
Invited paper Evaluation of MOSFETs

with crystalline high-k gate-dielectrics:

device simulation and experimental data
Florian Zaunert, Ralf Endres, Yordan Stefanov, and Udo Schwalke

Abstract— The evaluation of the world’s first MOSFETs with

epitaxially-grown rare-earth high-k gate dielectrics is the main

issue of this work. Electrical device characterization has

been performed on MOSFETs with high-k gate oxides as

well as their reference counterparts with silicon dioxide gate

dielectric. In addition, by means of technology simulation

with TSUPREM4, models of these devices are established.

Current-voltage characteristics and parameter extraction on

the simulated structures is conducted with the device simu-

lator MEDICI. Measured and simulated device characteris-

tics are presented and the impact of interface state and fixed

charge densities is discussed. Device parameters of high-k de-

vices fabricated with standard poly-silicon gate and replace-

ment metal gate process are compared.

Keywords— crystalline high-k gate dielectric, rare-earth oxide,
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1. Introduction

One of the key challenges of modern MOS technologies is

engineering of the gate stack. Lateral dimensions have to

be further reduced to the deca-nanometer region in order

to continue with the superior performance improvement of

CMOS circuits. However, the thickness of the gate dielec-

tric is the main limiting factor at present. Scaling down for

sub 32 nm technologies will require an equivalent oxide

thickness (EOT) well below 1 nm.

In order to replace SiO2, mainly amorphous and poly-

crystalline high-k materials, such as HfO2 and ZrO2, have

been investigated as alternative gate dielectrics. However,

a major drawback of these materials is the need of a SiO2

buffer layer between the silicon surface and the high-k

dielectric, which increases the equivalent oxide thickness

and eliminates the chance to achieve an EOT well be-

low 1 nm. Therefore epitaxially-grown crystalline di-

electrics with a lattice constant near to silicon have been

proposed as alternatives. Praseodymium oxide (Pr2O3) was

the first epitaxially grown rare-earth material to be investi-

gated as gate dielectric [1, 2]. Fully functional MOSFETs

have been fabricated for the first time by our group [3, 4]

using conventional poly-silicon gate electrodes. Electrical

properties and discussion of device properties can be found

in [5–9]. Very recently, devices manufactured using a re-

placement gate process have been successfully fabricated

with crystalline gadolinium oxide (Gd2O3) as dielectric and

metal gate electrodes [10, 11]. Metal gate electrodes do

not suffer from gate depletion, like poly-silicon electrodes,

thus remote coulomb scattering (RCS) is eliminated and

carrier mobility is expected to improve. However, metal

gates seem to introduce other undesirable effects that nul-

lify the advantages associated with the elimination of RCS.

In [12] compressive strain in the channel induced by the

metal gate and surface roughness is proposed to describe

this behavior.

In this work, MOS device properties associated with the

implementation of crystalline rare-earth oxides as gate di-

electrics in MOS transistors are discussed. Measurements

and simulated device characteristics of replacement gate

MOSFETs with crystalline rare-earth high-k dielectric and

metal gate are presented and compared to high-k devices

manufactured with poly-silicon gate. This includes detailed

measurements, including charge-pumping results [10] of

prototype devices as well as comprehensive process and

device simulation of these structures. By comparison of

the fabricated devices with quasi-ideal simulated structures,

a better understanding of the impact of high-k material on

device properties is obtained. One key issue of this work is

to investigate the cause of the low surface mobility of MOS-

FETs manufactured with high-k dielectrics and to study the

impact of gate stack processing, i.e., conventional poly-Si

gate versus metal gate damascene technology.

