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Abstract— A highly accurate DFT-based complex exponential

parameter estimation algorithm is presented in this paper. It

will be shown that for large number of samples and high sig-

nal to noise ratio (SNR), the phase estimation error variance

performance is only 0.0475 dB above the Cramer-Rao lower

bound (CRLB) for phase estimation with unknown frequency

and phase. The amplitude estimation error variance perfor-

mance was found to lay on the CRLB for amplitude estima-

tion. Exact phase and amplitude estimation can be achieved

in the noiseless case with this algorithm. The algorithm has

low implementation computational complexity and is suitable

for numerous real time digital signal processing applications.

Keywords— frequency estimation, phase estimation, amplitude

estimation, DFT-based parameter estimation, spectral estima-

tion, digital signal processing algorithm, complex exponential

parameter estimation.

1. Introduction

Frequency, phase and amplitude estimation of a complex

exponential is classical problem in statistical signal pro-

cessing. The precision of the phase and amplitude estimate

is directly related to the accuracy of the frequency estimate.

There are two major classes of complex exponential fre-

quency estimation algorithm in the existing literature. The

first class is the classical discrete Fourier transform (DFT)

and phase averager based frequency estimation algorithms

such as [3] and [4]. This class of estimation algorithm

is very computationally efficient, however they suffer from

poor error performance at low signal to noise ratio (SNR).

The second class is the parametric frequency estimation

algorithms such as the very popular MUSIC and ESPRIT

algorithms [5, 6]. This class of estimation algorithm has

very good error performance across a wider range of SNR,

however, they are very computationally intensive and not

suitable for real-time application. Obviously, it would be

ideal if there exists a complex exponential parameter esti-

mator that is both computationally efficient and has good

performance at low SNR.

In 2003, Reisenfeld and Aboutanios [2] discovered a fre-

quency estimator that can precisely estimating the fre-

quency of a complex exponential in an iterative manner

by applying contraction mapping method on two modified

DFT coefficients. In a subsequence publication in 2004,

Reisenfeld [1] further enhanced the previous published al-

gorithm by improving the convergence property of the es-

timator. It can be shown that this particular frequency es-

timator can yield a frequency estimate that is 0.0633 dB

of the Cramer-Rao lover band (CRLB) with approximately

N log2 N + 4N complex multiplications, where N is the

number of samples used representing the signal.

In this paper, it will be shown that combining the said

frequency estimator with maximum likelihood (ML) phase

and amplitude estimators yields a highly accurate param-

eter estimator for complex exponentials. In the noiseless

case, it is possible to obtain the exact phase and amplitude

estimates with this estimator. In additive white Gaussian

noise (AWGN) channel, the said estimates approach very

close the their respective CRLB at relative high SNR. The

relationship between the number of samples, N, and the

operating point of the parameter estimator in terms of SNR

will be given. It will also be shown that it is possible to

use the said relationship to further optimise the computa-

tion complexity of the estimator.

The rest of the paper will be organised as follows: Sec-

tion 2 introduces the proposed DFT-based parameter esti-

mator, Section 3 will provide the performance analysis of

the proposed parameter estimator. Section 4 will describe

further enhancements that can be made to the original fre-

quency estimator in [1] to reduce its computation complex-

ity. Section 5 contains the simulated results of the perfor-

mance of the proposed algorithm and this will be followed

by the conclusion.

2. The DFT-based parameter estimator

The proposed DFT-based parameter estimator involves

a two stage process. First, the frequency of the received

carrier is estimated by the frequency estimator as described

in [1]. The frequency estimate obtained is then used to

eliminate the frequency component of the carrier, leaving

only the phase and amplitude component to be estimated

by the ML phase and amplitude estimator.

2.1. The DFT-based complex exponential frequency

estimator

Consider a complex exponential, r [n], with amplitude, Ac,

frequency, fc ∈ [0, fs), and phase θc ∈ [0,2π). Mathemati-

cally, r [n] can be represented as

r [n] = Ace
j(2π fcnTs+θc) +η [n] , (1)

where n = 0,1,2, ....,N −1, Ts = 1
/

fs is the sampling pe-

riod, and η [n] is a sequence of independent complex Gaus-

sian variables with mean of zero and variance σ2.
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In noiseless condition, the magnitude spectra the DFT of

Eq. (1) will have even symmetry about its frequency. The

recursive algorithm as described in [1] exploits this condi-

tion by employing a discriminate that works on a contrac-

tion principle in minimizing the difference in the magnitude

of two modified DFT coefficients which are plus and minus

half a DFT bin away from an estimated frequency. Due to

the even symmetric nature of the magnitude spectra, the

difference in the magnitude of the two modified DFT coef-

ficients will eventually reduced to zero in the noiseless case

as the estimated frequency approaches the true frequency

with the increasing number of recursions of the algorithm.

