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Abstract—In this paper, we give a general framework of agent-

based simulation for analyzing behavior of players in various

types of games. In our simulation model, artificial adaptive

agents have a mechanism of decision making and learning

based on neural networks and genetic algorithms. The synap-

tic weights and thresholds characterizing the neural network

of an artificial agent are revised in order that the artificial

agent obtains larger payoffs through a genetic algorithm. The

proposed framework is illustrated with two examples, and,

by giving some simulation result, we demonstrate availabil-

ity of the simulation analysis by the proposed framework of

agent-based simulation, from which a wide variety of simula-

tion settings can be easily implemented and detailed data and

statistics are obtained.

Keywords—artificial adaptive agents, simulation, games, behav-

ior of players.

1. Introduction

In games with multiple equilibria, it is difficult to predict

which equilibrium will be realized because of uncertainty

about actions of opponents. Even in games with a unique

equilibrium, it is known that in some special games, the

prediction of the Nash equilibrium does not always cor-

respond to reality. To examine human behavior in such

games, numerous experiments have been accumulated.

Especially, a considerable number of studies have been

made on experiments for examining human behavior in

coordination games, generalized matching pennies games,

ultimatum bargaining games, market entry games and so

forth [3, 9, 16, 17, 19, 20, 21, 22]. Although in experi-

mental studies, situations in accordance with game models

are formed in laboratories and human subjects are moti-

vated by money, for such experimental environments with

human subjects there exist limitations with respect to the

number of trials, the number of subjects, variations of pa-

rameter settings and so forth.

In most of mathematical models in economics and game

theory, it is assumed that players are rational and maxi-

mize their payoffs, and they can discriminate between two

payoffs with a minute difference. Such optimization ap-

proaches are not always appropriate for analyzing human

behavior and social phenomena, and models based on adap-

tive behavior can be alternatives to such optimization mod-

els. Recently as complements of conventional mathematical

models, a large number of adaptive behavioral models have

been proposed [1, 4, 6, 7, 8, 13, 17, 18, 21, 23].

It is natural that actions of artificial agents in simulation

systems are described by using adaptive behavioral rules,

and simulation can be a promising approach to modeling

situations where it is difficult to assume hyperrational be-

havior of decision makers. We suppose that simulation is

a complement to experiments with human subjects because

an extensive range of treatments can be easily performed by

varying values of the parameters characterizing games in

simulation systems while there exist the above mentioned

limitations in experiments with human subjects. As con-

cerns such approaches based on adaptive behavioral mod-

els, Holland and Miller [12] interpret most of economic

systems as complex adaptive systems, and point out that

simulation using artificial societies with adaptive agents is

effective for analysis of such economic systems. Axelrod [2]

insists on the need for simulation analysis in social sciences,

and states that purposes of the simulation analysis include

prediction, performance, training, entertainment, education,

proof and discovery.

In this paper, we give a general framework of agent-based

simulation for analyzing behavior of players in various

types of games. In our simulation model, the decision

mechanism of an artificial agent is based on a neural net-

work with several inputs, and the agent chooses a strat-

egy in accordance with the output of the neural network.

The synaptic weights and thresholds characterizing the neu-

ral network are revised so that an artificial agent obtains

larger payoffs through a genetic algorithm, and then this

learning mechanism develops artificial agents with better

performance. In Section 2, we describe the agent-based

simulation system with decision and learning mechanisms

based on neural networks and genetic algorithms. In Sec-

tion 3, we provide some simulation result of the coordi-

nation games to demonstrate availability of the simulation

analysis. Finally in Section 4, to conclude this paper, we

make some remarks.

2. Simulation model

In this section, a general framework of agent-based simu-

lation is presented together with two applications to spe-

cific games: the minimum strategy coordination game and

the generalized matching pennies game [14, 15]. An artifi-

cial adaptive agent in our simulation system has a mecha-
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nism of decision making and learning based on neural

networks (see, e.g., Hassoun [11]) and genetic algorithms

(see, e.g., Goldberg [10]).

2.1. Decision making by a neural network

Artificial agents repeatedly play a game; agents obtaining

larger payoff are likely to be reproduced in the next pe-

riod, and conversely agents obtaining only a little payoff

are likely to be weeded out. In our model of an artifi-

cial genetic system embedded in the agent-based simula-

tion model, the whole population is divided into m game

groups, and in each game group the game is played by

n agents. The number of agents, n, depends on setting

of a game.

