
Paper A new approach to header

compression in secure communications
Christoph Karg and Martin Lies

Abstract—The paper presents a new header compression

mechanism for the IPv6 protocol. Its main benefit is the re-

duction of the overhead caused by IPSec tunnel mode which

enlarges datagrams in order to provide security services such

as authentication and secrecy.

Keywords—IPv6, header compression, IP security, restricted

bandwidth.

1. Introduction

In contrast to civil networks, tactical military computer net-

works lack the broad data rate links. This is especially true

for those tactical networks where the deployment is depen-

dent on a high mobility. Because of the necessity to utilize

wireless techniques or even open ISPs as transfer-nets, the

topic of security becomes ever more important. The cho-

sen security mechanism has to provide strong encryption

of the transported data regardless of the deployed applica-

tions, has to support an authentication mechanism to limit

the access and provide protection against a variety of at-

tacks. These requirements are fulfilled by IPSec [2], as well

as the need for a matching key exchange mechanism, the In-

ternet key exchange (IKE) [6]. With these components, the

communication of complete subnets can be secured using

IPSec gateways, building virtual private networks (VPNs).

In essence, every IP packet is completely encrypted in-

side another IP-packet, thereby hiding every information

about the application, the transmitted data and also about

the topology of the secured area.

The cost of the usage of IPSec tunnel mode is the growth

in the required data rate for the same amount of transmitted

data. To give an example, an Internet protocol Version 6

(IPv6) packet holds a header of 40 byte. IPSec tunnel

mode adds 40 byte IP-header for the transfer in the black,

i.e., unsecured network, then depending on the chosen au-

thentication algorithm around 22 bytes for the authentica-

tion header (AH) and again depending on the chosen en-

cryption algorithm another 22 bytes with a certain amount

of padding to obtain the necessary length. This still ignores

all application data.

Especially in narrow-bandwidth environments, e.g., com-

munication across HF, GSM or satellite, the overhead

caused by IPSec is not negligible. To enhance to perfor-

mance of IPSec, a header compression mechanism was de-

scribed in [5, 8]. The proposal resulted in the modification

of an existing IPSec implementation. The release supported

the following type of header compression. After a connec-

tion between two hosts inside two distinct secure subnets is

established, the black header is replaced by a small index

tag. Then the modified datagram is encrypted and encap-

sulated by the sending IPSec gateway. The receiving IPSec

machine verifies the mandatory authentication. On suc-

cess, it decrypts the payload and restores with the original

red IPv6 header by replacing the index tag. Comprehen-

sive tests substantiated the good performance of the header

compression approach. Alas the approach has an major

drawback. It is strictly link orientated and thus does not

work in a network topology consisting of various (i.e., more

than two) secure subnets.

This paper presents an enhancement of the above mech-

anism which works for arbitrary VPNs. It is developed

to work within the network resource manager (NRM) [7].

An NRM is a security gateway with extended functional-

ity. Besides enabling secure communications via IPSec, it

gathers information on the current network traffic. This sta-

tistical data can be used to estimate the available bandwidth

as well as the reliability of the existing connections. Fur-

thermore, the NRM supplies an enhanced connection man-

agement in order to support secure multicast-based group

communication and the corresponding key exchange mech-

anism (MIKE) as presented in [3].

The paper is organized as follows. In Section 2, the idea

behind the header compression mechanism is described.

The algorithms and data structures needed by header com-

pression are presented in Sections 3 and 4, respectively.

Section 5 provides information on how to integrate header

compression into the IPSec framework. The performance

of the compression mechanism is discussed in Section 6.

The paper closes with concluding remarks in Section 7.

2. Header compression

The IP tunneling mechanism (see Fig. 1a for details) is

an integral part of VPN solutions such as IPSec. A draw-

back is the enlarged datagram size, since two IP head-

ers must be transmitted. In order to decrease the packet

size, we propose to replace IP tunneling by an alterna-

tive header compression mechanism (see Fig. 1b). The idea

is as follows. The sending gateway replaces the inner IP

header by a compression header of smaller size. The com-

pression header contains among other an unique identifier.

This information enables the receiving gateway to recon-

struct the original IP header and forward the datagram

to its destination. The benefit comes from the fact that

the identifier can be used often while the assignment be-

tween IP and compression header must be transmitted only

a few times.