2. Device fabrication and structure

Metal gate damascene NMOSFETs have been fabricated

with the replacement-gate technique [10, 11]. The gate

stack contains a tungsten electrode and a dielectric com-

posed of Gd2O3. A brief outline of the replacement

gate process is given in Fig. 1. According to the EXIT-

GATE (i.e., gate first) approach [13], dummy gate struc-

tures are formed on blank silicon wafers covered with

a nitride/poly-Si/nitride sandwich. After source/drain im-

plantation, a SiO2 layer is deposited by menas of plasma

enhanced chemical vapour deposition (PECVD) and the

ion implantation is activated by a brief RTA-annealing

step at 1000
◦C, which also stabilises the top nitride layer

against the following chemical mechanical polishing (CMP)

step. Then the CVD oxide is polished down to the top of

the dummy gate using a CMP process. The dummy gate

is removed completely by wet etching and all harsh pro-
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cess steps (RIE, high-temperature anneals) are done. Now,

the final gate stack with either high-k oxide or SiO2 ref-

erence dielectric is manufactured. Molecular beam epi-

taxy (MBE) is used for growing epitaxially a thin Gd2O3

layer and subsequent in situ metal deposition (tungsten) is

performed. Metal damascene Gd2O3 MOSFETs with two

different EOTs (53 Å and 21 Å) have been fabricated. Fi-

nally, a standard back-end metallization process completes

the MOSFET fabrication.

Fig. 1. Outline of the CMP-based metal gate damascene fabri-

cation process: (a) dummy gate stack formation; (b) source/drain

formation; (c) alignment oxide formation; (d) dummy gate stack

removal; (e) gate dielectric growth; (f) metal gate formation;

(g) back-end processing.

The SiO2 reference devices were also manufactured

in replacement-gate technology, having tungsten-titanium

electrodes instead and a nitrided RTO-SiO2 dielectric thick-

ness of tox = 50 Å. Except for the gate dielectric, the refer-

ence devices are expected to be largely comparable to the

Gd2O3-devices with an EOT of 53 Å, because the tungsten-

titanium electrodes have almost the same work function of

about 4.55 eV as pure tungsten [14]. Accordingly, there

should be no significant difference in threshold voltage or

other parameters generated by the gate electrodes. They

main difference between both structures is expected to orig-

inate from the different gate dielectric, which may affect the

silicon-insulator interface and the channel region close to

this interface.

Previously, Pr2O3 high-k NMOSFETs have been fabri-

cated using a conventional poly-silicon gate process tech-

nology [3] with a k-value of approx. 30, corresponding

to an EOT of about 20 Å–25 Å. These devices are also

used for comparison. Further details on the fabrication of

the Pr2O3 high-k NMOSFETs can be found in [3] and [4].

3. Evaluation methodology

All devices examined in this work have nominal gate

lengths of L = 4 µm and a gate width of W = 100 µm.

Due to the relatively long gates, it is guaranteed, that

short channel effects do not influence device properties.

The measurements include standard characterization meth-

ods for determination of the carrier mobility, sub-threshold

slope, threshold voltage and transconductance. Carrier mo-

bility of MOSFETs is derived using two different methods.

First, by calculating the effective mobility µe f f from the

channel conductance at low drain voltage (Vds = 50 mV)

using Eq. (1). Secondly, by operating the MOSFET in

saturation condition (Vgs = Vds) and using Eq. (2)

µe f f =
L

W

gd

Cins

(

Vgs −VT

) with gd =
∂ Id

∂ Vds

, (1)

µsat =
L

W

2 Id

Cins

(

Vgs −VT

)2
(2)

with L and W channel length and width, channel conduc-

tance gd and the area-independent gate capacitance Cins.

The saturation mobility µsat is slightly lower than the effec-

tive mobility µe f f , because of the presence of the vertical

electric field which degrades the carrier mobility in the

channel, when driving the MOSFET in saturation. Hence,

the effective mobility derived from the channel conduc-

tance is usually preferred to describe device mobility, al-

though even here some simplifications have to be made,

especially in the estimation of the charge density in the

channel [15–17]. Threshold voltage VT is derived from the

channel conductance curves, using Eq. (3)

VT = Vgs −
gd

K

L

W
(3)

with K = µ Cins.