An artificial agent corresponds to a neural network, which

is characterized by synaptic weights between two nodes in

the neural network and thresholds which are parameters in

the output function of nodes. In our simulation model, an

action of an artificial agent is determined by a vector of

outputs from a nonlinear function with several input data

that the agent can know after playing a stage game. This

decision mechanism is implemented by a neural network.

The synaptic weights and thresholds characterizing the neu-

ral network are revised so that the artificial agent obtains

larger payoffs through a genetic algorithm, and then this

learning mechanism develops artificial agents with better

performance.

Because a structure of neural networks is determined by

the number of layers and the number of nodes in each

layer, an artificial agent is prescribed by the fixed number of

parameters if the numbers of layers and nodes are fixed. In

our model, we form a string compound of these parameters

which is identified with an artificial agent, and the string

is treated as a chromosome in an artificial genetic system

embedded in the simulation model.

2.2. Evolutionary learning through a genetic

algorithm

In a simulation system, the game is played by n artifi-

cial agents in each of m game groups. Therefore, there

are m agents for each type of players. There are s alterna-

tive strategies, and each of the agents chooses one among

them. Mixed strategies can be implemented by some simple

devises if necessary. The payoffs of artificial agents are de-

termined by outcomes of the game. Repeatedly playing the

game, agents obtaining larger payoffs are likely to survive;

if this is not the case, such agents are culled out in time.

In our simulation model, genetic algorithms are employed

as an evolutionary learning mechanism. Because a fitness

in the artificial genetic system is calculated by the obtained

payoffs, agents obtaining larger payoffs are likely to sur-

vive. The general structure of simulation model is shown

in Fig. 1.

Fig. 1. Flow of the simulation.

The procedure of the simulation is summarized as follows.

Step 1: Generating the initial population. Let the num-

ber of players in the game and the number of

groups for playing the game be n and m, respec-

tively. Then, the whole population of mn artificial

agents is initialized by assigning random numbers

in the interval [−1,1] to the parameters of the

synaptic weights and the thresholds characteriz-

ing the neural network.

Step 2: Forming groups for playing the game. The

whole population with mn agents is divided into

m groups for playing the game.

Step 3: Playing the game. Each agent chooses a strat-

egy in accordance with the output of the neural

network, and the game is played in each of the

groups. The strategy of each agent is determined

by the output of the neural network; an agent se-

lects the strategy corresponding to the node with

the largest output in the neural network. If the

number of generations in the genetic algorithm

reaches the final period of the simulation, the pro-

cedure stops.

Step 4: Performing genetic operations. The ith subpop-

ulation is formed by gathering the ith players

(agents) from the m groups; there are n sub-

populations. The genetic operations are sepa-

rately executed to each subpopulation consisting

of m agents.

29



Ichiro Nishizaki

Step 4-1: Reproduction. Let πi denote a payoff of

agent i in the present period. The fitness of

agent i is calculated as a function of πi. As

a reproduction operator, a certain method

such as the roulette wheel selection is

adopted. If the roulette wheel selection, by

a roulette wheel with slots sized by the prob-

ability pselection
i = fi/∑mn

i=1 fi, each chromo-

some is selected into the next generation.

Step 4-2: Crossover. A certain crossover method such

as the single-point crossover operator is ap-

plied to any pair of chromosomes with the

probability of crossover pc. If the single-point

crossover operator is employed, a point of

crossover on the chromosomes is randomly

selected and then two new chromosomes are

created by swapping subchromosomes which

are the right side parts of the selected point

of crossover on the original chromosomes.

A new population is formed by exchanging

the population in which the crossover oper-

ation is executed for the present generation

with a given probability G. The probabil-

ity G is called the generation gap. An agent

keeps the history of obtaining payoffs in the

past games, and the payoffs are divided be-

tween two offsprings in the proportion of

sizes of the swapped subchromosomes.

Step 4-3: Mutation. With a given small probability

of mutation pm, each gene which represents

a synaptic weight or a threshold in a chromo-

some is randomly changed. The selected gene

is replaced by a random number in [−1,1].

