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Abstract—The hop-constrained minimum spanning tree prob-

lem is the problem of determining a rooted spanning tree of

minimum cost in which each path from the root node to any

other node contains at most HHH hops or edges. This problem re-

lates to the design of centralized tree networks with quality of

service requirements (in telecommunications) and has a close

relation with other tree problems. In this paper we investi-

gate the adaptation of some well-known “repetitive” heuristics

used for the capacitated minimum spanning tree problem to

the hop-constrained minimum spanning tree problem and in-

vestigate some simple look ahead mechanisms for enhancing

the quality of a savings heuristic. Computational results for

a set of benchmark tests with up to 80 nodes are presented.

Keywords— hop-constrained spanning tree problem, meta-

heuristics, pilot method, rollout method.

1. Introduction

The hop-constrained minimum spanning tree problem

(HMST) is defined as follows. Given a graph G = (V,E)
with node set V = {0,1, . . . ,n}, edge set E as well as

a cost ce associated with each edge e ∈ E and a natural

number H, we wish to find a spanning tree T of the graph

with minimum total cost such that the unique path from

a specified root node, node 0, to any other node has no

more than H hops (edges). The HMST is NP-hard be-

cause it contains as a particular case (the case with H = 2)

an NP-hard version of the simple uncapacitated facility lo-

cation problem (see [2, 8]). It has been shown by [16] that

the HMST is even not in APX, i.e., the class of problems

for which it is possible to have polynomial time heuristics

with a guaranteed approximation bound. Related theoreti-

cal investigations can be found, e.g., in [14]. Special cases

are considered, e.g., in [17].

The HMST models the design of centralized telecommu-

nication networks with quality of service constraints. The

root node represents the site of a central processor (com-

puter) and the remaining nodes represent terminals that are

required to be linked to the central processor. The hop con-

straints limit the number of hops (edges) between the root

node and any other node and guarantee a certain level of

service with respect to some performance constraints such

as availability and reliability (see, e.g., [22]). Availability

refers to the probability that all the transmission lines in

the path from the root node to the terminal are working,

and reliability corresponds with the probability that a ses-

sion will not be interrupted by a link failure. In general,

these probabilities decrease with the number of links in

the path implying that paths with fewer hops have a bet-

ter performance with respect to availability and reliability.

Centralized terminal networks are also usually implemented

with multidrop lines for connecting the terminals with the

center. In such networks, node processing times dominate

over queuing delays and fewer hops mean, in general, lower

delays.

Lower bounding schemes for the HMST based on network-

flow models have been suggested in [9, 10, 12]. A recent

paper [3] summarizes these approaches and proposes new

ones (column generation or cut generation) that are based

on equivalent formulations, in terms of the corresponding

linear programming relaxations. In fact, this survey pa-

per clearly indicates that any type of heuristic solution is

needed as optimal solutions for realistic problem sizes are

currently out of reach. Lower bounds for an extended ver-

sion of the problem, i.e., the Steiner tree problem with hop

constraints can be found in [10, 19]. Interestingly enough,

besides a cheapest insertion and the tabu search method de-

scribed in [19] for the Steiner version of the problem, and

Lagrangean heuristics proposed in [12], not much has been

suggested for the HMST in terms of methods for obtaining

good quality feasible solutions.

There are many problems that are related to the HMST.

Besides the generalization to the Steiner version mentioned

in the previous paragraph, we refer to the capacitated min-

imum spanning tree problem (CMST) (see, e.g., [20] and

the references given there) or terminal layout problem that

is usually described as the problem of determining a rooted

spanning tree of minimum cost in which each of the sub-

trees off the root node contains at most a given number

of K nodes. The connection of the HMST with the CMST

is important due to several reasons. While the HMST in-

volves a size (number of nodes or number of edges) con-

straint on each path leaving the root, the CMST involves

a size constraint on the subtrees off the root. Thus, the

HMST is an integer relaxation of the CMST and it is natural

to assume that some ideas which work well for one prob-

lem may also work well for the other. One example of this

is given by the fact that reasonably successful approaches

for the two problems are based on so-called hop-indexed

integer linear programming formulations (see, e.g., [3, 11]).

