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Abstract—This paper presents a new procedure for comput-

ing the set of supported non-dominated solutions of bi-criteria

minimum spanning tree problems in ordered manner. The

procedure is based on the systematic detection of edges which

must be replaced in one efficient solution to obtain the ad-

jacent one, in the criteria space. This new approach avoids

solving unnecessary problems and makes use of previous com-

putations.
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1. Introduction

The minimum spanning tree problem (MST) is a well-

known combinatorial problem that consists of identifying

a spanning tree in a weighted connected graph with the

smallest sum of costs (weights). The MST has several im-

portant practical applications such as physical systems de-

sign, reducing data storage, cluster analysis [2]. It is also

important because it arises as a subproblem of other com-

plex problems. For instance, in telecommunication multi-

path models the area of multicast routing (associated with

point-multipoint problems) has attracted increasing atten-

tion both in terms of quality of service (QoS) routing mod-

els, and in terms of explicit consideration of multicriteria

in the future. These models are increasingly important as

a result of the emergence of multimedia applications such

as audio, video services and video-conferencing, specially

in the Internet. A typical formulation of multicast routing

models in a QoS routing context involves Steiner trees [5].

These problems are in general very difficult to solve. So, it

is valuable to point out that in some particular approaches

the multicriteria minimal spanning tree models can be use-

ful, and this is a major motivation for our focus on this

problem.

A connected graph with n nodes has a maximum of nn−2

spanning trees, thus the brute force method is useless to

solve the MST. The greedy Prim’s, Kruskal’s and Sollin’s

algorithm solve efficiently the MST [2].

A natural extension of the MST consists of taking into

account more than one criterion function to evaluate

feasible solutions. This new problem is known to be

NP-complete [3]. The multiple criteria version of the MST

is a challenge both from theoretical and practical perspec-

tives, as can be seen in the literature survey by Ehrgott and

Gandibleux [6].

A common approach when considering several criteria

functions is the computation of the entire set of efficient

solutions, also known as Pareto solutions (an efficient so-

lution is a feasible solution such there is no other feasible

one that can improve one of the criteria functions without

degrading the value of at least one of the others). Some

efficient solutions can be found by optimizing weighted-

sums of the criteria (supported efficient solutions) while

others cannot be obtained by this manner (non-supported

efficient solutions). The supported efficient solutions can

also be extreme (solutions that correspond to an extreme

efficient solution in the convex-hull of the feasible re-

gion) or non-extreme. The image of an efficient solution,

by using the criteria functions is called a non-dominated

solution.

The computation of extreme efficient solutions is much

easier when an efficient algorithm exists to optimize the

single criterion version of the problem. Due to this fact,

the computation of the two types of solutions is frequently

made separately. In the MST this approach can be found

in [1, 7, 8], for instance. The weighted-sum method is

usually used to compute the extreme efficient solutions. It

is an iterative procedure which computes, for a given pair

of consecutive extreme efficient solutions x′,x′′ another ex-

treme efficient solution x′′′ (if there exists any) between the

images of x′ and x′′. This is done by optimizing a weighted-

sum function parallel to the line that links the images

of x′ and x′′. The method requires the optimization of

several single criterion functions, some of them without

producing any new efficient solution.

In this paper we propose an alternative procedure for the

bi-criteria minimum spanning tree problems (BMST),

which is based on the extension of ideas behind the

Kruskal’s algorithm. The main features of this procedure

are the use of computations made in previous iterations

and the fact that it avoids the repetitive resolution of sin-

gle criterion problems. This is due to the fact that the

edges that must leave an efficient MST and the edges that

must enter that MST are identified. By removing and in-

serting these edges, the adjacent non-dominated MST is

obtained. In summary, the paper gives a transition rule
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from non-dominated solution to the adjacent one. The work

by Tarjan [9], related to sensitivity analysis in minimum

spanning trees, is useful in the present research.

The paper is organized as follows. In Section 2 it is pre-

sented a procedure to find the set of extreme non-dominated

solutions in order, in Section 3 it is shown the interactive

potential of the proposed approach, and Section 4 is de-

voted to the main conclusions of this work.