2.3. Applications

So far, we have given the general framework of agent-

based simulation for analyzing behavior of players in vari-

ety types of games. In this subsection, the proposed frame-

work is illustrated with two examples: the minimum strat-

egy coordination game and the generalized matching pen-

nies game [14, 15].

Minimum strategy coordination game. Based on the pro-

posed framework, agent-based simulation systems can be

developed for a wide variety of games, and we can per-

form an extensive range of treatments of the corresponding

simulation by using the system. For instance, we develop

an agent-based simulation system [14] for analyzing the

coordination game treated in the experimental investigation

by Van Huyck et al. [22]. Because this coordination game

is characterized by the minimum values of the strategies

selected by players, we refer to it as the minimum strategy

coordination game.

Before describing the specific structure of the neural net-

work for artificial agents, we give the outline of the min-

imum strategy coordination game. Let the set of players

be N = {1, . . . ,n}. All the players have the common set of

strategies: S = {1, . . . , s̄}. Let xi ∈ S denote a strategy of

player i. Then, the payoff function of player i is represented

by

π(xi,xi) = amin(xi,xi)−bxi + c,

xi = min(x1, . . . ,xi−1,xi+1, . . . ,xn), a > b > 0, c > 0.

(1)

The payoff of player i decreases with a strategy xi of self,

and increases with the minimum xi among strategies of

the others. To guarantee positive payoffs, the constant c is

added.

An artificial agent as a player in the minimum strategy

coordination game can be implemented by a neural network

which is characterized by synaptic weights and thresholds.

The structure of the neural network is depicted in Fig. 2.

Fig. 2. The structure of the neural network for the minimum

strategy coordination game.

There are six inputs in the neural network. In the follow-

ing information of the inputs, the subscript i, i = 1, . . . ,n
means player i and the subscript j, j = 1, . . . ,m means

game group j. Thus, the subscript i j identifies a par-

ticular agent in the agent-based simulation system. For

inputs 1 and 2, because human subjects in the experiment

are informed of the minimum strategy at the last game, and

it is supposed that they remember the strategies selected by
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themselves, the strategy xi j of agent i j and the minimum

strategy y j in game group j are given as inputs of the neural

network; the payoff πi j obtained by agent i j at the last pe-

riod is also given as input 3. Supposing that a player does

not remember an exact history of strategies in the past pe-

riods, but the player remembers at least the most frequent

strategy in the past periods, we provide the weighted most

frequent strategy xT
i j in the last T periods as input 4 to the

neural network. In the definition of xT
i j, assuming that old

memory is apt to decay, the discount factor w, 0 < w < 1

is introduced. Similarly, as inputs 5 and 6, the weighted

most frequent minimum strategy yT
j and the weighted

sum of obtained payoffs in the last T periods are also

given.

An algorithm for evolutionary learning through the genetic

algorithm is modified if necessary. In the experiment con-

ducted by Van Huyck et al. [22], subjects understand the

payoff table defined by the payoff function (1), and it is

not true that they start to play the game without any prior

knowledge of the game. Therefore it is natural for arti-

ficial agents in our system to have some knowledge of

the game before playing it. To do so, by using the er-

ror back propagation algorithm (see, e.g., Hassoun [11])

with the teacher signals, the parameters of the synap-

tic weights and the thresholds in the neural network are

adjusted ahead.

Generalized matching pennies game. We provide another

application of the proposed framework of agent-based sim-

ulation to the generalized matching pennies game treated in

the experiment by Ochs [16]. The payoff table of the gen-

eralized matching pennies game is shown in Table 1. In

this game, the row player has the two choices U and D and

the column player also has the two choices L and R. When

an outcome is (U,L) or (D,R), the row player receives a

positive payoff of a or 1, respectively. When an outcome

is (U,R) or (D,L), the column player receives a positive

payoff of 1. For the payoff a of the row player with respect

to the outcome (U,L), we assume that a ≥ 1. When a = 1,

the game is symmetric, and when a > 1, it is asymmetric.

It is known that, in the generalized matching pennies game,

there does not exist any Nash equilibrium with pure strate-

gies but there exists only a unique Nash equilibrium with

strict mixed strategies.