In context of determining feasible solutions (which is more

to the point in this paper), straightforward adaptations of

minimum spanning tree algorithms for the two problems

share a common disadvantage, namely that nodes farther

from the root node cannot be linked to the closest nodes

due to the additional constraints. Thus, it is natural to think

that a savings heuristic that has been suggested and used for

the CMST and which overcomes this disadvantage might
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also be suitable for the HMST (this is explored in Sec-

tion 2). This reasoning is extended in Section 3 to repeti-

tive heuristics which are known to successfully improve the

savings heuristics for the CMST.

Furthermore, we suggest another heuristic approach which

is based on some look ahead feature (Section 4), i.e.,

a “repetitive” approach superimposed as a guiding process

on some construction method. This idea relates to the pi-

lot method developed in the early 90s for the Steiner tree

problem in graphs (see [4, 5]). Lateron, similar ideas were

developed under different names. The most famous one

is the rollout method [1]. For a recent survey on the pi-

lot method and related applications to many combinatorial

optimization problems (see [21]).

Computational results in Section 5 show that repetitive

methods can improve considerably over the results of the

original heuristics, however, for the prize of considerably

larger computation times. Furthermore, we observe that we

can use the resulting objective function values as good up-

per cutoff values in available mixed integer programming

solvers (such as CPLEX) for determining optimal solutions

for previously unsolved problem instances of the HMST.

We close with conclusions and directions for further re-

search.

2. Construction heuristics

When trying to solve the HMST an obvious idea is to adapt

and modify two algorithms which produce minimum un-

constrained spanning trees in an undirected graph. One is

the well known Prim [18] algorithm (which for simplicity,

we do not describe in the paper). Starting the algorithm

from node 0, it is quite easy to modify it in order to guaran-

tee that it produces a feasible solution for the HMST. This

algorithm behaves quite poorly for the HMST. In fact it ex-

hibits a disadvantage that is also observed for a modified

Prim algorithm for the CMST. As already mentioned in the

previous section, the deficiency is that nodes far from the

root cannot always be linked to closest nodes due to the

additional (hop or capacity) constraints, leading to more

expensive solutions.

Thus, we shall follow the literature on the CMST and pro-

pose a savings heuristics for the HMST that is quite similar

to the well-known Esau-Williams algorithm (EW) [6]. This

heuristic usually starts with the star solution (that is, every

node linked directly to node 0). The best feasible change,

i.e., the change which yields the largest savings, is per-

formed. This is iteratively repeated until no savings can be

obtained any more. To be more specific, let χi denote the

cost of the edge linking the subtree containing node i to

the root in the current solution. For each pair of nodes i

and j in different subtrees we compute the savings si j of

linking i with j, which is defined as si j = χi− ci j if the

operation of including edge (i, j) and removing the edge

linking the subtree containing node i to the root leads to

a feasible solution, and si j = ∞, otherwise. The best ex-

change is performed and the savings are recalculated for

the next iteration. The process stops when no positive sav-

ings is available any more. The method could easily be

applied to other feasible solutions and so it could be clas-

sified as improvement procedure, too.

3. Second order algorithms

Second order algorithms are an important class of algo-

rithms following the idea of repetition (also considered to

be a multi-pass heuristic). They iteratively apply a so-called

first order procedure to different start solutions (where some

edges are fixed to be included) and/or modified cost func-

tions (where inhibitively high cost values have been as-

signed to some edges) thus forcing edges into or out of

the solution. Savings procedures like the EW may be ap-

plied as “slave” procedures to generate or complete the

solution. In each iteration, all possible modifications ac-

cording to a given rule are checked. The best one is re-

alized and the respective modifications are made perma-

nent for the remaining iterations. The underlying prin-

ciple is to investigate many good starting points through

some greedy procedure and thereby to increase the possi-

bility of finding a good solution on at least one repetition

(see, e.g., [13, 15]).