The saturation method was used additionally, yielding

slightly different values, as discussed above. With Eq. (4)

one can calculate the threshold voltage from the saturation

curve:

VT = Vgs −

√

2 Id

K

L

W
. (4)

To compare the simulation data with the measured curves

one-to-one, it is necessary to implement the same evalua-

tion procedures, i.e., the simulated device results and ex-

perimental data are evaluated using the same methods as

described above.

With the technology simulator TSUPREM4 the structures

for high-k and reference MOSFETs have been implemented

referring to the original process parameters. In Figs. 2 and 3

the simulation mesh and the structure of the devices, re-

spectively, are shown. Subsequent to the process simulation,
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the electrical evaluation is performed on these computer-

generated structures with the device simulator MEDICI.

Fig. 2. Example of the simulation mesh of 4 µm n-channel

MOSFET with damascene metal gate.

Fig. 3. Example of the simulated MOSFET cross-section with

source/drain doping profiles (phosphorus).

It is found, that the selection of the mathematical mobility

model is the key parameter, which has the strongest impact

on the MOSFET characteristics. The main challenge is to

combine several models that are needed for different regions

of the semiconductor material. For the semiconductor bulk,

a standard analytical model is used in this work, which is

based on empirical data [18] and fitting parameters [19]:

µe f f = µmin +

µmax

(

T

300

)v

− µmin

1 +

(

T

300

)ξ (
N(x, y)

Nre f

)α
, (5)

where µmin and µmax are the minimum and maximum car-

rier mobilities used by the model, N(x, y) is the local im-

purity concentration, Nre f a given reference concentration

and T the absolute temperature, again, α, v and ξ are fitting

parameters.

However, to describe the insulator-semiconductor interface

region in detail, appropriate surface models are still re-

quired for taking into account scattering effects at impurity

atoms and interface roughness:

µS,⊥ = Gsur f

µe f f

(

T

300

)−EX0

1 +

(

Ee f f ⊥

Ere f

)EX
, (6)

where µe f f is the calculated mobility of the analytical

model, Ee f f ⊥ is the vertical electric field created by the

gate voltage and Ere f a reference value, the factor Gsur f is

used to describe effects like surface roughness and crystal

strain, which are not included analytically, EX and EX0 are

fitting parameters, the parameter used for modification of

the surface mobility µS in this work was only Gsur f .

Furthermore, a model is used to include carrier velocity

saturation in the presence of high parallel electric fields.

Equation (7) clarifies the correlation between parallel elec-

tric field and carrier mobility [18]

µS,‖ =
µe f f

(

1 +

(

µe f f E‖

vsat

)β
)β−1

(7)

with E‖ being the parallel field generated by the drain volt-

age, vsat the saturation velocity [20], µe f f the low field

mobility and a fitting parameter β .

Since the sub-VT slope is affected by the density of interface

states, the first attempt was made to adjust the simulated

curves to the measured ones, by varying the interface state

density in the simulation. This is done by matching the

simulated sub-VT slope to the measured slope. With the

sub-VT slopes being identical, the corresponding interface

state density is recorded and is cross-checked with experi-

mental data from charge-pumping measurements.

With this value fixed, the next step in the calibration flow is

the adjustment of the carrier mobility in the channel. The

mobility, obtained by electrical measurements, is so low

that it can only be explained by a high interface-state den-

sity. In order to obtain measured mobility values consistent

with the simulation, interface roughness and surface scat-

tering have to be included. Because no universal analytical

model describing all the above mentioned effects consis-

tently is available to us, the parameter Gsur f , is used to

adjust the surface quality to the experimental conditions.

The last step of the iteration process comprises the fine

tuning of the threshold voltage. Especially for the high-k

devices in this work, an increased threshold voltage due to

the high interface-state density is observed. In addition to

the interface-state density, the fixed charges in the dielectric

and the gate electrode work function also have an impact

on the threshold voltage. For a given metal the value of

the work function can vary some tenths of an electronvolt
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depending on the manner of depositing the electrode layer

on the dielectric and the contact properties between metal

and insulator. The alteration of parameters has to be done

carefully, because a change in a single device parameter

does not only affect one device property. For example,

changing the interface state density has an effect on both

threshold voltage and sub-threshold slope of the devices.