Table 1

A generalized matching pennies game

Row player
Column player

L R

U (a,0) (0,1)

D (0,1) (1,0)

Let p denote a probability of choosing strategy U for

the row player, and let q denote a probability of choos-

ing strategy L for the column player. Then, expected

payoffs πR and πC of the row player and the column player,

respectively, are represented by

πR = apq +(1− p)(1−q), (2)

πC = (1− p)q + p(1−q), (3)

and the corresponding Nash equilibrium is (pNash,qNash) =
(1/2,1/(a + 1)). Because this game is not a zero-sum

game, the maximin strategy is different from the Nash equi-

librium. The maximin strategies of the row player and

the column player are given by argmaxp minq πR(p,q) and

argmaxq minp πC(p,q), respectively, and therefore the pair

of the maximin strategies is (pS,qS) = (1/(a + 1),1/2).
Artificial agents playing the generalized matching pennies

game can be implemented by a neural network in a way

similar to in the previous application of the minimum strat-

egy coordination game. The structure of the neural network

is depicted in Fig. 3.

The inputs of the neural network include not only payoffs

of self obtained in the past periods but also payoffs of an

opponent, and the set of inputs consists of five values. Let

xi( j) be a payoff of player i at period j. Then, the total

payoff of player i at period t is represented by

xtotal
i (t) =

t

∑
j=1

φ
t− j
i xi( j). (4)

Fig. 3. The structure of the neural network for the generalized

matching pennies game.
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On the assumption that a decision of the artificial agent is

affected by the payoff obtained before, though the previous

payoff is reduced by (1−φi), the total payoff xtotal
i is used

as an input 1 of the neural network. In the extended rein-

forcement model by Erev and Roth [7], a similar parameter

is incorporated. In the experiment by Ochs [16], it is found

that there exist some players who take an outcome of the

previous game into account and make a decision. From this

viewpoint, we employ the payoff xlast
i obtained at the last

game as input 2 of the neural network. Furthermore, Duffy

and Feltovich [5] claim that choices of players are influ-

enced by the behavior or payoff of the others, and therefore

in our model the payoffs ytotal
i and ylast

i of an opponent as

well as the payoffs of self are incorporated as inputs 3 and

4 of the neural network. The value of (1− φi) can be in-

terpreted as the rate of forgetting. On our model, the value

of φi as input 4 to the neural network is fixed for each agent

and it is randomly assigned to each agent at the beginning

of the simulation.

The output of the neural network is a probability that the

artificial agent chooses strategy U if the agent is the row

player or strategy L if the agent is the column player.

Because the generalized matching pennies game is a two-

person game, the number of players is n = 2. For devel-

opment of an agent-based simulation system to this game,

we slightly modify the procedure of the simulation to al-

low artificial agents to use mixed strategies. Furthermore,

to examine effect of error in decisions and risk attitude

of players, the fitness of an artificial agent is defined as

a function of the payoff and the parameters of error and

risk attitude in the genetic algorithm embedded in the sim-

ulation system.

Although we have shown only two examples, our general

framework of agent-based simulation can be applicable to

various games and economic situations such as the ultima-

tum bargaining game, the market entry game, and so forth.

3. Analysis of simulation data

In this section, by giving a part of the simulation result of

the minimum strategy coordination game, we demonstrate

availability and effectiveness of the simulation analysis by

the proposed framework of agent-based simulation, from

which a wide variety of simulation settings can be easily

implemented and detailed data and statistics are obtained.

In this example, a variety of treatments are performed by

varying values of some parameters characterizing the game;

the three different simulations are arranged: simulations

coefficients, information, and size.

If the coefficient b of the second term in the payoff func-

tion (1) is positive, it follows that players who select larger

strategies than the minimum strategy pay the penalty. If the

coefficient b is equal to zero, the coordination problem such

as coordination failure and disequilibrium is eliminated. In

the experiment by Van Huyck et al. [22], when b = 0, the

payoff dominant equilibrium is observed; when b = 0.1, the

subjects avoid risky strategies and choices of the subjects

settle into the secure equilibrium. From this result, it is

reasoned that by making the value of b larger from zero,

outcomes of the game shift from the payoff dominant equi-

librium to the secure equilibrium. In simulation coefficient,

two treatments are performed, varying the values of the co-

efficients b and a. Moreover, after putting artificial agents

in experiencing the payoff dominant equilibrium in case of

b = 0, the agents play the games with b 6= 0. By examining

the choices of agents and the realization rate of equilibria

in this simulation, we investigate the relation between the

penalty and the behavior of artificial agents.