3.1. General scheme

With the main objective of overcoming the typical greed-

iness of simple constructive heuristics, we investigate the

class of second order algorithms. As far as we know, this

class of heuristics has first been suggested in [15] for the

CMST. In such algorithms, several calls of a first order al-

gorithm (which usually is a simple constructive heuristic)

are made. At the beginning of each iteration of the algo-

rithm, an adequate set of constraints is added to the problem

and the first order algorithm is executed. In general, such

constraints force or inhibit edges from being included in the

solution. Small modifications on the first order algorithm

permit us to obtain such modified solutions. For instance,

to prevent an edge (p,q) from being included in the solu-

tion, we simply define cpq = M, where M > max(i, j)∈E ci j

before running the first order algorithm. For forcing an

edge to be in the solution, one can define cpq = m, with

m < min(i, j)∈E ci j.

A general outline of a second order algorithm is described

as follows. Let HEUR denote any first order heuristic for

the HMST (e.g., the EW) and let HEUR(S1,S2) denote its

application to a modification of the data where the edges of

S1 are necessarily included in the solution determined by

the algorithm and the edges in S2 are excluded from it. Let

C(S1,S2) be the cost of this solution and let COST denote

the objective function value of the best solution obtained

so far. Finally, let IT denote the number of iterations of

the overall method.
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Second order algorithm (Basic scheme)

Initialization: COST ← ∞

Initialize S1 and S2

Loop: for i = 1, IT do

Call HEUR(S1,S2)

if C(S1,S2) < COST then

COST ←C(S1,S2)
Modify S1 and / or S2

Each iteration of the main loop corresponds to an execu-

tion of the first order algorithm after modifying adequately

the data / the cost matrix according to the definition of the

sets S1 and S2. After the IT iterations, COST gives the

cost of the best solution. The definition (and rule modifi-

cation) of the sets S1 and S2 may also depend on previous

solutions of the main algorithm. One example of such

a rule is to prevent two nodes i and j of being in the same

subtree (assuming that this has happened in the previous

solution) [15]. In this way, we guarantee that the solution

obtained in the current iteration is different from the one

obtained in the previous iteration. This rule corresponds to

inhibiting any edge that connects the two components con-
taining the two nodes, respectively. Thus, S2 is implicitly

defined as containing all such edges.

One way of improving the basic scheme is to repeat it sev-

eral times. Each time, the best solution obtained so far

and the modifications (associated to the corresponding sets

S1 and S2) are made permanent. To explain this improved

version, let SP1 (SP2) denote the set of edges which are
permanently included in (excluded from) the remaining so-

lutions. Let HEUR(S1,S2,SP1,SP2) denote the first order

algorithm modified in such way that the edges in the set

S1∪SP1 must be included in the solution and the edges in

the set S2∪ SP2 must be excluded from the solution. The

cost of such solution is denoted by C(S1,S2,SP1,SP2). The

parameter k identifies the iteration number of the outer loop

and IT (k) corresponds to the number of iterations of the

inner loop at iteration k of the outer loop. In general, the

algorithm stops when all the solutions obtained in the ex-

ecution of an inner loop do not improve the best solution.

In the scheme below, “COND” indicates a general stopping

condition.

Second order algorithm (Improved scheme)

Initialization: COST ← ∞

k← 1

SP1← /0

SP2← /0

Outer Loop: while not (COND) do

Initialize S1 and S2

Inner Loop: for i = 1, IT (k) do

Call HEUR(S1,S2,SP1,SP2)

if (C(S1,S2,SP1,SP2)<COST ) then

COST ←C(S1,S2,SP1,SP2)
A1← S1

A2← S2

Modify S1 and / or S2

SP1← SP1∪A1

SP2← SP2∪A2

k← k + 1

Clearly, different ways and rules to define the sets S1

and S2 lead to different second order algorithms. Some

of those rules are specified below.

3.2. Inhibiting edges

In this section we only consider inhibitions and thus, the

sets S1 and SP1 are empty. Several ways of defining the

sets S2 and / or SP2 are given next.

Simple inhibition (I1). Each edge (not incident to the root)

of the previous solution defines the set S2 in each iteration

of the inner loop. (In this case we have IT (k) = n for all k.)