2. Finding supported non-dominated

solutions in order

Let G = (Vn,E) be an undirected graph with Vn being the

set of n vertices and E being the set of edges of G. Here it

is considered the existence of two criteria, hence each edge

e j has associated two costs ci
j(i = 1,2). The criteria, to be

minimized, are as follows:

zt (T ) = ∑
j:e j∈T

ct
j,

where T is a spanning tree on G.

Supported non-dominated solutions optimize weighted sum

functions. In the bi-criteria case, these functions are

fλ (T ) = λ z1(T ) + (1− λ )z2(T ), with 0 ≤ λ ≤ 1. When

the entire interval [0,1] for λ was analyzed, then all

the non-dominated supported solutions were found. Let

Gλ be the graph G such that each edge e j has the cost

pλ
j = λ c1

j +(1−λ )c2
j.

We are interested in the computation of such a solutions but

in an ordered manner, which is a new result considering the

available procedures in the literature. The process of ob-

taining the ordered generation of supported non-dominated

solutions is explained below.

A spanning tree is composed of n−1 edges, and following

the Kruskal’s algorithm one has to consider the edges ac-

cording to non-decreasing costs and select the n−1 edges

that draw a spanning tree on the given graph.

In the bi-criteria case, the cost of each edge e j is pλ
j , which

depends on the value of λ . Thus, the minimum spanning

tree of fλ (T ) also depends on the value of λ . As λ changes

in the interval [0,1] some edges also change their relative

position, which may lead to a different minimum span-

ning tree.

According to the path optimality condition [2] a spanning

tree T is a minimum spanning tree if and only if every

non-tree edge e j has a cost greater or equal than the cost

of any edge in the unique path of T that links the nodes

concerning e j.
Suppose that for a given λ ,λ k, the corresponding minimum

spanning tree is T λ k
and the associated supported non-

dominated solution is
(

z1(T
λ k

),z2(T
λ k

)
)

. This tree remains

optimum for every λ which observes the path optimality

condition.

Let Pλ k
(e j) be the path in T λ k

which links the nodes con-

cerning the non-tree edge e j. For the non-tree edge e j

the maximum value of λ is given by the solution of the

linear problem:

max λ

s.t. :

pλ
j ≥ pλ

i ,∀ei ∈ Pλ k
(e j)

0≤ λ ≤ 1,λ > λ k .

(1)

The optimal solution of Eq. (1), λ
e j
max, is given below

(if the problem is impossible, which occurs when the

cost of two edges never gets equal or when it requires

a weight outside the constraints 0 ≤ λ ≤ 1,λ > λ k, it is

assumed, for computational reasons, that λ
e j
max takes the

value +∞):

λ
e j
max = min

ei∈Pλk
(e j)

{

c2
i − c2

j
(

c1
j − c2

j

)

−
(

c1
i − c2

i

) :
(

c1
j − c2

j

)

−
(

c1
i − c2

i

)

< 0;+∞

}

. (2)

In order to preserve the optimality of the spanning tree,

the path optimality condition must be observed by every

non-tree edge. Thus the overall maximum value is given

by λ k
max = min

e j /∈T λk

{

λ
e j
max

}

.

Let Nλ k =
{

e j /∈ T λ k
: λ

e j
max = λ k

max

}

, representing candi-

dates to entering the tree. Introducing e j in the tree leads

to a cycle. Thus, the candidate edges to be removed are

the ones belonging to the set

Cλ k (e j) =

{

ei ∈ Pλ k

(e j) :
c2

i − c2
j

(

c1
j − c2

j

)

−
(

c1
i − c2

i

)

= λ k
max,e j ∈ Nλ k

}

.

If λ = λ k
max the current tree is still the optimum tree, but

there exists at least another tree with the same weighted

cost. Finding all the supported non-dominated solutions

with the same weighted cost as T λ k
, requires replacing

in the tree every combinations of possible pairs of edges

(e j ∈ Nλ k ,ei ∈Cλ k (e j)) . Let us note these combinations by

Nλ k ⊗Cλ k .

