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Abstract— In the paper the differential and the linear ap-

proximations of two classes of s-box functions are considered.

The classes are the permutations and arbitrary functions with

nnn binary inputs and mmm binary outputs, where 1 ≤ n = m ≤ 101 ≤ n = m ≤ 101 ≤ n = m ≤ 10.

For randomly chosen functions from each of the classes, the

two-dimensional distributions of the best nonzero approxima-

tions are investigated. The obtained results indicate that start-

ing from some value of nnn, the linear approximation of s-box

functions becomes more effective than the differential approxi-

mation. This advantage of the linear approximation rises with

the increase of nnn and for DES size s-boxes is not yet visible.

Keywords— differential cryptanalysis, linear cryptanalysis, sub-

stitution boxes.

1. Introduction

Differential and linear cryptanalysis belong to main top-

ics in cryptology since they were introduced and suc-

cessfully applied to the data encryption standard (DES).

Unlike the differential cryptanalysis, which is essentially

a chosen-plaintext attack [1, 10, 11], the linear cryptanaly-

sis is essentially a known-plaintext attack and moreover is

applicable to an only-ciphertext attack under some circum-

stances [2–12].

The basic idea of differential cryptanalysis is to analyze

the effect of particular differences in plaintext pairs on

the differences of the resultant ciphertext pairs. The dif-

ferences are usually calculated as a result of XOR oper-

ation. Input XOR of a cipher algorithm causes a speci-

fied output XOR with some probability. The appropriate,

approximate expression will be called the differential ap-

proximation. By the differential approximation of function

Y = f (X) : {0,1}n →{0,1}m we mean an arbitrary equation

of the form:

f (X)⊕ f (X ⊕X ′) = Y ′ ,

which is fulfilled with approximation probability p =
N(X ′,Y ′)/2

n, where X ′∈{0, . . . ,2n−1},Y ′∈{0, . . . ,2m−1}
and N(X ′, Y ′) denotes the number of input pairs (X , X ⊕X ′)

for which the equation holds. The numbers X ′, Y ′ are called

input and output difference respectively and the function

N(X ′,Y ′) is called the counting function of the approxima-

tion. The magnitude of p represents the effectiveness of

the approximation. Among approximations we distinguish

the zero differential approximation with X ′ =Y ′ = 0, which

probability p is equal to 1 for arbitrary function f .

The basic idea of linear cryptanalysis is to describe a given

cipher algorithm by a linear approximate expression, so-

called linear approximation. In general, the linear approxi-

mation of function Y = f (X) : {0,1}n →{0,1}m is defined

as an arbitrary equation of the form:

⊕
i∈Y ′

yi = ⊕
j∈X ′

x j ,

which is fulfilled with approximation probability p =
N(X ′,Y ′)/2

n, where X ′ ⊆ {1, . . . ,n}, Y ′ ⊆ {1, . . . ,m} and

N(X ′,Y ′) denotes the number of pairs (X ,Y ) for which the

equation holds. The sets of indexes X ′,Y ′ are called input

and output mask respectively and the function N(X ′,Y ′)
is called the counting function of the approximation. The

effectiveness of the approximation is represented by magni-

tude of |∆p|= |p−1/2|. By the zero linear approximation

we mean approximation with X ′ = Y ′ = Φ, which probabil-

ity p is equal to 1 for arbitrary function f . Masks X ′,Y ′ are

often denoted by numbers, corresponding to the zero-one

representation of sets.

The set of all differential approximations of function f can

be described in the form of the approximation table T D f ,

called in [1] the difference distribution table. The element

T D f [X ′,Y ′] of the table, is defined as follows:

T D f [X ′,Y ′] = N(X ′,Y ′) .

The maximum value of T D f , that corresponds to the best,

i.e., most effective, nonzero differential approximation, is

denoted by maxT D and is defined by formula:

maxT D = max{T D f [X ′,Y ′] : X ′ 6= 0∨Y ′ 6= 0} .

Similarly, the set of all linear approximations of function f

is represented in the form of the approximation table TA f .

The element TA f [X ′,Y ′] of the table, is defined as follows:

TA f [X ′,Y ′] = ∆N(X ′,Y ′) = N(X ′,Y ′)−2
n−1 .

The maximum absolute value of TA f , which corresponds

to the best nonzero linear approximation, is denoted by

maxTA and is defined in the following way:

maxTA = max {|TA f [X ′,Y ′]| : X ′ 6= Φ∨Y ′ 6= Φ} .