The edge leading to the best solution is made permanent

and included in SP2.

Inhibition of pairs of edges (I2). This case is similar to

simple inhibition, but now each pair of edges is considered

to be included in S2 (in each iteration). The main idea of

this rule is to increase the number of solutions generated

by the main body of the algorithm and thus, to increase

the possibility of finding a better solution. However, it is

clear that this version of the algorithm requires an increased

computational time.

The original inhibit in each iteration of the outer loop of the

general procedure asks for all edges of the previous solution

to be inhibited (I1) or to check for all possible exclusions

of two edges at a time (I2). In each iteration of I1 we have

a linear number of calls of the first order algorithm and in

I2 this number is quadratic.

3.3. Forcing edges

In this section we only consider edge inclusions and thus,

the sets S2 and SP2 are empty. Several ways of defining the

sets S1 and / or SP1 are possible.

Join. Here we follow [15] and consider the following two

sets of edges:

JA1 = {(p,q)|cpq = min
r=1,...,n

crq,q = 1, ...,n},

JA2 = {(p,q)|cpq = min
r=1,...,n

crq : c0r ≤ c0q,q = 1, ...,n}.

The set JA1 includes for each node the minimum cost edge

incident to it. The set JA2 includes for node q the minimum

cost edge incident to it such that the other endpoint is closer

to the root node.

In each iteration of the inner loop, S1 contains exactly one

edge from the set JA1 ∪ JA2. Thus, the inner loop will

have at most 2n iterations (as there may be edges repeated

in the two sets and each set has at most n edges). The

edge leading to the best solution is made permanent and

the algorithm continues.

General join. In this rule we follow the inhibit concept

and try to use information from previous solutions to de-

fine candidate edges to be included in the next solution.

Clearly, all edges not included in the previous solution can

be considered as candidates. Thus, one such edge defines

a possible set S1 (edges leading to infeasible solutions when

considered together with SP1 are excluded – this also refers
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to edges leading to cycles or edges leading to paths which

are too long). However, such an approach is too time con-

suming as there are many edges to examine. Thus, we

consider a variation of the method where we only exam-

ine the z least cost edges incident with each node (and not

leading to infeasible solutions). In our computational re-

sults we shall consider z = 4 (this choice results from some

experiments reported in [7]).

4. Looking ahead with repetition

Building on a simple greedy algorithm the pilot method

[4, 5] is a meta-heuristic that builds primarily on the idea

of looking ahead for each possible local choice (by comput-

ing a so-called pilot solution), memorizing the best result,

and performing the according move. One may apply this

strategy by successively performing a first order algorithm

for all possible local steps (i.e., starting with all incomplete

solutions resulting from adding some not yet included ele-

ment at some position to the current incomplete solution).

The look ahead mechanism of the pilot method is related

to increased neighborhood depths as the pilot method ex-

ploits the evaluation of neighbors at larger depths to guide

the neighbor selection at depth one.

Usually, it is reasonable to restrict the pilot process to

a given evaluation depth. That is, the pilot method is per-

formed up to an incomplete solution (e.g., partial assign-

ment) based on this evaluation depth and then completed by

continuing with a conventional cheapest insertion heuristic.

In fact, the general second order algorithm described above

is nothing else than a pilot method of depth 1 where the

local choice is performed by excluding edges from a given

solution, one at a time.

For this paper we use the idea of looking ahead as a moti-

vation for a more general repetitive second order algorithm.

As a simple look ahead mechanism motivated by the pilot

method we modify I2 as follows (called ILA). In each it-

eration, for each edge to be inhibited, we calculate a new

solution and use all possible edges of that new solution as

possible candidates for inhibition. Based on the general

stopping criterion imposed by any type of savings heuristic

like the EW to stop if no more improvements are possible

we have two observations why ILA might have and in fact

has larger computation times than I2. First, as intermediate

solutions need to be calculated it definitely needs additional

time for performing these calculations. Second, as we pro-

ceed with the method as long as improvements are possible,

there may be an increased number of iterations of the outer

loop based on additional improvements found.