In the experiment with human subjects by Van Huyck

et al. [22], two types of treatments of information on out-

comes of the game are performed: one treatment where the

subjects are informed only of the minimum strategy, and

the other treatment where the subjects are informed of the

distribution of strategies selected by all the players. Com-

paring the two treatments, they conclude that informing

the subjects of the distribution of the strategies accelerates

the convergence of behavior of the subjects. In simulation

information, artificial agents are provided three types of in-

formation on outcomes of the game: the minimum strategy,

the minimum and the maximum strategies, and the distri-

bution of strategies. We examine the effect of information

given to artificial agents on the choices of them and the

realization rate of equilibria.

In the experiment, it is also observed that when the num-

ber of players is two, in comparison with the case of 14

or 16 subjects, it is likely to realize the payoff dominant

equilibrium. In simulation size, varying the number of ar-

tificial agents as well as the value of b representing the

degree of the penalty, we investigate influence of the num-

ber of agents on their behavior in the game and outcomes

of the game.

In this paper, as an example, we provide detailed analysis

of only one treatment of simulation coefficients. In gen-

eral as the value of b is made larger and the risk of pay-

ing the penalty increases, the payoff of an artificial agent

selecting a large strategy such as the payoff dominant strat-

egy 7 becomes a small value, and therefore it is likely

to fail in coordination. However, the risk-free game with

b = 0 is not the case. In this treatment, fixing the value of

a at a = 0.2, the value of the penalty coefficient b is var-

ied; it is set at b = 0.0,0.005,0.006, 0.007,0.008,0.009,

0.01,0.02,0.03, 0.04,0.05,0.1. From the data observed in

the treatment, we investigate transitions and steady states

of the choice rate of each strategy, the realization rate of

each individual equilibrium, and so forth.

Figures 4, 5, 6, and 7 show the choice rate of each strat-

egy, the minimum strategy rate of each strategy, the means

of selected strategies and the minimum strategies, and the

normalized average payoff, respectively. For comparison,

in Figs. 4 and 5, the data from the experiment with human

subjects by Van Huyck et al. [22] are provided by outline

symbols. Moreover, the realization rate of each individual

equilibrium and the gross realization rate of equilibria are

given in Figs. 8 and 9, respectively.
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Fig. 4. Choice rate of each strategy in treatment b.

In Fig. 4, the choice rate of each strategy at the steady

state is given. When the penalty is relatively large, i.e.,

b ≥ 0.04, the secure strategy 1 is likely to be selected.

Namely, most of the artificial agents avoid the risk of pay-

ing a large penalty and select the most secure strategy. As

the value of b decreases and therefore the penalty becomes

small, the modal strategy, which is the most frequently se-

lected strategy, grows large from the strategy 1 to the strat-

egy 4 one by one. When b is smaller than around 0.006,

the modal strategy jumps straight to the strategy 7, and

strategies 5 and 6 do not become modal.

Fig. 5. Minimal strategy rate of each strategy in treatment b.

In Fig. 5, the minimum strategy rate of the strategy s means

the rate that the strategy s is the minimum in the game.

From the fact that Fig. 5 is highly similar to Fig. 4, it

follows that the modal strategy in the steady state is almost

the same as the minimum strategy. For the strategy 1, when

b ≥ 0.04, although the choice rate of the strategy 1 shown

in Fig. 4 decreases little by little as the value of b becomes

small, the minimum strategy rate of the strategy 1 shown

in Fig. 5 is almost 1.0. Contrary to the strategy 1, when

b = 0, the choice rate of the strategy 7 is almost 1.0, but

the minimum strategy rate falls below 0.9 because the other

strategies are selected on rare occasions.

Compared with the result of the experiment with human

subjects, when b = 0.1, the choice rate of the secure strat-

egy 1 of the artificial agents, 0.99, is larger than that of the

human subjects, 0.72; for the minimum strategy rate, both

of them get the highest rate, 1.0. For the case of b = 0, in

the experiment with human subjects, the value of the gain

coefficient a is set at a = 0.1, which is slightly different

from the setting of the simulation. The choice rate of the

payoff dominant strategy 7 of the artificial agents is 0.99

which is close to the result of the human subjects, 0.956;

the minimum strategy rate of the artificial agents, 0.891, is

larger than that of the human subjects, 0.667. All in all, the

result of the simulation is similar to that of the experiment

with human subjects, and therefore the result of the simu-

lation supports that of the experiment with human subjects.