The approximation tables of an example function f are

presented in Table 1. There exist many effective approx-

imations of the function, identified by nonzero values of

8



Distribution of the best nonzero differential and linear approximations of s-box functions

Table 1

Function f and its approximation tables T D f and TA f

(n = 4, m = 2)

f T D f TA f

X Y = f (X) X ′ Y ′
X ′ Y ′

0 1 2 3 0 1 2 3

0 3 0 16 0 0 0 0 8 –2 –1 1

1 3 1 10 0 2 4 1 0 –2 1 –1

2 3 2 6 0 2 8 2 0 0 1 1

3 0 3 6 0 2 8 3 0 0 3 –1

4 1 4 2 8 6 0 4 0 0 –1 7

5 3 5 2 8 6 0 5 0 0 –3 1

6 1 6 0 2 12 2 6 0 2 1 –1

7 1 7 2 4 10 0 7 0 2 –1 1

8 0 8 4 2 0 10 8 0 –4 1 1

9 0 9 2 0 2 12 9 0 0 –1 –1

10 3 10 8 2 0 6 10 0 –2 –5 1

11 3 11 8 2 0 6 11 0 2 1 –1

12 1 12 0 6 8 2 12 0 2 –3 –1

13 2 13 0 6 8 2 13 0 –2 –1 1

14 2 14 2 8 6 0 14 0 –4 –1 –1

15 2 15 2 12 2 0 15 0 0 1 1

the tables. The best nonzero differential approximations

have maxT D = 12 and probability p = 12/16, while the

best nonzero linear approximation has maxTA = 7 and

probability |∆p| = 7/16.

The size of the approximation tables T D f and TA f of func-

tion f is equal to 2
n+m and the basic algorithms compute

a single element of the tables in exponential time. The

used in the investigation fast algorithms, presented in de-

tail in [10], compute the approximation tables in time at

worst linear for a single element, without memory needed

for storage of the whole table.

2. Results

The presented in this chapter results of experiments concern

the distribution of the best nonzero differential and linear

approximations of two classes of s-box functions Y = f (X).
The classes are the permutations and arbitrary functions

of the type f : {0,1}n → {0,1}m, for 1 ≤ n = m ≤ 10.

For each value of n, the investigation was carried out for

1000 randomly chosen functions from the class. For each

function, with use of the mentioned in the previous chap-

ter fast algorithms, were calculated values of maxT D and

maxTA. Distribution of pairs (maxT D,maxTA) was the

goal of the computation. The obtained results are presented

in Figs. 1–19.

For n = m = 1 (Fig. 1), the proportional distributions ob-

tained for permutations and arbitrary functions are identi-

cal. For 100% of functions, from each of the classes, the

obtained pair (maxT D,maxTA) is equal to (2, 1).

Fig. 1. Distribution for permutations and arbitrary functions

(n = 1, m = 1).

For n = m = 2 (Figs. 2 and 3), the distributions for per-

mutations and arbitrary functions differ. For 100% of

permutations, the obtained pair (maxT D,maxTA) is equal

Fig. 2. Proportional distribution for permutations (n = 2, m = 2).

Fig. 3. Proportional distribution for arbitrary functions (n = 2,

m = 2).

to (4, 2). For arbitrary functions, the same pair (4, 2) is ob-

tained for 26.4% of functions while for remaining 73.6% of

functions is obtained pair (2, 2). The results indicate, that
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resistance to linear approximation of permutations and ar-

bitrary functions with two input and output bits is the same,

while about 3/4 of arbitrary functions are more resistant to

differential approximation than permutations.

Fig. 4. Proportional distribution for permutations (n = 3, m = 3).

Fig. 5. Proportional distribution for arbitrary functions (n = 3,

m = 3).

For n = m = 3 (Figs. 4 and 5), three different pairs

(maxT D,maxTA) are obtained for permutations while for

arbitrary functions are obtained five different pairs, among

which two pairs are dominant. Among permutations there

are more functions with pair (8, 4) that are easiest to ap-

proximate as well as more functions with pair (2, 2) that are

most difficult to approximate, than among arbitrary func-

tions. It should be noticed, that for permutations the values

of maxTA are even while for arbitrary functions are odd as

well. The values of maxT D are even both for permutations

and arbitrary functions.

For n = m = 4 (Figs. 6 and 7), there exist for permutations

two dominant pairs and for arbitrary functions also two,

but not the same. Both distributions have the evident max-

imum, which is obtained for the pair (maxT D,maxTA)
equal to (6, 6).

For n = m = 5 (Figs. 8 and 9), there are visible bars in the

diagrams for the values of maxT D equal to 6, 8 and 10.

Fig. 6. Proportional distribution for permutations (n = 4, m = 4).

Fig. 7. Proportional distribution for arbitrary functions (n = 4,

m = 4).

Fig. 8. Proportional distribution for permutations (n = 5, m = 5).

The maximum of distribution is less for arbitrary functions,

because of the even and odd values of maxTA.

For n = m = 6 (Figs. 10 and 11), there are visible in the

distributions for permutations and arbitrary functions, two

significant series of results for maxT D equal to 8 and 10.
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Fig. 9. Proportional distribution for arbitrary functions (n = 5,

m = 5).

Fig. 10. Proportional distribution for permutations (n = 6, m = 6).

Fig. 11. Proportional distribution for arbitrary functions (n = 6,

m = 6).

For n = m = 7 (Figs. 12 and 13), there are visible three

series of results for maxT D equal to 8, 10 and 12, in the

distributions for permutations and arbitrary functions. The

middle series is clearly dominant.

For n = m = 8 (Figs. 14 and 15), there are visible in the

distributions for permutations and arbitrary functions, two

significant series of results for maxT D equal to 10 and 12.

The series are rather equivalent this time. No one of them

dominates.

