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Abstract— In this paper we present an approach capable of

countering the presence of multiple access interference (MAI)

in code division multiple access (CDMA) channels. We de-

velop and implement a blind multiuser detector, based on an

independent component analysis (ICA) to mitigate both MAI

and noise. This algorithm has been utilized in blind source

separation (BSS) of unknown sources from their linear mix-

tures. It can also be used for estimation of the basis vectors

of BSS. The aim is to include an ICA algorithm within a wire-

less receiver in order to reduce the level of interference in

CDMA systems. This blind multiuser detector requires less

precise knowledge of the channel than does the conventional

single-user receiver. The proposed blind multiuser detector is

made robust with respect to imprecise knowledge of the re-

ceived signature waveforms of the user of interest. Several

experiments are performed in order to verify the validity of

the proposed learning algorithm.

Keywords— code division multiple access, independent compo-

nent analysis, blind source separation.

1. Introduction

Code division multiple access (CDMA) multiuser detection

has undergone rapid evolution through significant research

and development activity in telecommunications [12, 13].

With the ever-growing sophistication of signal processing

and computation, multiuser detection exploits the potential

needs to increase capacity in multiuser radio channels. It

deals with the demodulation of mutually interfering signals

in applications such as cellular telephony, satellite commu-

nication and digital radio.

In general, multiuser detection is also known as cochan-

nel interference suppression, multiuser demodulation, and

interference cancellation to deal with the demodulation

of digitally modulated signals in the presence of a mul-

tiaccess interference. Motivated by the channel environ-

ment encountered in many CDMA applications, the de-

sign of multiuser detectors for channels with fading, mul-

tipath, or noncoherent modulation has attracted consider-

able attention [6, 12]. An adaptive multiuser detector which

converges to the minimum mean squared error (MMSE)

detector without requiring training sequences is proposed

in [6]. This proposed blind multiuser detector is designed

with imprecise knowledge of the received signature wave-

form of the desired user. In [15] a blind adaptive multiuser

detector based on Kalman filtering in both a stationary and

a slowly time-varying environment is proposed. The au-

thor showed that the steady-state excess output energy of

the Kalman filtering algorithm is identically zero for a sta-

tionary environment. Also, Verdu presented an overview

of the adaptive tentative-decision based detectors in [13].

Verdu mentioned that the linear MMSE has the features of

the decorrelating detector, except that it requires knowledge

of the received amplitudes. On the other hand, the tenta-

tive decision based multiuser detector is the simplest idea

for successive cancellation, but the disadvantage is that it

requires extremely accurate estimation of the received am-

plitudes [12, 13]. Meanwhile, Verdu’s work has provided

exceptional important reference and guidance for the im-

plementation of the following work.

The goal of this paper is to introduce a blind multiuser

detector that adaptively recovers the signals from multiple

users. In this context, the blind (or non-data aided) mul-

tiuser detector means it requires no training data sequence,

but only the knowledge of the desired user signature se-

quence and its timing [9]. The proposed blind multiuser

detector employs iterative an independent component anal-

ysis (ICA) algorithm at the outputs of a bank of matched

filters. The main motivation of employing blind multiuser

detectors in CDMA is to recover the original users’ se-

quences from the received signals that are corrupted by

multiple access interference (MAI), without the help of

training sequences and a priori knowledge of the channel.

The rest of this paper is organized as follows. Section 2

gives a description of the blind multiuser detector model.

Section 3 discusses the proposed ICA algorithm. A perfor-

mance analysis and system capacity discussion is given in

Section 4 and concluding remarks are given in Section 5.

2. Blind multiuser detector

2.1. Channel model

In DS-CDMA, each user spreads its information signal in

frequency by direct sequence modulation before transmis-

sion via the common channel (Fig. 1).

Fig. 1. K = 3-users detector for multiple access Gaussian channel.
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We consider the K-user binary phase shift keying (BPSK)

asynchronous DS-CDMA white Gaussian model as given

in Eq. (1):

r(t) =

J

∑
i=−J

K

∑
k=1

Akbk(i)sk(t− iT − τk)+σn(t) , (1)

where:

• 2J+1 symbols are sent by each of the K users;

• the kth signature waveform sk is assumed to have

unit energy (‖sk‖ = 1); τk ∈ [0,T ) is the kth user’s

offset, where T is the symbol period; these signature

sequences are independent of the data symbol, and

have a chip rate much higher than that of the desired

user information;

• Ak is the received amplitude of the kth user;