Usually, several adjustment cycles are needed to fix all pa-

rameters with a reasonable accuracy.

4. Results

The results provided by the simulations with default pa-

rameters show much higher carrier mobility and better sub-

threshold slopes than the experimental data of the fabricated

devices. Obviously, these very first prototype devices do

not feature ideal characteristics and possess substantial po-

tential for improvement.

Fig. 4. Comparison of measured and simulated sub-threshold

characteristic of MOSFET with Pr2O3 dielectric.

As can be seen in Fig. 4, MOSFETs with Pr2O3-

dielectric exhibit a sub-threshold slope S = 235 mV/dec,

which coincides with the simulation data, when assum-

ing an acceptor interface-state density of about Dit,acc =
1.3 ·10

13 cm−2eV−1, which is a rather high value. Without

interface states the simulation yields a much better sub-

threshold slope of S = 72 mV/dec. The interface-state den-

sity also influences the mobility of the device as derived

from the channel conductance curves, as shown in Fig. 5.

From device measurements a value of µe f f = 40 cm2/Vs is

obtained, which is too low to be explained only by interface

states. Simulations with the above interface-state density

lead to mobilities of µe f f = 130 cm2/Vs. As mentioned

previously, in order to achieve consistent mobility values

between measurements and simulation, the Gsur f parame-

ter has to be adjusted.

Figure 6 compares sub-threshold slopes of the measured

metal-gate SiO2 reference devices with the simulation data

for two different cases. Again, the slope of the simu-

Fig. 5. Comparison of measured and simulated threshold voltage

and mobility of Pr2O3-MOSFET.

lated device with ideal interface is much better than that

of the measured one. The simulated reference devices ex-

hibit a sub-threshold slope close to the theoretical limit

of 60 mV/dec. Adjustment of the interface-state density of

the simulated device, makes its sub-threshold slope become

Fig. 6. Comparison of sub-threshold slopes of measurement data

and simulated curves with ideal and degraded interfaces for the

silicon dioxide reference devices.

very close to the measured one. However, a sub-threshold

slope of 110 mV/dec corresponds to a high interface-trap

density in the range of 10
12 cm−2eV−1, which is unex-

pected for SiO2. Currently, we investigate whether the

metal gate blocks H-atoms from penetrating to the Si-

SiO2 interface to cure interface traps during the forming

gas anneal. Interestingly, when looking at Fig. 7 a very

similar situation can be found for the Gd2O3 high-k de-

vices regarding interface trap density. The simulation iden-

tifies the theoretical feasible optimal value for the sub-

threshold slope of 80 mV/dec, whereas the real devices
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posses slopes of 150 mV/dec. To which extent form-

ing gas anneal is beneficial also for Gd2O3 high-k de-

vices is currently under investigation. Unfortunately, de-

graded leakage properties have been reported [21] after

forming gas anneal, therefore this approach may not be

feasible.

Fig. 7. Comparison of sub-threshold slopes of measurement data

and simulated curves with ideal and degraded interfaces for the

high-k devices.

Fig. 8. Measured sub-threshold characteristics of fabricated

Pr2O3-, Gd2O3- and SiO2 devices.

On the other hand, when comparing the metal gate dam-

ascene Gd2O3 devices to the conventionally processed

poly-silicon gate Pr2O3 NMOSFETs, a much better sub-

threshold slope (Fig. 8) and mobility value (Fig. 9) is ob-

served. Obviously, for the replacement gate devices the

interface quality is improved and/or less process damage

has occurred than in the case of the devices manufac-

tured with the conventional poly-Si CMOS process. This

may result from the “gentle”, CMP-based gate formation

process of the metal gate devices, where the gate dielec-

tric is not exposed to damaging process steps like reactive

Fig. 9. Measured transconductance and extracted mobility values

of fabricated Pr2O3-, Gd2O3- and SiO2 devices.

ion etching (RIE) and high-temperature anneals as in the

conventional CMOS process. From the adjusted simulated

curves the density of interface acceptor states is determined

to be Dit (SiO2)= 2.33 ·10
12 cm−2eV−1 and Dit(Gd2O3)=

4.2 ·10
12 cm−2eV−1. These values are consistent with the

results obtained from energy resolved charge-pumping mea-

surements [10].