The frequency can then be estimated as the mean of the

frequencies of the modified DFT coefficients at which dif-

ference in their magnitude equals to zero.

Summarizing the DFT-based frequency estimator in [1]:

1. Perform a coarse frequency estimate such as the

one described in Rife and Boorstyn [3], in which

{r [n]}
N−1

0
is the input to a N point complex DFT

and a peak search is done on the magnitudes of

the DFT output coefficients, to obtain the initial fre-

quency estimate, f̂0. This estimate is obtained by,

f̂0 = kmax fs

/

N, where kmax is the index of the maxi-

mum magnitude DFT output coefficient.

2. Calculate the modified DFT coefficients αm and βm

defined by

αm =

N−1

∑
n=0

r [n]e
−j2πn( f̂mTs−

1

2N )
, (2)

βm =

N−1

∑
n=0

r [n]e
−j2πn( f̂mTs+

1

2N )
. (3)

3. Calculate the discriminate Dm defined as

Dm =
|βm|− |αm|

|βm|+ |αm|
. (4)

4. Calculate the new adjusted frequency with the for-

mula:

f̂m+1 = f̂m +
1

π
tan

−1

[

Dm tan

( π

2N

)]

fs. (5)

5. Perform Steps 2–4 recursively for m = 1, 2, 3, . . . ,

M−1.

2.2. Combining the frequency estimator with ML phase

and amplitude estimator

Using the frequency estimate f̂m obtained from the fre-

quency estimator described above, it is possible to elimi-

nate the frequency component of r [n] by multiplying it with

the conjugate of the complex exponential with a frequency

of f̂m. Denoting rA,θ [n] as the result of the multiplication

we have

rA,θ [n] =

(

Ae
j(2π fcnTs+θc) +η [n]

)

· e
−j2π f̂mnTs

= Ae
j(2πεnTs+θc) +η [n] , (6)

where ε = fc − f̂m.

It was shown in [7] that the ML phase estimate of a complex

exponential is obtained by taking its arctangent. Taking the

arctangent of
N−1

∑
n=0

rA,θ [n] yields

θ̂c, f̂m
= tan

−1









Im

[

N−1

∑
n=0

(

Ae
j(2πεnTs+θc) +η [n]

)

]

Re

[

N−1

∑
n=0

(

Aej(2πεnTs+θc) +η [n]
)

]









= tan
−1









N−1

∑
n=0

Asin(2πεnTs +θc)+ηs

N−1

∑
n=0

Acos(2πεnTs +θc)+ηc









, (7)

where

ηc = Re

(

N−1

∑
n=0

η [n]

)

, E [ηc] = 0, Var [ηc] =
Nσ2

2
, (8)

ηs = Im

(

N−1

∑
n=0

η [n]

)

, E [ηs] = 0, Var [ηs] =
Nσ2

2
, (9)

and θ̂c, fm is the phase estimate based upon the estimated

frequency.

It was also shown in [7] that the ML amplitude estimate

of a complex exponential is obtained by taking its absolute

value. Taking the absolute value of
N−1

∑
n=0

rA,θ [n] yields

Â f̂m
=

1

N

√

√

√

√

Re

[

N−1

∑
n=0

(

Aej(2πεnTs+θc)+η [n]
)

]2

+Im

[

N−1

∑
n=0

(

Aej(2πεnTs+θc)+η [n]
)

]2

=
1

N

√

√

√

√

[

N−1

∑
n=0

Acos(2πεnTs)+ηc

]2

+

[

N−1

∑
n=0

Asin(2πεnTs)+ηs

]2

.

(10)

Notice the amplitude estimation is not affected by the phase

angle of the complex exponential θc.

From Eqs. (7) and (10), it is obvious that a highly accurate

frequency estimator can assist in reducing the error and

improve on the accuracy of the phase estimation. Hence

the described frequency estimator is very suitable for this

joint estimation of phase and amplitude due to its superior

error variance performance.