• bk is the independent input data symbol of the kth

user, bk ∈ {−1,+1};

• the kth signature waveform sk is determined by the

random pseudo-noise (PN) spreading sequence ck

and pulse shape waveform p(t):

sk(t) =

NPG−1

∑
i=0

ck(i)p(t− iTc) , (2)

where sk(t) is assumed to have unit energy over the

symbol interval:

T = NPGTc symbol interval,

Tc chip interval,

NPG processing gain;

in this paper, we consider gold code spreading se-

quences; these signature sequences are independent

of the data symbols and have a chip rate much higher

than the symbol rate;

• the additive white Gaussian noise n(t) is stationary

and memoryless with unit power spectral density;

• σ2 is the variance of noise.

We assume the users transmit completely asynchronously.

In this context, when there are timing errors, each user’s

code experiences a random delay during the transmission

and the received signal is no longer aligned with the locally

generated codes [4].

For simplicity, we consider only one symbol interval. The

representation for the signal during one symbol interval is

written in vector form as

r(t) =

K

∑
k=1

Akbk(i)sk(t− τk)+σn(t) . (3)

At the receiver, the signal in Eq. (1) is chip-matched fil-

tered and sampled at the bit rate (1/Tb). The chip-matched

filtered signal can be represented as

xm(t) =
1

T

∫ T

0

r(t)sm(t−τm +∆τm)dt, (4)

m = 1, . . . ,K ,

where we assume a correlation maximization (or simi-

lar) operation is performed to approximately time-align the

mth matched filter to the time delay τm of the mth user

signal.

Following the sampling operation, we have:

xm(i) = sampled[xm(t)] =
K

∑
k=1

gmkbk(i)+σmn(i) . (5)

The set of match-filtered signals can be represented as

x(i) = Gb(i)+σn(i) , (6)

where G is the matrix {gmk}, m = 1, . . ., K, k = 1, . . ., K,

b(i) = [b1(i),b2(i), . . ., bk(i)]
T and n(i) is a (K x 1) vector

of noise samples.

2.2. Source independence

In the CDMA receiver, both code timing and chan-

nel estimation are often prerequisite tasks. Detection of

the desired user’s symbols in the CDMA system is far

more complicated than in the simpler time division mul-

tiple access (TDMA) and frequency division multiple ac-

cess (FDMA) systems used previously in mobile communi-

cations. Our main goal is to estimate and recover the orig-

inal transmitted symbols. Several techniques are available

Fig. 2. K-user detection model.

Fig. 3. The proposed blind receiver consists of PCA pre-whiten-

ing, ICA-BSS and wavelet denoising stages.
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to estimate the desired user’s symbols. In general, the

matched filter (correlator) is the simplest estimator, but it

performs well only if different users’ chip sequences are

orthogonal or the users have equal powers [2].

Recently, there have been attempts to apply blind and

semi-blind signal processing models and algorithms in

a wide variety of digital communications applications, for

example multi access communications systems, multi sen-

sor sonar and radar systems. Several good algorithms are

also available for solving the basic linear and nonlinear ICA

problem [1, 3, 5, 7, 10].

We propose to apply independent component analysis to

design a new blind CDMA receiver. The main reason

for using ICA in the CDMA receiver is because each

path and user symbol sequence is typically independent

of each other. The proposed multiuser detection algorithm

is applied at the receiver after the wavelet denoising [8]

(Figs. 2 and 3).

3. Proposed multiuser detection

algorithm

The proposed algorithm is generalized from Amari’s nat-

ural gradient algorithm [11]. This algorithm involves min-

imization of a multivariate cost function according to

the stochastic gradient descent algorithm, as discussed

later. The proposed algorithm, includes a pre-processing

stage involving principal component analysis (PCA) (see

[2, chap. 6, pp. 125–144] and [3]) of the measured sen-

sor signals. Pre-processing is employed to pre-whiten the

received signal vector, as discussed below.

3.1. Principle component analysis

Whitening of the received data x(i) is a common pre-

processing task in ICA. In particular, a pre-whitening

procedure is used mainly to decorrelate the sensor sig-

nals before separation. This makes the subsequent sep-

aration task easier, the separating matrix is then con-

strained to be orthogonal. There is no explicit assump-

tion on the probability density of the vectors made in PCA

[2, chap. 6, pp. 125–144], as long as the first and second

order statistics are known or can be estimated from the

mixture. The pre-whitened signal vector is given by

u(i) = D−1/2ET x(i) , (7)

where u=[u1, . . . ,uK ]
T, E=(e1, . . . ,eK) is the matrix whose

columns are the unit-norm eigenvectors of the covariance

matrix Cx = E{ x(i) x(i)T
} and D = diag(d1, . . . ,dK) is

the diagonal matrix of the eigenvalues of Cx.