5. Computational results

For computational comparisons we use a set of HMST

problem instances with 40 and 80 nodes that have pre-

viously been used in the literature (see, e.g., [3, 8–10, 12]).

We distinguish instances with the root in the center of

a rectangle in the Euclidean plane (called TC) and instances

with the root in the corner of the rectangle (called TE).

In order to reduce the size of each instance, we have used

a simple edge elimination test (see [9]). If ci j > c0 j,

then any optimal solution does not use edge (i, j) and if

ci j = c0 j(i 6= 0), then there is an optimal solution without

edge (i, j). This means that edge (i, j) can be eliminated

whenever ci j ≥ c0 j. This edge elimination test is applied to

every instance before applying the heuristics. Note that the

test is much more effective when applied to instances TC

rather than to instances TE. This means that the reduced

instances TE are larger than the reduced instances TC sug-

gesting that the TE instances will be much more difficult to

solve than the remaining instances. A standard way for re-

porting numerical results for heuristics found in the CMST

literature is to compare with the EW (see, e.g., many of the

papers surveyed in [20]).

Computational results for n = 40 and n = 80 are presented

in Tables 1 and 2. In both tables, the first column, de-

noted by Prob, identifies the problem instance while the

second column gives the value of H. For n = 40 we know

the optimal solutions of all problem instances and they are

provided in the third column (OPT). In Table 2 we provide

optimal objective function values for the problem instances

with n = 80 as far as we have been able to compute them

based on the CPLEX models of [12] together with the upper

bounds taken from Table 2 as upper cutoff values. That is,

using the results from our computational study allowed us

to compute optimal objective function values that had not

been previously known. For the cases with n = 80, in case

that we do not know an optimal solution from the literature

and also cannot provide them with the above mentioned

CPLEX models, we provide best known lower bounds LB

taken from solving the linear programming relaxation of

a hop-indexed formulation (see [3, 12]). They are shown

in the form (LB).

The next few columns provide the heuristics that we tested.

EW gives the upper bound obtained with the Esau-Williams

algorithm. I1 and I2 provide the solutions obtained by

the inhibition algorithms as described above. That is,

I1 represents simple inhibition of edges following [15] and

I2 means the case of forbidding two edges at the same

time in each iteration of the inhibition procedure. Column

ILA gives the results of the simple look ahead modification

(applying the inhibition procedure). The column denoted

by J shows the results obtained by means of the join proce-

dure, which represents the junction of edges also according

to [15]. In column J4 we provide the results for the general

join procedure presented above. That is, in this procedure

the four cheapest edges incident with each node, except the

root, that do not belong to the solution, are candidates. Un-

der the same headings we also provide the CPU times in

seconds of the respective procedures. All results are ob-

tained on a Pentium IV, 2.8 GHz following some straight-

forward implementation. Note that the implementation is

straightforward and does not strive to incorporate versatile

data structures to improve the CPU times as the major fo-
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Table 1

Computational results and CPU times for the instances with n = 40

Prob H OPT
Upper bounds CPU times [s]