3



Christoph Karg and Martin Lies

Fig. 1. (a) IP tunneling: (1) Host A sends an IP packet to host B

via the gateways GA and GB, whereat the link between GA and GB

is an IP tunnel. (2) On receipt, GA stores the IP packet in a new

one. This mechanism offers several opportunities to manipulate

the IP packet to be tunneled. For example, IPSec encrypts the

packet before transmission. (3) GA sends the resulting packet

to GB. (4) GB unfolds the incoming packet, this is, it removes

the tunnel header and does some post-processing. For example,

IPSec decrypts the payload and checks it’t integrity. (5) Finally,

GB forwards the content to host B.

(b) Header compression: (1) Host A sends an IP packet to host B

via the gateways GA and GB. Instead of tunneling the packet di-

rectly, gateway GB performs the following manipulation. Based

on the IP header A → B, GA computes an unique identifier idA→B.

(2) GA sends the pair (A→ B, idA→B) to gateway GB, which stores

the information in an internal lookup table. (3) GA replaces the

header A → B by the corresponding identifier idA→B and sends

the result to GB. This replacement is done for all following IP

packets with header A → B. (4) On receipt, GB removes the tun-

nel header and the identifier. (5) GB uses idA→B to reconstruct the

original header A → B. (6) GB combines A → B with the payload.

(7) GB forwards the original IP packet to host B. If A sends an-

other datagram to B, then the same identifier can be used. Hence,

Step 3 can be omitted.

In the following we describe the header compression in

more detail. There are several questions to be discussed.

• How do we compute the compression header and the

identifier within?

• What is the structure of the header replacement?

• Which algorithms and data structures are required on

sender and receiver side?

• How is header compression integrated in the security

environment?

The following sections provide answers to these questions.

3. Computation of the compression

header

The reduction of the datagram size is achieved by the re-

placement of the original IP header by a smaller compres-

sion header. Its structure depends on the algorithm to be

used. There are two requirements to be met. Firstly, the in-

formation provided by compression header must be unique

such that the receiver can reconstruct the original header.

Secondly, the identifier should be usable for many different

IP headers so that the amount of assignment messages is

minimized.

A standard way to derive an unique identifier is universal

hashing with open addressing (see [4] for an excellent dis-

cussion of this topic). If the range of the hash function fits

into a 4-byte integer, there is a possibility of 232 simultane-

ous outgoing transmissions. If the hash function is chosen

uniformly at random then a good average case performance

is guaranteed.

To determine the input of the hash function, let’s take a look

on the structure of the IPv6 header depicted in Fig. 2.

The header size is 40 bytes. The largest part consists

of the source and destination address each with a size

of 16 bytes. Consider for a moment only datagrams sent

from the host A to the host B. In this case, the source and

destination address are constant. The contents of the fields

payload length, next header, and hop limit may change fre-

quently. The frequency of change of the contents stored

in the fields traffic class and flow label is difficult to esti-

mate. It depends on the quality of service features of the

underlying network. As a rule of thumb, we assume a low

modification rate.

Based on the above assumption, the fields version, flow la-

bel, traffic class, source address and destination address are

the input of the hash function. With other words, the hash

function maps 32 bytes to values of 4 byte length. Open

addressing guarantees unique hash keys given the num-

ber of different inputs is smaller than the range (i.e., 232).

Since the payload length, hop limit and next header en-

tries do not influence the outcome of the hash func-

tion, they additionally must be stored in the compression

4



A new approach to header compression in secure communications

Fig. 2. Format of the IPv6 header.

header. This leads to the following structure of the

compression header:

1) hash key to determine version, flow label, traffic

class, source address and destination address;

2) payload length;

3) next header;

4) hop limit.

The size of the compression header is 8 bytes. Hence, it’s

size is 20% of the IP header.

Additional costs arise from the fact that the assignment

between hash key and according IP header parts must be

transmitted to the receiving gateways. The cost in terms of

data rate depends on the way, the assignment information

is distributed. Among others, two following methods are

conceivable.

• If the compression starts, the first datagrams are not

compressed. Instead, they are extended with an op-

tional header which contains the hash key. On re-

ceipt, the destination gateway stores this identifier

together with the associated parts of the IP header.

On this way, it learns how to decompress future data-

grams.