77



Jeffrey Tsui and Sam Reisenfeld

3. Performance of the parameter

estimator

3.1. Frequency estimator

The author in [1] has proven this algorithm only requires

two iterations for the variance of the frequency estimate f̂2

to converge to less than or equal to 0.063 dB above the

CRLB for frequency estimation.

3.2. Phase estimator

Assuming high SNR, using Taylor series expansion as de-

scribed in [8] the variance of Eq. (7) was found to be

Var

[

θ̂c, f̂m

]

=
N2

(N −1)
2

sin
2
(

π
2N

)

tan
2
(

π
2N

)

+2

4ρN
, (11)

where ρ , the SNR equals to

ρ =
A2

σ2
. (12)

Since this algorithm jointly estimates the frequency and

phase of the observed signal, it is appropriate to compare

the performance of the phase estimator to the CRLB of

phase estimation with unknown frequency and phase which

is given by [7]

CRLB joint (θ) =
(2N −1)

Nρ (N +1)
. (13)

Therefore

Var

[

θ̂c, f̂m

]

CRLB joint (θ)

=

(

N2
(N −1)

2
sin

2
(

π
2N

)

tan
2
(

π
2N

)

+2

)

(N +1)

4(2N −1)
. (14)

For large ρ and large N, it can be shown,

lim
N→∞

10log10





Var

[

θ̂c, f̂m

]

CRLB joint (θ)



=

10log10

(

π4

128
+

1

4

)

= 0.0475 dB. (15)

Figure 1 shows the convergence property of Var
[

θest, f

]

to

the CRLB as a function of the number of samples N. It can

be seen that variance of the phase estimator deviates from

the CRLB as the number of samples N increases and ap-

proaches the asymptotic limit of 0.0475 dB. This due to the

convergence behavior of the frequency estimator as stated

in [1] where for small N, less information is discarded for

not using all the DFT coefficients hence the performance

degradation is less than when N is large.

Fig. 1.
Var[θ̂c, f̂m

]

CRLB joint (θ)
in dB as a function of number of samples, N.

3.3. Amplitude estimator

Assuming high SNR, using Taylor series expansion as de-

scribed in [8] the variance of Eq. (10) was found to be

Var

[

Â f̂m

]

=
σ2

2N
, (16)

which agrees with the CRLB derived by Rife and Boorstyn

in [3].

4. Further enhancements

As describe in Subsection 2.1, the frequency estimator

in [1] requires an initial frequency estimate obtained by

performing a fast Fourier transform (FFT) operation on the

signal samples. Since FFT requires N log2 N complex mul-

tiplications, it is desirable to keep the number of samples N

as low as possible for the initial coarse estimate. How-

ever, the CRLB for frequency estimation monotonically de-

creases with the increasing number of samples used for the

estimation at a fixed SNR. Hence, reducing the number of

samples used for the frequency estimate may not produce

an estimate that will meet the required accuracy.

One way to reduce the complexity of the estimator and

obtain the required accuracy is to modify the frequency

estimator so that it beings the initial coarse frequency

estimation with a low number of samples and dynamically

increase the number of samples for each iteration of fre-

quency estimation algorithm. The modified version of the

DFT-based frequency estimator is summarised as follows:

Denoting Ni, where i = 0,1,2,3, ..., I, as the number of

samples used in the ith pass of the frequency estimation

algorithm. Note that the number of samples,Ni, for each

pass must satisfy the following relationship N0 ≤N1 ≤N2

≤ ... ≤NI and NI = N which is the number of samples

required to obtain the desire accuracy.

1. Perform a coarse frequency estimate such as the

one described in Rife and Boorstyn [3], in which

{r [n]}
N0−1

0
is the input to a N0 point complex DFT
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and a peak search is done on the magnitudes of

the DFT output coefficients, to obtain the initial fre-

quency estimate, f̂0. This estimate is obtained by,

f̂0 = kmax fs

/

N0, where kmax is the index of the max-

imum magnitude DFT output coefficient.