If λ = λ k
max + ε (ε is a small value) the current tree is

not the optimum tree of the problem min
{

fλ (T ) : T is

a spanning tree on G
}

, since at least one non-tree edge has

a smaller weight compared with at least one edge of the

associated path in the tree. An optimum tree in this case is

the one which has the minimum value for criterion z1 (T )
(note that λ is increasing towards the value 1), among all

the efficient MST obtained with λ = λ k
max.
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The procedure that generates the supported non-dominated

solutions of a bi-criteria MST problem is as follows.

Procedure SBMST

Begin

k← 1;// iterations counter

Compute the first MST, T λ k
, with the cost edges calcu-

lated with λ k = ε (very small positive value);

H ← Z(T λ k
) =

(

z1(T
λ k

),z2(T
λ k

)
)

//set of supported

non-dominated spanning trees

Compute λ k
max using expression (2) in T λ k

and

define Nλ k ;

While
(

λ k
max < 1

)

Do

Begin

Compute Cλ k (e j) for all e j ∈ Nλ k ;

Consider all the possible combinations

of edges Nλ k ⊗Cλ k;

Let T
λk

1 , . . . , T λ k

h be the trees obtained from T λ k
by

inserting/removing edges considering individually

each of the previous combinations of edges;

H←H
h
∪

i=1
Z(T λ k

i ) //set of supported non-dominated

spanning trees

k← k + 1;

T λ k
← argmin{z1 (T ) : T ∈ H} ;// the tree with the

lowest value in criterion z1;

Compute λ k
max using expression (2) in T λ k

and

define Nλ k ;

End

End

In summary, the procedure starts with the computation of

an initial MST, which optimizes criterion z2 (chosen ar-

bitrarily). The maximum value of λ which maintains

the MST is computed as well as the candidates edges to

enter the tree, are computed. If the maximum value of λ is

greater than or equal to 1 the procedure stops. Otherwise,

the leaving edges are identified for each entering candidate.

Supported non-dominated trees generated by removing and

inserting identified edges are used to update the list of so-

lutions. The tree corresponding to the lowest value of cri-

terion z1 is the new reference tree and the above steps are

repeated.

In order to illustrate the above procedure, let as consider

the following example.

Example 1. Let G be the network presented in Fig. 1,

where the cost of the edges according to the two criteria

are also presented. The purpose is to obtain all the extreme

non-dominated minimum spanning trees.

In Fig. 2 the functions pλ
j , j = 1, ..., |E| are represented.

The vertical lines correspond to a change in the orders of

the costs of the edges.

Fig. 1. The starting graph.

Fig. 2. Functions pλ
j .

Using the procedure SBMST proposed above, the inter-

val [0,1] for λ is partitioned into 3 relevant sub-intervals,

each of them corresponding to a different non-dominated

extreme MST.

Z
(

T λ 1)

= (22,13); λ 1
max = 1

3
; Nλ 1 = {e1} ; Cλ 1(e1) = {e2};

Z
(

T λ 2)

= (20,14); λ 2
max = 1

2
; Nλ 2 = {e2};

Cλ 2(e2) = {e4,e5}.

Nλ 2 ⊗Cλ 2 =
{(

e2,e4

)

,(e2,e5)
}

; Z
(

T λ 2

1

)

= (18,16);

Z
(

T λ 2

2

)

= (19,15); T λ 3
= T λ 2

1 ; λ 3
max > 1.

Figures 3, 4 and 5 show three extreme efficient MST of the

initial problem. Figure 6 presents the images in the criteria

Fig. 3. First extreme eff.MST.
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space of each solution (the points are connected for graphic

visualization of the Pareto frontier).

Fig. 4. Second extreme eff.MST.

Fig. 5. Third extreme eff.MST.

Fig. 6. Pareto front.

Remark. From the previous presentation it is easy to see

that if an instance of a BMST observing the two follow-

ing conditions: 1) pλ
i < pλ

j , i = 1, ...,n− 1; j = n, ..., |E|
for all 0 ≤ λ ≤ 1; 2) then {e1,e2,e3, ...,en−1} are the

edges of the single non-dominated spanning tree of the

problem.

Instances observing the conditions above are exceptions.

In general, the BMST problem has several supported non-

dominated solutions.

