
Regular paper The signal to noise ratio

in the differential cryptanalysis of 9 rounds

of data encryption standard

Michał Misztal

Abstract— There is presented the differential cryptanalysis

method of attack on data encryption standard (DES) reduced

to 9 rounds. More precise estimation than that of Biham and

Shamir of the signal to noise (S/NS/NS/N) ratio is obtained. Also,

method of using the ratio in calculation of required number

of plaintexts is suggested. There are given results (time of per-

formance) and implementation’s issues of practical realisation

of this attack.

Keywords— block cipher DES, differential cryptanalysis, substi-

tution boxes, S/NS/NS/N ratio.

1. Introduction

Differential cryptanalysis and its modifications (like for

instance impossible differentials) are the most powerful

method of attacks on the popular symmetric cryptosys-

tems – block ciphers. The idea of differential cryptanalysis

was introduced in 1991 and applied to the former data en-

cryption standard (DES). At present every newly designed

block cipher must be at once evaluate due to resistance to

the differential attack. Hence differential attacks on con-

temporary block ciphers are possible only in theory or for

small number of rounds [1]. However differential crypt-

analysis could be still improved by applying in practice to

some well-known ciphers like mentioned DES.

This article is the continuation of paper [2], in which prac-

tical attack with differential cryptanalysis on DES cipher

reduced to 8 rounds was performed. In the introduction

of that paper it was stated that attack on more than 6 or

8 rounds of DES requires too much amount of data (en-

cryption of too many plaintexts) to be preformed in prac-

tice. Due to increasing of computational power of com-

puters (processor speed, capacity of operational and disc

memory) attacks which were considered as only theoret-

ical become now possible in practice. At the beginning

of 90’s, when idea of differential cryptanalysis was born,

its inventors did not have possibility to verify their theo-

ries in practice. Simple attacks on 3 or 4 rounds of DES

were possible but for more rounds only theoretical estima-

tion of required amount of data and complexity time was

done. Practical attack on 8 rounds of DES [2] showed

that many of these theoretical estimations differ from re-

ality (for example 25 000 pairs is far to small to suc-

ceed). At presence thanks to available processors and

especially to capacity of memory (cf. Section 5) we can

perform attack even on 9 rounds. Thanks to that we can

do some experiments and obtain practical, precise results

and than compare them to theory. It is the main aim of

this paper.

We start from the brief recollection of idea of differential

cryptanalysis and the scheme of DES cipher. More details

can be found in given references [2–4]. In Section 4 we

show how to calculate the S/N ratio of counting scheme

of attack on 9 round of DES in more precise way than up

to now. We also suggest a method of using the ratio in

calculation of required number of plaintexts. We theoreti-

cally calculate the efficacy of filtration of wrong pairs and

compare it to practice. In Section 5 the implementation’s

issues of practical realisation of this attack are given. At

the end we present results (running time and efficacy) of

performed cryptanalysis.

2. The DES algorithm

The data encryption standard algorithm was the encryption

standard since year 1977. In year 2001 it was replaced

by chosen in contest block cipher Rijndael, which became

advanced encryption standard (AES).

The DES algorithm is a block cipher, which in standard

version encrypts 64-bit block of plaintext to 64-bit block

of ciphertext with 64-bit key. Due to standard actual length

of key is only 56-bits and 8 bits are extra bits used only

for parity check. Algorithm consists of 16 rounds and is

based on structure called Feistel’s network. In every round

left half of block is xored with result of f function ap-

plied to right half of block. Then in every round but

last both halves are swapped. Hence f function is main

element of every round. It transforms half of encrypted

block (32-bits) with 48-bit subkey of round. Every sub-

key is obtained from main key by algorithm called key

schedule.

The f function uses two permutations E and P and also

8 nonlinear mappings called substitution tables or substi-

tution boxes (briefly s-boxes). Extending permutation E

transforms 32-bit block to 48-bit block. Permutation P

transforms 32-bit block to 32-bit block. In every s-box

6-bit input is transformed to 4-bit output. General scheme

of algorithm and scheme of f function are presented in

Figs. 1 and 2. Key schedule, permutations E and P and all

eight s-boxes can be found in given references.