2. Perform the ith pass of the frequency estimator which

consists of the following steps:

2.1. Recursion is started at m = 0.

2.2. Set Ni = N0.

2.3. Calculate the modified DFT coefficients αm

and βm defined by

αm =

Ni−1

∑
n=0

r [n]e
−j2πn

(

f̂mTs−
1

2Ni

)

, (17)

βm =

Ni−1

∑
n=0

r [n]e
−j2πn

(

f̂mTs+
1

2Ni

)

. (18)

2.4. Calculate the discriminate Dm defined as

Dm =
|βm|− |αm|

|βm|+ |αm|
. (19)

2.5. Calculate the new adjusted frequency with the

formula:

f̂m+1 = f̂m +
1

π
tan

−1

[

Dm tan

(

π

2Ni

)]

fs.

(20)

2.6. Perform Steps 2.3–2.5 recursively for m =

1,2,3, ...,M−1.

3. Set the value of f̂0 to the value of f̂m as found in

Step 2.5. Repeat Step 2 for Ni = N1, Ni = N2, . . . ,

Ni = NI .

Choosing the value of NNNiii’s. Thus far, the discussion has

been on the reducing the number of samples to save com-

putational complexity. However, the question of how one

practically chose the values of Ni’s remains. The choices

of the value of the Ni’s are govern by the frequency er-

ror variance of the estimate from the individual ith passes.

If the frequency estimate, f̂m, of the ith was too far away

from actual frequency, it will cause the frequency estimator

converge on an incorrect frequency. In fact, in the original

algorithm presented in [1], the initial frequency estimate

error must be bound between the frequency that is repre-

sented by ±1
/

2 of a DFT bin to ensure convergence of the

algorithm. Since we are increasing the number of samples,

Ni, at each pass, one must ensure the frequency estimate

error of the ith pass must be smaller than ±1
/

2 the fre-

quency represented by a DFT bin of the next pass. This

relationship can be mathematically represented as

√

√

√

√

Ni sin
2

(

π
2Ni

)

tan2

(

π
2Ni

)

4ρπ2
≤

1

2Ni+1

. (21)

In addition to the above condition, the value of N0, which

corresponds to the length of initial FFT for the initial peak

search, has an extra constraint in the form of the perfor-

mance threshold at low SNR as discussed in [3]. The

performance threshold has to do with the nonlinear nature

of the frequency estimation problem as low SNR. A detail

discussion on the relationship between performance thresh-

old, SNR and the number of samples is out of the scope

of this paper. There are a number of papers that addresses

this issue and readers are recommended to look at refer-

ences [9–12] for detail analysis of performance threshold.

Only the findings from [9] are discussed in this paper be-

cause of the simplistic nature of the results and the ease of

applying them to determine the optimum value of N0 given

it has to operate above certain SNR.

In [9], the author derived an approximate threshold indica-

tor given by

E (Nδ ∗
)

2
=

3

2ρN
, (22)

where δ ∗ is the approximation of the normalised frequency

error. It was found there is a relationship between the indi-

cator quantity given in Eq. (22) and the mean square (MS)

phase error given by

E (Nδ ∗
)

2
=

3

2ρN
=

3

4
E
(

θ̃
)2

. (23)

The author in [9] also found the MS phase error associated

with the threshold is roughly E
(

θ̃
)2

= 0.0625 rad2. Table 1

was built using Eq. (23) at common values of N.

Table 1

SNR threshold for various values of N

N Threshold SNR [dB]

1024 −15.05

512 −12.04

256 −9.03

128 −6.02

64 −3.01

32 0

Since these threshold values are approximations, one should

allow a operating margin of at least 1.5 dB when deciding

upon the value of N0. For example, if the requirement is

for the estimator to operate at −3 dB, one would choose

N0 = 128 over N0 = 64 to guarantee proper operation

at −3 dB. Compare the values in Table 1 to the relation-

ship as stated in Eq. (21), one can conclude the performance

threshold will dominate in deciding on the value of N0.

5. Simulation results

Figures 2, 3 and 4 shows the simulated results of the error

variance performance as a function of SNR for the fre-
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Fig. 2. The error variance of the DFT-based frequency estimator

as a function of SNR.

Fig. 3. The error variance of the phase estimator as a function

of SNR.

Fig. 4. The error variance of the amplitude estimator as a func-

tion of SNR.

quency, phase and amplitude estimator described in Sec-

tion 2 compared to results obtained by the MatlabTM “root-

music” algorithm and TLS-ESPRIT algorithm presented

in [13]. The number of data points used in the simula-

tion equals to 256 and the size of the autocorrelation ma-

trix used for the “rootmusic” and TLS-ESPRIT algorithm

equals to 64. For each trial a random frequency and phase

is generated from two independent uniform distributions

with the range − fs

/

2 to fs

/

2 and 0 to 2π , respectively.