For n = m = 9 (Figs. 16 and 17), in the distributions for

permutations and arbitrary functions, are visible two series

Fig. 12. Proportional distribution for permutations (n = 7, m = 7).

Fig. 13. Proportional distribution for arbitrary functions (n = 7,

m = 7).

Fig. 14. Proportional distribution for permutations (n = 8, m = 8).

Fig. 15. Proportional distribution for arbitrary functions (n = 8,

m = 8).

of results for maxT D equal to 12 and 14. The series for

maxT D equal to 12 is clearly dominant.

For n = m = 10 (Figs. 18 and 19), there are visible two

significant series of results for maxT D equal to 12 and 14,
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Fig. 16. Proportional distribution for permutations (n = 9, m = 9).

Fig. 17. Proportional distribution for arbitrary functions (n = 9,

m = 9).

in the distributions for permutations and arbitrary functions.

The series for value 14 of maxT D is not so dominant like

in the case of n = m = 9.

Considering the results for 1 ≤ n = m ≤ 10, presented in

Figs. 1–19 we can observe, that the significant for distribu-

tions ranges of maxT D and maxTA as well as the values

of pairs (maxT D,maxTA) for which are obtained maxima

Fig. 18. Proportional distribution for permutations (n = 10,

m = 10).

Fig. 19. Proportional distribution for arbitrary functions (n = 10,

m = 10).

of distributions, are about the same for permutations and

arbitrary functions. The values of maxima are greater for

permutations. It follows from the fact, that for n ≥ 3, the

values of maxTA are even for permutations while for arbi-

trary functions are odd as well. Thus, we can say that the

results obtained for permutations and arbitrary functions

are similar.

Comparing the differential and the linear approximation we

can observe, that the ranges of maxT D are narrow while

the ranges of maxTA are wide. With the increase of n = m

the values of maxTA rise much faster than the values of

maxT D. It means that the linear approximation of s-box

functions becomes much more effective than the differential

approximation. This advantage of the linear approximation

starts at some value of n = m and rises with the increase

of this value.

3. Results for DES size s-boxes

The presented in this chapter results concern the distribu-

tion of the best nonzero differential and linear approxima-

tions of permutations with 6 input bits and 4 output bits.

Similarly to definition of DES s-boxes, by permutation in

this case we mean a set of four 4-bit permutations. In gen-

eral, for n > m, by permutation we mean in fact a set of

2
n−m m-bit permutations. The results in detail are presented

in Table 2 and illustrated in Fig. 20.

Table 2

Results of experiments for permutations – DES size

(n = 6, m = 4)

maxT D maxTA Total

10 12 14 16 18

12 0 6 5 3 0 14

14 1 144 141 33 4 323

16 1 107 255 65 12 440

18 0 24 94 41 5 164

20 0 3 28 14 2 47

22 0 3 3 4 1 11

24 0 0 0 0 1 1

Total 2 287 526 160 25 1000

For DES size s-boxes, the advantage of the linear approxi-

mation over the differential one is not yet visible. The range

of maxT D is from 12 to 24 and the range of maxTA is

from 10 to 18. So the values of maxT D and maxTA are

comparable.

The distribution of the best nonzero approximations enables

to evaluate the quality of constructed s-boxes. The less the

values of maxT D and maxTA the better is the s-box. The

quality of DES s-boxes S1–S8 is presented in Table 3. The

value of maxT D for all s-boxes is equal to 16. The best

s-box of DES is S6 with maxTA = 14 and the worst is S5

with maxTA = 20.
It follows from Table 2, that for 25.5% of randomly se-

lected s-boxes, the obtained pair (maxT D, maxTA) is equal

to (16, 14). Thus, parameters of s-box S6 correspond to
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Fig. 20. Proportional distribution for permutations – DES size

(n = 6, m = 4).

Table 3

Quality of DES s-boxes S1-S8

maxT D maxTA

10 12 14 16 18 20

12

14

16 S6 S2 S1 S5

S3 S7

S4

S8

the maximum of the distribution. There are 40.5% of

s-boxes with parameters better than of s-box S6. We have

obtained, that among three randomly selected s-boxes, two

of them are not worse than the best s-box of DES S6 and

one of them is better. On the other hand, the value 20 of

maxTA of the worst s-box S5, was not obtained for any of

the 1000 randomly selected s-boxes. The quality of DES

s-boxes is obviously not the best possible one.

4. Conclusion

The basic algorithms to compute a single element of the

approximation tables T D f and TA f are of exponential com-

plexity. The presented in [10] fast algorithms compute the

values of maxT D and maxTA in at worst linear time for

a single element, without memory needed for storage of the

whole table. The fast algorithms were used to calculate the

distribution of pairs (maxT D, maxTA) for randomly cho-

sen permutations and arbitrary functions with n binary in-

puts and m binary outputs, where 1≤ n = m ≤ 10. For both

classes of functions, the obtained results were similar. The

main conclusion is that starting from some value of n, lin-

ear approximation of s-box functions becomes much more

effective than differential approximation. Moreover, this

advantage of linear approximation rises with the increase

of n and for DES size s-boxes is not yet visible.
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