EW I1 I2 ILA J J4 EW I1 I2 ILA J J4

3 609 653 612 612 612 622 621 0.0 0.8 6.1 14.7 1.5 4.7

TC-1 4 548 594 564 563 555 560 563 0.0 0.7 6.5 16.6 1.1 4.3

5 522 561 524 524 524 524 524 0.0 0.4 4.3 10.7 1.1 3.6

3 566 596 572 566 566 587 575 0.0 0.7 4.5 9.5 1.4 4.8

TC-2 4 519 552 521 521 519 521 519 0.0 0.4 4.4 10.9 1.2 4.3

5 496 497 497 497 497 497 497 0.0 0.3 2.3 4.8 1.2 4.0

3 580 631 586 592 582 592 586 0.0 0.8 7.1 18.9 1.2 5.0

TC-3 4 544 585 557 549 547 561 550 0.0 0.6 9.6 19.5 1.2 4.4

5 516 547 520 520 520 520 520 0.0 0.4 5.9 12.5 1.1 3.9

3 613 661 624 620 614 632 619 0.0 0.5 5.2 13.3 1.4 5.0

TC-4 4 557 601 567 565 561 564 564 0.0 0.5 5.7 11.9 1.2 4.6

5 524 552 543 539 537 536 529 0.0 0.4 4.5 11.1 1.1 3.7

3 599 627 604 604 604 605 604 0.0 0.5 4.4 11.3 1.2 4.8

TC-5 4 552 583 560 560 560 556 558 0.0 0.7 6.3 13.6 1.1 4.2

5 522 548 526 526 522 526 530 0.0 0.5 4.3 5.9 1.0 3.9

3 708 834 709 709 709 733 724 0.0 1.0 9.6 20.1 2.7 8.3

TE-1 4 627 686 650 650 650 637 635 0.0 0.7 6.7 14.1 2.4 8.2

5 590 676 627 605 597 611 599 0.0 0.6 8.6 20.0 2.2 7.4

3 710 824 736 736 730 744 738 0.0 0.7 7.1 14.6 2.7 9.0

TE-2 4 625 694 653 625 628 659 651 0.0 0.8 11.3 27.1 2.3 8.4

5 581 643 601 599 593 599 601 0.0 0.7 7.1 17.4 2.1 7.4

3 660 779 692 690 677 746 686 0.0 0.8 11.1 30.5 2.6 9.3

TE-3 4 581 661 600 600 600 611 584 0.0 0.5 4.3 9.1 2.4 7.5

5 540 602 556 552 552 562 557 0.0 0.5 6.1 15.2 2.1 7.4

3 722 779 736 736 732 771 743 0.0 0.7 6.8 17.9 2.7 8.6

TE-4 4 625 674 640 626 626 647 648 0.0 0.7 7.9 16.6 2.2 7.8

5 585 630 608 597 591 594 594 0.0 0.5 8.1 19.2 1.9 7.1

3 675 791 687 686 675 705 682 0.0 1.2 9.0 26.1 2.9 8.6

TE-5 4 614 677 628 621 621 620 620 0.0 0.5 11.9 21.8 2.5 8.1

5 571 600 582 580 579 578 578 0.0 0.7 7.5 15.7 2.1 7.8

cus is solely to investigate whether the solution quality can

be enhanced and to which extent. Compared to the litera-

ture some of our results are providing new best solutions

for these benchmark instances (although we believe that

further improvements are possible).

Our results show that the EW performs quite reasonably

for the HMST. (We have also implemented the Prim algo-

rithm but do not show the results as they are much worse

compared to those of the EW.) Inhibition and join as some

simple repetitive mechanism following the idea of applying

second order (multi-pass) heuristics clearly improve over

the EW results. This is pretty much in line with our ex-

pectation and experience gained with respect to the CMST.

Also, while not always being the case, the inhibition ap-

proach seems to outperform the join approach with respect

to the solution quality obtained. This observation is also

in line with earlier results from [15] for the CMST. Never-

theless, the computation times for J seem to be higher than

those for I1.

Besides the quadratic number of repetitive calls of the first

order heuristic (EW) in I2 and ILA for each iteration of

the outer loop when compared to I1, an increased solution

quality may influence the overall stopping criterion. There-

fore, a considerably increased time behavior with respect to

the extended algorithms seems obvious and can be clearly

taken from the tables. With respect to solution quality the

picture seems to be clear in the sense that repetition can

really be beneficial. That is, while not always leading to

the overall best results the ILA procedure seems to be bet-

ter or at least as good than the other approaches in most

cases. The additional effort for J4 seems to pay compared

to J, but J4 seems to outperform ILA only in some cases.
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Table 2

Computational results and CPU times for the instances with n = 80

Prob H OPT
Upper bounds CPU times [s]