To be more precise, in the both results, the secure strategy

is dominant when the risk of paying a large penalty is high;

in the absence of such risk, the payoff dominant strategy

is likely to be chosen. From the other perspective on this

similarity, the simulation system successfully emulate the

human behavior in the game.

Fig. 6. Means of selected strategies and the minimal strategies

in treatment b.

In Fig. 6, the means of the chosen strategies and the

minimal strategies are shown; it can be found that these

values are very similar. This fact means that at the steady

state, most of the artificial agents choose the minimal strate-

gies.

From Fig. 7, the payoff obtained by an agent decreases

as the value of b increases from b = 0. At the point of

b = 0.04, the payoff is equal to the payoff of the secure

strategy 1. Because when b ≥ 0.04, the payoff of the se-

cure strategy 1 grows large with the value of b, we can

understand that most of the artificial agents choose strat-

egy 1 in such a situation.

The realization rate of each individual equilibrium is given

in Fig. 8. When b = 0.1, the secure equilibrium (1, . . . ,1)
is realized at the rate of 0.89 in the steady state. Although

as the value of b decreases, the realization rate of the secure

equilibrium decreases, it should be noted that in the inter-

val 0.04 ≤ b ≤ 0.1, only the secure equilibrium (1, . . . ,1)
is realized. As the value of b still decreases over 0.04,

33



Ichiro Nishizaki

Fig. 7. Normalized average payoff in treatment b.

Fig. 8. Realization rate of each individual equilibrium in treat-

ment b.

the consecutive equilibria, (2, . . . ,2), (3, . . . ,3), and

(4, . . . ,4), can be found, but the realization rates of these

equilibria do not exceed 0.5. When b ≤ 0.006, the payoff

dominant equilibrium (7, . . . ,7) is realized at the rate larger

than 0.8.

The gross realization rate of equilibria is shown in Fig. 9;

it is found that at both ends of the horizontal axis, b = 0

and b = 0.1, the equilibria are likely to be realized. In the

intermediate cases where effectiveness of the risk of paying

Fig. 9. Gross realization rate of equilibria in treatment b.

the penalty is not clear, it becomes difficult for artificial

agents to coordinate their strategies, and therefore the gross

realization rate of equilibria descends, compared with the

cases of b = 0 and b = 0.1.

As described above we have examined the result of the

treatment on change of the coefficient b, and several char-

acteristics of behavior of agents in the game can be found

through the agent-based simulation based on the proposed

general framework. Although only the two cases of b = 0

and b = 0.1 are performed in the experiment with human

subjects, we conduct various runs of the treatment in the

agent-based simulation and we obtain the following obser-

vations and findings.

1. In the games without the risk of paying any penalty,

the artificial agents successfully coordinate their

strategies and the payoff dominant equilibrium is re-

alized.

2. In the games with the risk of paying a substantial

penalty, coordination among the artificial agents is

failed, but they suitably predict strategies of the op-

ponents and the secure equilibrium forms.

3. The games with the risk of paying the intermediate

penalty are likely to bring outcomes of disequilibria.

4. As the value of b decreases, artificial agents shift

choices of strategies stepwise from the secure strat-

egy 1 to the payoff dominant strategy 7.

5. While the payoff dominant equilibrium is sensitive to

increase of the value of b, the secure equilibrium is

not so sensitive to decrease of the value of b.

4. Conclusions

In this paper, we have given a general framework of agent-

based simulation for analyzing behavior of players in vari-

ous types of games and economic situations. In our simu-

lation model, the decision mechanism of an artificial agent

is based on a neural network with several input data that

the agent can know after playing a stage game, and the

artificial agent chooses a strategy in accordance with the

output of the neural network. The synaptic weights and

thresholds characterizing the neural network of an artificial

agent are revised so that the artificial agent obtains larger

payoffs through a genetic algorithm, and then this learning

mechanism develops agents with better performance. Fi-

nally, by giving a part of the simulation result of the min-

imum strategy coordination game, we demonstrate avail-

ability and effectiveness of the simulation analysis by the

proposed framework of agent-based simulation.
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