3.2. Proposed ICA algorithm

We now discuss the proposed ICA algorithm to unmix the

source signals in the presence of noise. In the multiuser

channel, y(i) = W(i)u(i), where u = [u1, . . ., uK]T . The

output components become y = g(u(i)), where the g(u(i))

is an invertible nonlinearity. Bell and Sejnowski have

shown [3] that by maximizing the join entropy of H(y)

for the neural process output can approximately minimize

the mutual information among the output components y.

In this case, maximizing the joint entropy H(y1, y2) of

K = 2 output symbols, y1 and y2, consists of maximizing

the individual entropy of each output while minimizing the

mutual information ℑ(y1, y2) shared between these two out-

put symbols [3]. The mutual information ℑ(y) between K

output symbols can be deduced via Kullback-Leibler diver-

gence:

ℑ(y) = −H(y)+

K

∑
k=1

Hk(yk)

=

∫ ∞

−∞
p(y) log p(y)dy−

K

∑
k=1

∫ ∞

−∞
p(y) log pk(yk)dy

=

∫ ∞

−∞
p(y) log

p(y)

K

∑
k=1

pk(yk)

dy , (8)

when the mutual information ℑ(y) is equal to zero, these

K variables are statistically independent.

Then, the above mentioned differential entropy H of a ran-

dom vector yi with density p(yi) can be rewritten as

H(y) = H(y1)+, . . . ,+H(yk)−ℑ(y) , (9)

where H(y1) =−E
{

log
p(u1)

|
∂y1

∂u1
|

}

,

H(y) = −

K

∑
k=1

E

{

log
p(uk)

|
∂yk

∂uk
|

}

−ℑ(y)

= −E

{

log
p(u1)

|
∂y1

∂u1
|

}

+ . . .−E

{

log
p(uk)

|
∂yk

∂uk
|

}

−ℑ(y).

(10)

The goal is to learn the elements of the linear unmixing

matrix W and the set of parameters for the nonlinearities

g(uk(i)). This algorithm is used to update the unmixing

matrix W. In detail, W is an estimate of the unknown

mixing matrix of u(i). Using a gradient ascent algorithm,

we consider the derivative of the entropy function with

respect to W and the parameters of the nonlinearity is:

∂

∂W
(ℑ(y)) = −

∂H(y)

∂W
−

∂

∂W

K

∑
k=1

E

{

log
p(uk)

|
∂yk

∂uk
|

}

= −(WT
)
−1
−

( ∂ p(u)

∂u

p(u)

)

uT
. (11)

Following the work of [3, 10], we employ the following

learning rule for W

∆W(p) =−α
∂ℑ(y)

∂W
WT W , (12)

where p is the iteration index and α the learning rate (refer

to Appendix).
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After initializing the weight matrix W and choosing α

(sufficiently small value, e.g., 0.0001), the weights are it-

eratively updated according to the learning rule. In our

observation, the learning process usually depends on the

activities of the weights W, the learning rate α , the input

and output values of the mixture:

W(p+1) = W(p)+α(I−g(y)yT
+y(g(y))

T
)W(p), (13)

where p is the iteration index.

The proposed algorithm for complex signals performs as

follows:

1. Chip-matched filtered signals, wavelet denoising.

2. PCA pre-whitening the signals.

3. Select an initial separating matrix W0 and learning

rate α .

4. Determine and estimate the initial, y = W0u.

5. Update the separating matrix by Wp+1 ←− Wp +

α(I−g(y)yT
+y(g(y))

T
)Wp, where I is the identity

matrix.

6. Decorrelate and normalize Wp+1.

7. If |(Wp+1)
T Wp| is not close enough to 1, then p =

p+1, and go back to Step 5. Else, output the vec-

tor Wp.

8. Wavelet denoising.

9. Output detector, sgn (y).

3.3. Error measure

The performance during the learning process was moni-

tored by an error measure based on:

PI =
1

K2

(

K

∑
i=1

( K

∑
j=1

|PDi j|

maxk |PDik|
−1

)

(14)

+

K

∑
j=1

( K

∑
i=1

|PDi j|

maxk |PDk j|
−1

)

)

,

where PDi j is the (i, j)th element of PD = WG, G is the un-

known mixing matrix and K is the number of users. PD is

close to the permutation of the scaled identity matrix when

the sources are separated. This corresponds to PI = 0.