• In the beginning of compression, the first datagrams

are transmitted without modification. Additionally,

the assignment information is sent in a separate data-

gram.

Note, the transmission of the compression information is

critical for the whole communication. Hence, the spread of

the assignment information must be redundant to guarantee

that the destination gateway gets the assignment before the

compressed data.

The computation of the index is strictly sender oriented.

This is, the sending gateway computes the identifiers of all

outgoing datagrams independently on it’s own. As an ad-

vantage, the gateways do not need to coordinate the iden-

tifier creation. This keeps things simple and there is no

additional communication between the gateways required.

Furthermore, compression header assignment messages are

receivable even by those gateways which are in emission

control (emcon) condition.

4. Data structures

The mapping between identifiers and according IP header

fragments must be stored in an appropriate data structure.

The requirement to be met is the fast lookup of a given

index. The best performance is achieved by an hash table.

However this is not feasible because of the large range of the

deployed hash function and its many memory consumption.

A good compromise between space and performance is the

usage of a balanced search tree such as red-black trees [4].

Such a data structure guarantees time 0(log2 n) for search,

insertion and deletion where n is the number of elements

stored in the tree.

In order to compress a datagram the sending gateway acts

as follows. It computes the hash index of the IP header

fragment. Then, it replaces the header by the compression

header. If it is the first time, that this header fragment is

compressed, then the assignment information is sent the

receiving gateway. Additionally, the pair consisting of index

and header fragment is stored in the search tree.

On the receiving side, the data keeping is slightly different.

Since the identifier is correlated with the gateway which

created it, the receiver must manage a search tree for each

sending gateway. These trees are stored in another search

tree with the senders’ IP addresses as key.

The contents of the search trees change dynamically. An

entry may be deleted if the respective hash index was not

used for a certain time. This behavior increases the perfor-

mance of both running time and memory usage.

5. Integration into security services

The header compression mechanism is thought to be used

in combination with a secure transmission method. An ob-

vious approach is the IP security protocol suite [2]. Partic-

ularly, the compressed datagrams are sent via IPSec trans-

port mode. The usage of IPSec has the advantage of well-

developed administrative tools such as automated key ne-

gotiation. However, the header compression must be inte-

grated in the IPSec processing chain. There are two possi-

ble solutions. The first one is the extension of the operating

system’s kernel. The second one consists in the packet fil-

tering and manipulation in user space via the TUN/TAP

interface.

The integration of header compression into the operating

system results in optimal performance since the code runs

5



Christoph Karg and Martin Lies

in kernel space. However for modification of the kernel

the underlying source code is required. Even if the code

is available, the compression algorithm must be adapted to

the respective conditions of the operating system. Hence,

the work is not portable to other operating systems. An-

other drawback is the large amount of maintenance re-

quired to keep the software up to date with new kernel

releases.

The second approach uses the TUN/TAP interface for

packet manipulation. TUN/TAP is a standardized mech-

anism for manipulation of IP packets and Ethernet frames.

It is supported by major UNIX systems such as BSD, Linux

and Solaris and even by Windows XP. Hence, the code of

the header compression extension is portable between the

different operating systems with moderate effort. A poten-

tial disadvantage is a loss in performance since the com-

pression runs in user space and has to share the system’s

resources with the other processes.

Finally, we remark that IPSec is not the only way to de-

ploy header compression. An alternative is OpenVPN [1],

a VPN solution which uses the SSL/TLS protocol for

a secure data tunneling. Compared to IPSec, OpenVPN

is a lightweight VPN solution. It can be set up easily.

Additionally, OpenVPN provides a traffic shaping function-

ality to restrict the rate of data flowing to the tunnel.

6. Performance estimates

To evaluate the performance of the header compression

mechanism, two aspects have to be considered:

• Network delay. The compression of the IP header is

an additional processing step in the data flow which

increases the delay between sending and receiving

host.

• Data rate improvement. Header compression is de-

ployed with the goal of reducing the amount of data

to be transmitted. Hence, this criterion has to ana-

lyzed.

The influence on the network delay can be estimated by the

amount of time needed to compute the compression header.

The expensive part is the lookup of the hash index in the

balanced search tree.