EW I1 I2 ILA J J4 EW I1 I2 ILA J J4

3 1072 1233 1116 1106 1101 1099 1106 0.0 44.0 804.3 2011.5 63.9 224.1

TC-1 4 981 1073 1003 997 997 1011 1001 0.0 40.9 776.0 1796.0 55.6 192.9

5 922 994 942 930 929 948 938 0.0 26.3 511.5 1208.0 48.1 167.7

3 1054 1183 1115 1088 1080 1096 1086 0.0 22.8 801.3 1963.2 56.2 211.6

TC-2 4 967 1070 988 986 982 1006 994 0.0 45.9 864.5 2043.2 54.5 171.5

5 918 993 930 933 925 938 936 0.0 33.6 664.1 1307.1 43.6 149.8

3 1068 1169 1100 1092 1091 1100 1098 0.0 40.4 1016.7 2168.6 61.5 230.7

TC-3 4 968 1056 998 986 982 1000 997 0.0 36.4 807.6 1941.3 57.7 177.4

5 912 978 924 920 916 930 928 0.0 26.2 641.0 1323.3 44.1 148.4

3 1071 1168 1114 1110 1104 1111 1097 0.0 29.6 698.1 1909.5 65.9 213.1

TC-4 4 968 1049 990 984 986 1001 992 0.0 39.9 872.7 1730.3 55.7 184.6

5 912 980 930 916 918 939 926 0.0 33.8 588.6 1399.4 48.1 162.6

3 1235 1389 1288 1262 1268 1297 1274 0.0 21.9 848.3 1271.3 69.9 234.2

TC-5 4 1094 1232 1135 1134 1126 1134 1142 0.0 27.3 630.7 1257.1 58.6 206.1

5 1037 1107 1052 1052 1052 1065 1059 0.0 25.8 426.4 1066.7 48.4 179.8

3 (1743) 2321 2022 1965 1957 2003 1928 0.1 56.2 1044.6 2885.0 123.4 403.1

TE-1 4 (1462) 1953 1698 1666 1631 1708 1631 0.0 42.7 966.8 2675.1 110.0 372.1

5 (1349) 1753 1508 1500 1500 1525 1516 0.0 27.3 601.0 1443.2 90.9 323.2

3 (1669) 2403 1948 1926 1845 2120 1864 0.1 48.2 1082.7 2936.5 162.4 462.6

TE-2 4 (1413) 1814 1636 1548 1542 1635 1627 0.0 43.6 954.9 2364.3 133.6 407.6

5 (1297) 1528 1451 1447 1441 1460 1445 0.0 22.2 472.8 1179.0 98.1 345.3

3 (1672) 2364 1955 1872 1864 1960 1893 0.1 37.5 1158.4 2497.8 154.3 452.2

TE-3 4 (1432) 1816 1670 1625 1614 1656 1601 0.0 22.5 701.8 1667.1 118.3 365.4

5 (1308) 1582 1506 1427 1411 1429 1426 0.0 22.6 446.5 1141.1 96.5 322.2

3 (1679) 2409 1900 1864 1843 1954 1925 0.1 62.7 888.9 3024.1 141.2 448.7

TE-4 4 (1420) 1967 1704 1631 1665 1727 1665 0.1 31.2 1327.0 1831.8 136.5 422.8

5 (1313) 1638 1499 1490 1458 1530 1464 0.0 31.6 981.5 1494.1 111.2 333.9

3 (1692) 2478 1933 1909 1898 2017 1892 0.1 35.8 1435.0 2670.1 137.6 458.5

TE-5 4 (1447) 1775 1643 1614 1614 1647 1629 0.0 26.1 598.1 1344.3 105.9 387.1

5 (1325) 1687 1494 1472 1456 1490 1458 0.0 10.3 441.1 1226.2 89.0 317.1

6. Conclusions and future research

To conclude with we have seen that the repetition mech-

anism within a second order algorithm may be worth in-

vestigating with respect to solution quality while the com-

putation times are largely increasing. A simple look ahead

feature may enhance this picture. With that it seems that

results for so-called capacitated tree problems (naming the

CMST and the HMST as such) using second order algo-

rithms may be in line with each other. That is, once other

capacitated tree problems are considered the use of sec-

ond order algorithms may be a natural choice within future

research.
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