shows significant higher leakage than the film with

6.8% Al at as-deposited status. However after anneal in

N2 at 700◦C, the film with 6.8% Al shows a sudden in-

crease in leakage current. The leakage current of the HfAlO

with 31.7% Al remains low due to the improved ther-

mal stability by higher density of Al introduced. Our re-

sults [30] showed that HfAlO film with 22% Al has the

lowest leakage current (@–1 V); further increase of Al con-

centration results in excessive leakage.

Hong et al. [34] conducted annealing studies on 7.3–7.8 nm

thick HfAlO films with 14% Al deposited by thermal sput-

tering. They annealed the samples in an N2 ambient for

5 min at temperatures from 500 to 900
◦C. The HRTEM

images showed the interfacial layer growth between

the HfAlO film and the Si substrate after anneal.

Cho et al. [35] carried out the annealing studies of ultra

thin (1.3 nm) HfAlO films. The films were first deposited

by ALD and subsequently annealed at 700
◦C for 60 s in

an NH3 atmosphere. They found that the near-edge x-ray

absorption fine structure spectra of the HfO2 components

remained the same while the spectra of Al2O3 were changed

after the anneal. This result indicates that the change in the

bonding characteristics as the result of N incorporation is

mainly caused by N incorporation into Al oxide.

Torii et al. [36] proposed the employment of HfAlO/SiON

stack as gate dielectric and demonstrated successful in-

tegration into a standard CMOS process. The transis-

tor achieved encouraging properties such as low EOT

(1.1 nm), low leakage (∼ 10
−2 A/cm2), low interface den-

sity (2 ·10
11 eV−1cm−2), symmetrical threshold voltage and

92% electron mobility (Vg = 1.1 V) of those for SiO2.

5.2. Silicates

Hafnium silicate films, (HfO2)x(SiO2)1−x, are being studied

as an alternative to pure hafnium oxide due to comparable

advantages such as an increased crystallization temperature

[4], stable amorphous structure [37–39] which also resists

oxygen diffusion [4, 37], reduced growth of interfacial lay-

ers at the silicon/high-k interface and higher values of band

gap and effective electron rest mass resulting in reduced

leakage [37]. Hafnium silicate films do however have the

disadvantage of having a lower k value (∼ 11−15) [40, 41]

than the pure oxide (∼ 21−25) [42, 43] reducing the scal-

ability of the material.

Takeuchi and King in 2004 [44] compared the composi-

tional dependency of the electrical properties of hafnium

silicate films from published studies and found that there

was a nonlinear dependency of the permittivity of the film

with the permittivity decreasing with increasing concentra-

tion of incorporated silicon. The same work also reviewed

experimental band gap results for hafnium silicate films of

varying composition and observed that the compositional

dependence of the band gap of hafnium oxide films has two

distinct regions. The band gap of hafnium silicate films de-

creases linearly at a an approximate rate of 50 meV/% when

the hafnium oxide content is increased, until the hafnium

oxide content reaches 64%. At this stage the band gap

becomes independent of hafnium oxide content and stays
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constant at a value of 5.7 eV. The theoretical conduction and

valence band offsets for an Hf0.5Si0.5O2 film were shown

to be 1.5 eV and 3.4 eV, respectively.

Cho et al. in 2005 [45] studied the dependence of hafnium

silicate phase separation on the composition of the film

using XPS finding that a silicon-dioxide-rich hafnium sili-

cate sample (x = 0.25) could withstand temperatures greater

than 900
◦C for 1 min in a nitrogen ambient without phase

separation but that a hafnium rich hafnium silicate sample

(x = 0.75) phase-separates at a temperature of 800
◦C. Ther-

mal stability is a required property for high-k dielectrics

due to current processes requiring the gate oxide to remain

unaffected by an annealing temperature of 1000
◦C for 5 s

to activate the polysilicon gate [46]. Wilk, Wallace, and

Anthony in 2000 [47] were able to anneal silicon-rich (i.e.,

x = 0.2) hafnium silicate samples of thickness 3 nm for

20 s at temperatures of 1050
◦C in nitrogen without visible

grain boundaries formation and proposed the resistance to

crystallization may continue even for hafnium silicate films

of hafnium content up to 30%.