A well-known result concerning universal hashing is the

following [4]. If the hash function h is randomly chosen

from a universal collection of hash functions and is used

to hash n keys into a table of size m, where m ≤ n, the

expected number of collisions involving a particular key is

less than 1. Hence, if the outgoing connections result in

n different hash indices, where n ≤ 232, then there are no

collisions in the average case. Since the keys are stored

in a balanced tree, the expected running time per lookup

operation is logarithmic in n.

What does this mean in practice? Assume, that the search

tree is based on red-black trees. Then a tree storing n hash

indices as height at most 2log2(n + 1). This value is an

upper bound for the cost of a lookup operation. Each entry

consists of at least 40 bytes (4 bytes for the index and 36

for the IP header fragment). This is a lower bound for

the memory needed to store the search tree. If any host in

the subnet has 10000 concurrent outgoing data connections

then the number of different hash indices is at most 10000.

Given the total number n of hosts, the upper bound of

different indices is 10000n. Using this bound, we estimate

the size of the tree for concrete values for n (Table 1).

Table 1

Tree size estimations

Hosts Indices Tree height Size [MB]

10 100000 34 3.815

20 200000 36 7.629

50 500000 38 19.073

100 1000000 40 38.147

200 2000000 42 76.294

500 5000000 45 190.735

Because the number of steps to compute a table lookup is

small even for a large number of hosts, the delay caused

by header compression is negligible on modern computer

hardware.

Fig. 3. The topology of a tactical military network at batallion

level.

6



A new approach to header compression in secure communications

The improvement of the data rate is quite difficult to esti-

mate. It depends on both the topology of the underlying

network and the type of traffic and its distribution within

the network. The topology can be created based on exist-

ing military tactical networks. For an example, we refer

to Fig. 3. The determination of network traffic structure in

terms of distribution and service type is a difficult or even

impossible venture.

A promising approach consists in a statistical analysis via

a network simulation which is beyond the scope of this

paper. As an obvious rule of thumb, the gain of header

compression is high for network services which send data-

grams in an high frequency. A good example is voice

over IP (VoIP).

7. Conclusions and future work

This paper presents a new approach to header compression

to be used in combination with the IP security framework.

The benefit is a reduction of the overhead caused by IPSec

tunnel mode in terms of enlarged datagrams. Furthermore,

it can be integrated in common existing operating systems

with moderate effort. Currently the header compression is

a concept. Future steps are simulations based on network

simulator 2 and the implementation in a testing environ-

ment.

References

[1] OpenVPN. Project webpage, http://www.openvpn.net

[2] R. Atkinson and S. Kent, “Security architecture for the Internet pro-

tocol”, RFC 2401, Nov. 1998.

[3] T. Aurisch and C. Karg, “A daemon for multicast Internet key ex-

change”, in IEEE Conf. Loc. Comput. Netw., Bonn, Germany, 2003,

pp. 368–376.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms. Cambridge: MIT Press, 2003.

[5] R. Göbel, “Beschreibung eines QoS-unterstützten Netzadapters für

schmalbandige Subnetztypen”, FKIE-Bericht 38, FGAN, Jan. 2002.

[6] D. Harkins and C. Carrel, “The Internet key exchange (IKE)”, RFC

2409, Nov. 1998.

[7] M. Lies, P. Sevenich, C. Karg, and C. Barz, “Resource management in

tactical military networks”, in NATO/RTO IST Symp. Milit. Commun.,

Roma, Italy, 2005.

[8] P. Sevenich and G. Beling, “Multiplexing time-critical data over het-

erogeneous subnetworks of low bandwidth”, in Reg. Conf. Milit. Com-

mun. Inform. Syst. RCMCIS, Zegrze, Poland, 1999.

Christoph Karg is a Professor

of computer science at the Uni-

versity of Applied Sciences at

Aalen, Germany. Doctor’s Karg

research interests are computer

networks, cryptology, algo-

rithms and complexity theory.

e-mail: christoph.karg@htw-aalen.de

Fakultät Elektronik und Informatik

HTW Aalen

Beethovenstraße 1

73430 Aalen, Germany

Martin Lies is a senior sci-

entist of the communications

department of FGAN/FKIE.

His research interests are

computer networks with special

emphasis on security and

resource restrictions, robotics

and cryptology.

e-mail: lies@fgan.de

Department Computer Networks

FGAN

Neuenahrer Straße 20

53343 Bonn, Germany

7