4. Numerical experiments

The proposed blind multiuser detector has been examined

in various experimental situations. Several results are pre-

sented to compare the proposed blind multiuser detector

with correlating detector, matched filter bank and blind

MMSE detectors [6]. For each run, these 4 detectors are

applied at the same time. The following experiments are

mainly to demonstrate the performance of the multiuser de-

tectors with varying signal-to-noise ratio (SNR) levels and

power levels. These experiments are also to demonstrate

the performance of the proposed method in multiuser in-

terference (MAI).

We consider using a simulated DS-CDMA data with ad-

ditive white Gaussian noise (AWGN) channel and two an-

tenna elements in the reception with a half a carrier wave-

length spacing, unless mentioned otherwise. All CDMA

signals are generated with BPSK data modulation and gold

codes of length 61 are used as the spreading codes. The

length of the block was 40 non-coherent BPSK symbols,

during which the channel was fixed. The number of sig-

nals distribution, and the path delays were randomly cho-

sen. Matched-filter bank, decorrelating detector and blind

MMSE detector receivers were used as reference methods.

We first present the performance of the proposed algo-

rithm by presenting the numerical values of the bit error

rate (BER) as a function of SNR in Fig. 4. The system con-

sists of K = 2 users and both users are assigned with equal

Fig. 4. Bit error rate as a function of SNR for decorrelating

detector, matched filter bank, blind MMSE and ICA detectors.

power. The proposed ICA detector based method shows the

lowest BER compared to blind MMSE method, matched

filter bank and decorrelating detector especially at lower

SNR. The convergence of the gradient approach took place

in 10–15 iterations in this case. The ICA detector displays

better performance compared to the matched filter bank,

and decorrelating detectors. However, the performances

of the proposed ICA and adaptive blind MMSE detector

are very close to each other. The adaptive blind MMSE

detector slightly outperforms the ICA detector from 9 dB

to 11 dB. Then, ICA detector shows better performance af-

ter 12 dB onwards. The margin of improvement becomes

larger with increased SNR.
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We then implement the multiple access interference chan-

nels to demonstrate the ability of the mentioned detectors

dealing with large number of users within the same channel

as shown in Fig. 5. ICA analysis proved to be better per-

Fig. 5. Bit error rate plots versus K users in MAI channel

using ICA, blind MMSE, matched filter bank and decorrelating

detectors.

forming technique; it is then followed by the blind MMSE

detector, matched filter bank and the decorrelating detec-

tors. We observed that the matched filter and decorrelating

detector are not able to work in multiple access interfer-

ence environment (which industries require BER ≤ 10
−3),

which the figure shown high BER with increasing MAI.

Fig. 6. Error measure for various power levels of multi access

interference using the ICA multiuser detector.

Fig. 7. Bit error rate versus MAI for SNR = 8 dB for various

levels of signal power: (a) 15 dBw; (b) 5 dBw.

The error measure due to MAI is illustrated graphically

in Figs. 6 and 7 for CDMA system. In this experiment,

power level of the interfering signals (Pr) are 0 dBw, 5 dBw

and 10 dBw respectively with SNR of 10 dB and the de-

sired signal at 0 dBw. For comparison purposes, we include

an “ideal” case, coresponding to no MAI and an SNR

of 16 dB. Clearly, the ICA detector shows better perfor-

mance, in which the error measure for the intefereing sig-

nal cases of 0 dBw, 5 dBw and 10 dBw is 0.635, 0.64 and

0.665, respectively. This is due to the proposed detector’s

denoising nature dealing with noisy channels.

5. Discussion

We have proposed a new methodology for the design of

asynchronous multiuser CDMA system. The design is

based on blind source separation in the DS-CDMA com-

munication system by means of independent component

analysis. The blind CDMA detectors are interference can-

cellers with ICA analysis to decrease the cross correlation

between the users by employing multiple matched filters

at the receiver. Since the signature sequences are known

a priori, the accuracy obtained when estimating these pa-

rameters becomes high. The experimental results show that

the proposed blind ICA multiuser detectors perform better

in multiaccess interference than the blind MMSE, matched

filter bank and decorrelating detectors. In particular, the

main reasons for considering ICA as an additional tuning

element in the next generation CDMA system are the fol-

lowing:

• ICA is worth considered as an additional element, at-

tached to some existing receiver structure to perform

the task of user identification.