The results shown are obtained by averaging over 6000 tri-

als. It can be seen that the simulated results obtained by

the proposed algorithm is on par with those obtained by us-

ing “rootmusic” and TLS-ESPRIT and yet computationally

very efficient.

Figure 5 shows a comparison of the frequency estimation

error variance as a function of SNR between the modified

Fig. 5. The error variance of the modified frequency estimator

compared to the original frequency estimator.

frequency estimator as described in Section 4 against the

frequency estimator as described in Subsection 2.1. The

frequency estimate obtained from two passes of the modi-

fied frequency estimator with N0 = 128 and N1 = 512. The

number of samples was kept constant at N = 512 for the

frequency estimator as described in Subsection 2.1. The

results shown are obtained by averaging over 6000 trials.

As expected, the modified version of the frequency esti-

mator’s performance threshold is at a higher SNR than the

original estimator. However the modified frequency estima-

tor only required N0 log2 N0 + 4N0 + 4N1 = 3456 complex

multiplications which is approximately half of what is re-

quired for the original frequency estimator which equals to

N log2 N +4N = 6656 complex multiplications.

6. Conclusion

Expanding upon [1], a new algorithm for joint frequency,

phase and amplitude estimation of a complex exponential

80



A highly accurate DFT-based parameter estimator for complex exponentials

has been presented. It was shown that given sufficient

number of samples, at high SNR the variance of the phase

estimator approaches the asymptotic limit of 0.0475 dB

above the CRLB. It was also shown that the modified ver-

sion of the frequency estimator can significantly reduce

the computation complexity with compromising the over-

all error variance performance except increasing the oper-

ation SNR threshold. With the advantage of being compu-

tationally efficient, this type of joint frequency and phase

estimator is well suited for real time application such as

timing and carrier synchronization.

Appendix

Variance of the DFT-based phase estimator

The arctangent of rA,θ [n] as defined in Eq. (6) was given

as

θ̂c, f̂m
= tan

−1











N−1

∑
n=0

Asin(2πεnTs +θc)+ηs

N−1

∑
n=0

Acos(2πεnTs +θc)+ηc











. (24)

From [1], ε the frequency estimation error is a random

variable with zero mean and variance of

Var [ε] =

N sin
2

( π

2N

)

tan
2

( π

2N

)

4π2SNR
. (25)

Again, the variance of θ̂c, f̂m
in Eq. (24) can be found by

using the technique of linearization of function of random

variables presented in [8]. From the structure of the dis-

criminate Dm defined in Eq. (4) one can conclude ε and ηc

are uncorrelated and ε and ηs are uncorrelated. Expand-

ing Eq. (24) in a three dimensional Taylor series expansion

with respect to these variable gives

Var

[

θ̂c, f̂m

]

=





∂ θ̂c, f̂m

∂ε





2

Var [ε]+





∂ θ̂c, f̂m

∂ηc





2

Var [ηc]

+





∂ θ̂c, f̂m

∂ηs





2

Var [ηs] , (26)

where





∂ θ̂c, f̂m

∂ε



=

(

∂ θ̂c, f̂m

∂ε

)
∣

∣

∣

∣

∣

ε=E[ε] ,ηc=E[ηc] ,ηs=E[ηs]

= π (N−1) ,

(27)





∂ θ̂c, f̂m

∂ηc



=

(

∂ θ̂c, f̂m

∂ηc

)
∣

∣

∣

∣

∣

ε=E[ε],ηc=E[ηc],ηs=E[ηs]

= −

sin(θ)

NA
,

(28)





∂ θ̂c, f̂m

∂ηs



=

(

∂ θ̂c, f̂m

∂ηs

)
∣

∣

∣

∣

∣

ε=E[ε],ηc=E[ηc],ηs=E[ηs]

=
cos(θ)

NA
.

(29)

Solving Eq. (26) yields

Var

[

θ̂c, f̂m

]

=
N2

(N −1)
2

sin
2
(

π
2N

)

tan
2
(

π
2N

)

+2

4N SNR
. (30)
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