3. Interactive usefulness

The results presented in the previous section can be useful

for building an interactive procedure dedicated to a pro-

gressive and selective calculation of the supported non-

dominated spanning trees, according to the preferences of

the decision maker elicited during the dialogue phase of

the interactive process.

A very simple extension of the procedure SBMST, enables

the obtainment of the sub-interval of values of λ leading to

a same extreme efficient solution. The upper-bound of the

sub-interval is obtained as in Eq. (2) and the lower bound,

λ k
min, is obtained by solving problem Eq. (1) replacing its

objective function by min λ and the constraint λ > λ k by

λ > λ k−1
max . The optimal solution of the latter problem, is

given by

λ
e j

min = max
ei∈Pλk

(e j)

{

c2
i − c2

j
(

c1
j − c2

j

)

−
(

c1
i − c2

i

) :
(

c1
j − c2

j

)

−
(

c1
i − c2

i

)

> 0;+∞

}

. (3)

Thus, λ k
min = max

e j /∈T λk

{

λ
e j
max

}

.

The progressive focus in part, or parts of the original inter-

val of λ , i.e., [0,1], can be achieved by an ad hoc procedure

that consists of eliminating the sub-intervals correspond-

ing to efficient solutions already calculated and, possibly,

other sub-intervals specified indirectly, for instance, by con-

straints on the objective function values introduced by the

decision maker. This may happen when those constraints

intersect edges of the convex hull connecting adjacent ex-

treme non-dominated solutions already calculated.

Alternatively, the progressive focus in part, or parts, of

the interval of λ , i.e., [0, 1], can also be achieved using

a NISE-like approach (see [4]). Note that, in this case, the

combination of the NISE-procedure steps with the progres-

sive calculation of the sub-intervals of λ , corresponding to

the extreme non-dominated solution calculated following

the NISE approach, enables a faster reduction of the unex-

ploited sub-intervals thereby accelerating the convergence

of the process.

Example 2. Let us consider the data from Example 1 and

suppose that the decision maker specifies λ = 0.8. By op-

timizing the weighted-sum function fλ (T ) = 0.8z1 (T ) +
(1−0.8)z2 (T ) , the extreme non-dominated solution

z = (22,13) is obtained. This solution is associated with

the sub-interval [0.5,1] thus, in the following iteration, the

decision maker is asked to select a weight in the inter-

val [0,1]\ [0.5,1] .

Extension to the multicriteria case. When there are more

than two criterion functions, the above results can be

adapted. Given a supported efficient solution of the mul-

ticriteria problem, i.e., an optimal solution of the prob-

lem {minλ 0
1 z1(T )+ λ 0

2 z2(T )+ ...+ λ 0
q zq(T ) : T is a span-
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ning tree on G, where λ 0
1 + λ 0

2 + ...+ λ 0
q = 1 and λ 0

j > 0

( j = 1, ...,q) it still optimizes the weighted-sum functions:

{minλ1z1(T ) + λ2z2(T ) + ... + λqzq(T ) : T is a spanning

tree on G}, such that λ1c1
j + λ2c2

j + ... + λqc
q
j ≥ λ1c1

i +

λ2c2
i + ...+ λqc

q
i ,∀ei ∈ Pλ 0

(e j),∀e j /∈ T λ 0
.

Thus the feasible region for the weights can be presented to

the DM in order to avoid redundant specifications of new

weights for the objective functions.

4. Conclusions

A constructive procedure was proposed to compute the en-

tire set of supported non-dominated solutions of the BMST.

The procedure relies on the weighted-sum functions of

the edges and on the ideas behind Kruskal’s algorithm

and sensitivity analysis in minimum spanning trees. With

this procedure we can identify the edges which must be

inserted/deleted from a supported efficient MST, to ob-

tain an adjacent efficient MST. The procedure for finding

the weight λ which conducts to the same extreme non-

dominated solution was also used to support an interactive

framework. The integration of other well-known (poten-

tially interesting) interactive tools was just outlined. The

method can also be useful in the multicriteria case.

The exploration of the procedure for finding the non-

supported non-dominated solutions is a future line of re-

search.
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