• Since the original CDMA detection and estimation

methods do not exploit the powerful but realistic in-

dependence assumption [2], ICA (with the indepen-

dence of the source signals is utilized) would offer an
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additional interference suppression capability to the

CDMA detection [14].

• Since the receiver has some prior information on the

communication system; typically at least the spread-

ing code of the desired user is known, ICA can easily

function in CDMA receiver.

• ICA is particularly to unmix the mixed signals to re-

cover the original source signals. Therefore, it is able

to mitigate additional multiple access interference to

enhance the performance of detectors.

6. Conclusion

In this paper, we have designed a blind ICA multiuser

detector based on the ICA algorithm. Several simulation

results show that the blind multiuser detector provides a sig-

nificant performance improvement compared to other mul-

tiuser detectors. We conclude that blind ICA detector is

suitable for the next generation wireless CDMA communi-

cation system.

Appendix

The update for the mixing matrix W is determined via

the gradient of the mutual information with respect to the

elements of W. Essentially, W is an estimate of G−1, where

G is the unknown mixing matrix of u(i).

The updated elements of W in the natural gradient based

optimization algorithm are given by

Wupdate = W+△W = W−
∂ℑ(y1, . . . ,yK)

∂W
WT W, (15)

where ℑ(y1, . . . ,yK) is the mutual information between the

output signals where:

ℑ(y1, ...,yK) = E
{

log p(u)}− log(detW)

−

K

∑
k=1

E{log pk(yk)
}

. (16)

When the mutual information ℑ(y) is equal to zero, these

variables y1, . . . ,yK are statistically independent. The gra-

dient of ℑ(y1, . . . ,yK) with respect to W can be expressed

as

∂ℑ(y1, . . . ,yK)

∂W

=
∂E{log(p(u))}

∂W
−

∂{log(detW)}

∂W
−

∂
K

∑
k=1

E{log p(yk)}

∂W

= −
∂{log(detW)}

∂W
−

K

∑
k=1

∂E{log p(yk)}

∂W
(17)

since the first term, E{log p(u)} does not involve W. We

will analyze the two remaining terms separately. In the

case of the first term, we have:

∂{log(detW}

∂W
=

1

detW

∂detW

∂W

=
1

detW
(ad j(W))

T

= (W−1
)

T
. (18)

From the second term in Eq. (19), we have incorporated

the density function pk(yk):

K

∑
k=1

∂E{log(p(yk))}

∂W

=

K

∑
k=1

E

{

1

pk(yk)

∂ pk(yk)

∂ (yk)

∂yk

∂W

}

= E























1

p1(y1)

∂ p1(y1)

∂ (y1)
u1 . . .

1

p1(y1)

∂ p1(y1)

∂ (y1)
uK

...
...

1

pK(yK)

∂ pK(yK)

∂ (yK)
u1 . . .

1

pK(yK)

∂ pK(yK)

∂ (yK)
uK























= E

{

1

p(y)

∂ p(y)

∂ (y)
uT

}

, (19)

where by p(y) we mean (p1(y1), . . . , pK(yK)).

The natural gradient of ℑ(y1, . . . ,yK) is given in Eq. (20).

The minimum mutual information algorithm for ICA will

repeatedly perform an update of the matrix W:

∆Wp = Wp+1−Wp

= −
∂ℑ(y)

∂W
WT W

= [I−g(y)yT
]W, (20)

where I is the identity matrix and

g(y) =
1

p(y)

∂ p(y)

∂y
=

∂

∂y
log(p(y)) . (21)

The multiplication with the natural gradient not only pre-

serves the direction of the gradient but also speeds up the

convergence process.

The formulation of Eq. (20) requires that each {gk(yk)}
K
k=1

is a nonlinear function corresponding to a symmetric den-

sity. Ideally the nonlinear function gk(yk) approximates
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the probability density function of yk. The nonlinear func-

tion applied in this work is as follows:

gk(yk) = abs(y0.9

k (i)) · sgn(yk(i)) . (22)

After initializing the weight matrix W0 with identity matrix,

and choosing α as sufficiently small constant, e.g., 0.0001,

the weights are iteratively updated according to the learn-

ing rule in Eq. (23). Indeed, the learning process usually

depends on the activities of the weights W, learning rate α ,

nonlinearity g(y), input and output values of the mixture.

The Eq. (20) is extended as

Wp+1 = Wp+α
(

I−g(y)yT
+y(g(y))

T
)

Wp , (23)

where p is the iteration index, I is the identity matrix, and

the estimated output yp(i) = Wpu(i).
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