Figure 10 compares the channel conductivity of mea-

sured and simulated Gd2O3 devices. Devices with ideal

and degraded interfaces are simulated as can be seen in

Fig. 10. Devices with ideal interfaces possess a 2.7-times

Fig. 10. Comparison of channel conductivities, threshold volt-

ages and carrier mobility of measured data and simulated curves

of Gd2O3-devices illustrating the effect of ideal and degraded in-

terfaces by simulation.

higher carrier mobility than the measured ones. One factor,

which degrading mobility is interface-state density, as men-

tioned above. However, even for interface-state density of

Dit = 4.2 ·10
12 cm−2eV−1 a mobility of µe f f = 250 cm2/Vs
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Fig. 11. Comparison of channel conductivities, threshold volt-

ages and carrier mobility of SiO2 reference and Gd2O3 high-k

devices.

Fig. 12. Measured and simulated output characteristics of refer-

ence MOSFETs with SiO2 gate dielectric.

Fig. 13. Measured and simulated output characteristics of MOS-

FETs with Gd2O3 high-k gate dielectric.

is deduced from simulation with otherwise perfect Si-sur-

face, i.e., Gsur f = 1. To obtain the measured mobility

value of µe f f = 107 cm2/Vs, the surface quality needs

to be degraded, additionally by lowering Gsur f to 0.42.

From Fig. 11 the threshold voltage and effective mobili-

ties for the high-k devices are extracted from the slopes

of the curves using Eqs. (1) and (3) to VT = 1.5 V and

µe f f = 107 cm2/Vs, respectively. It is apparent that the

mobility of the high-k devices is only half of that of the ref-

erence devices with SiO2 dielectric of µe f f = 213 cm2/Vs.

Worse interface quality arousing from the manufacturing

process may be the reason. One major advantage of the

thermal oxidation of silicon is the fact that the Si-SiO2 in-

terface has never been in contact with the outside world, be-

cause of the silicon dioxide growing into the bulk material

during the oxidation step. This is in contrast to the high-k

devices, where the crystalline high-k material is grown on

top of the original silicon surface by MBE. To improve

the carrier mobility, the interface state density and surface

quality, such as roughness or crystal strain [12], have to be

improved.

After adjusting all important parameters output character-

istic are simulated with the parameters from above and the

plots are depicted in Figs. 12 and 13. Because of the con-

siderable gate length, almost no channel length modulation

is noticeable as expected. The agreement between simu-

lation and measurement is very reasonable for the high-k

devices. However, for the SiO2 reference devices a de-

viation at higher gate voltages can be seen. A possible

explanation for this behavior may be related to the surface

mobility model used for simulation. The mobility model is

limited to a dedicated range of electrical fields via Eq. (6).

It can be adapted with the factor Gsur f , when the field is

altered over a large range and higher accuracy is required.

This issue is subject to further investigations.

5. Conclusions

The first attempt is made to correlate experimental data

from fully functional crystalline high-k MOSFETs with re-

sults obtained from process- and device-simulation. The

measured device characteristics agrees resonably well with

properly adjusted simulation results. The comparison re-

veals that increased values of the interface state density

degrades sub-threshold slope and carrier mobility. How-

ever, even though carrier mobility depends slightly on the

selected mobility model, interface states alone are insuffi-

cient to explain the low mobility values. Additional effects

appear to be responsible, like enhanced surface roughness

or strain. Nevertheless, damascene metal gate technology

has proven to be superior to the conventional poly-Si gate

CMOS processing, since the process steps potentially dam-

aging to the high-k gate stack are omitted. However, when

device performance is compared to SiO2 reference MOS-

FETs, the need of further improvements of the crystalline

high-k materials and processing is still obvious.
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