Nitrogen incorporation into hafnium silicate films is known

to be beneficial to their electrical properties such as further

increase of the phase separation temperature of hafnium sil-

icates [48], increased permittivity [43] and reduced boron

penetration [49]. Cho et al. [45] annealed hafnium rich

(x = 0.75) ∼ 3.5 nm thick hafnium silicate samples for

1 min at 900
◦C in either NH3 or N2. The sample an-

nealed in pure nitrogen was seen to phase-separate to

contain monoclinic HfO2 grains, whereas the sample an-

nealed in NH3 remained stable with no visible phase sep-

aration [50]. It was seen that annealing in both atmo-

spheres increased the Si/high-k interfacial layer by less

than 1 nm, however annealing in N2 caused the growth

of a 1.4 nm overlayer which seriously increased the effec-

tive oxide thickness (EOT) of the film. In the same paper,

Cho et al. showed results from 3 nm hafnium silicate sam-

ples of hafnium content (x = 0.5) annealed for 60 s in ei-

ther NH3 at a temperature of 750
◦C or N2 at a temperature

of 950
◦C. Cho et al. also reported that N2 increased the

EOT compared to the as-deposited film whereas NH3 re-

duced the EOT compared to the as-deposited film. The

samples annealed in N2 however had superior electrical

qualities having leakage currents an order of magnitude

(∼ 10
−9 A/cm2) lower than those of the NH3 annealed

samples (∼ 10
−8 A/cm2) and having a higher effective mo-

bility [43].

Nitrogen incorporation has, however, also been reported

to reduce the conduction band and valence band off-

sets for a (HfO2)0.40(SiO2)0.60 by 0.33 eV and ∼ 1.2 eV,

respectively, and reduce the band gap of the film by

∼ 1.50 eV [49]. The reduction in band offsets is not seri-

ous enough to affect the viability of nitrogen incorporating

films, however leakage current will increase through such

a film.

In our own laboratories, (HfO2)x(SiO2)1−x/SiO2 (0 < x < 1)

gate stacks grown by MOCVD at IMEC were investigated

using spectroscopic ellipsometry and electrical character-

ization techniques [51]. The optical constants, thickness

of the layers and optical band gap for hafnium silicates

of four concentrations were assessed using UV – NIR

and deep UV spectral regions. The permittivity was seen

to decrease from ∼ 21 for HfO2 layer to ∼ 8 for Hf-

silicate with x = 0.3. The results suggest that an Hf con-

tent above 60% is required to yield a permittivity higher

than 10.

6. The way forward to the 22 nm node

Nag [52] explored the relationship between the mean

atomic number of atoms constituting different semiconduc-

tors, |Z|, and the dielectric constant of these materials.

Fig. 7. (a) Experimental relative permittivity for some exper-

imental gate dielectrics plotted against their mean atomic num-

ber [6]. (b) Conduction band offset versus the relative permittivity

for experimental high-k dielectrics [6].

Busani and Devine [53] and Xue et al. [54] also pointed

out corresponding relations for the rare earth oxides, but
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beside any changes in polarizability, α , both cases sug-

gested that a change in the molecular volume, Vm, was

responsible for the relationship between the permittiv-

ity value and |Z|. Both cases modelled the relative per-

mittivity value using the Clausius-Mossotti equation (see

relation (2)).

Figure 7a shows the relative permittivity values versus the

mean atomic number of some well-known and potentially

suitable metal oxides, after Engstrom et al. [6]. In the same

work, Pauling electronegativities were considered to allow

prediction of the conduction band offsets for the oxides for

which values were experimentally unknown, allowing pre-

dictions of conduction band offsets versus relative permit-

tivity, as shown in Fig. 7b. Boundaries were established

assuming the most stringent requirements for the 22 nm

node, namely EOT = 0.5 nm and leakage < 10
−2 A/cm2

at 1 V, considering both purely direct tunnelling and Fowler-

Nordheim and are included on the plot. By assuming

the most pessimistic scenario, which was that any ma-

terials with relative permittivity lower than that of lan-

thanum would suffer from direct tunnelling and above this

Fowler-Nordheim tunnelling, it was predicted that only

a few materials would be able to meet the requirements

for the 22 nm node, namely Pr2O3 in the hexagonal

phase, La2O3 and LiNbO3. It was also suggested that

Sm2O3, Ce2O2 and Gd2O3 were worthy of consideration.

Of the lanthanides, La2O3 has been extensively studied

by Iwai et al. and is perhaps the most serious contender

for this node [55].

Kwo et al. [56] reported encouraging results of amor-

phous Gd2O3 films. The films were attained by electron

beam evaporation using powder packed ceramic Gd2O3

sources. The scanning transmission electron microscopy

(STEM) results showed that the film was 4.5 nm thick

and no interfacial layer was observed. The C-V and

I-V measurements showed the EOT of the film was 1.65 nm

and the leakage (@ 1 V) was 10
−4 A/cm2, much lower

comparing with SiO2 with similar EOT. They also showed

that these amorphous dielectrics could withstand anneal-

ing tests to a temperature of 850
◦C, as corroborated by the

XPS analysis.

Ohmi et al. [57] made a comparative study of rare

earth oxides grown by E-beam deposition. They found

La2O3 possessed the lowest leakage and smooth interface

among the rare earth oxides investigated. Other material

such as Dy2O3 and Lu2O3 also showed good electrical

properties but highly dependent on deposition pro-

cesses [57].
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