49



Michał Misztal

Fig. 1. Scheme of DES algorithm.

Fig. 2. Scheme of f function.

The DES algorithm reduced to n rounds is an algorithm in

which two changes were made:

– number of rounds was reduced from 16 to n, but in

the nth (last) round there is no swapping of halves,

like after 16th round in standard version;

– permutations IP and IP−1 were removed due to their

insignificancy to cryptanalysis.

3. Differential cryptanalysis

The differential cryptanalysis was introduced in year 1991

by Biham and Shamir [3] as modern method of cryptanal-

ysis of DES. At least in theory this method is better than

exhaustive search, it means testing all possible 2
56 keys.

It is based on dependency between pairs of plaintexts with

certain difference (in term of XOR) and differences of

their ciphertexts. From above the name “differential” was

derived. It is a chosen plaintext (CPA) type of crypt-

analysis.

Basic idea of differential cryptanalysis is observation of

behaviour of pair of blocks with certain difference trans-

formed through rounds of cipher rather than single block.

For linear mappings like permutations, XOR operations

the difference of pair of blocks behaves in deterministic

way, like single block. The most important thing is that

XOR with unknown key does not change this difference.

If two arbitrary blocks X and X∗ with known difference

X ′ = X ⊕X∗ are XORed with unknown key K then the new

values of this blocks X ⊕K and X∗
⊕K are unknown but

their difference X ′ remains the same. It happens because

of property of XOR operation in which K ⊕K = 0. The

only problem during analysis of propagation of differences

is the application of nonlinear mappings, i.e., s-boxes. For

s-boxes we can find input and output difference, which oc-

curs more frequently than others, i.e., with higher probabil-

ity. However it makes that differential cryptanalysis is only

probabilistic method. Its results depend on certain value

of key, chosen plaintext and it requires sufficiently many

tries to find correct key. To find the best input – output

difference propagations of s-boxes the so-called XOR pro-

files are constructed. The XOR profile of s-box is a table,

which shows how many certain input difference goes to

certain output difference. XOR profiles are discussed also

in the next section.

If we know or we can predict behaviour of differences in

individual operations and rounds, then we can find input

difference, i.e., difference of two plaintexts which after

first round goes to certain difference with some probabil-

ity, which subsequently after second round goes to another

difference with some probability and so on. This sequence

of successive differences between successive rounds from

plaintext difference to ciphertext difference is called dif-

ferential characteristic. Every characteristic has its prob-

ability, which is calculated as product of probabilities

of difference propagations for all rounds. Main problem

in differential cryptanalysis is to find “good” differential

characteristic, which means characteristic with high prob-

ability.

Only differential characteristic with sufficiently high proba-

bility makes possible to perform a differential attack. If we

have such characteristic we choose pairs of plaintexts with

difference given by this characteristic and we obtain their

ciphertexts. Then we try to discard pairs, which do not fol-

low our characteristic. This process we call filtration. We

know only plaintext and ciphertext difference and we do not

50



The signal to noise ratio in the differential cryptanalysis of 9 rounds of data encryption standard

know difference between individual rounds, because cipher

is a black box for us. Hence we cannot be sure which pairs

are good, i.e., follow our characteristic and which pairs are

wrong and only look like they follow this characteristic. In

the filtration process we can analyse ciphertext difference

and discard pairs, which are wrong for sure. All good pairs

will survive this filtration but some number of wrong pairs

will survive as well.

After filtration for every non-discarded pair we may find

possible subkeys for example last or first round or parts of

these subkeys (for example 30 out of 48 bits) in procedure

called key recovery. Detailed scheme of this procedure can

be found in [3] or [2]. Every pair suggests several sub-

keys. Good pair suggests exactly one good subkey and few

wrong subkeys. Wrong pair suggests only wrong subkeys.

Hence we have to count for every non-discarded pair how

many times every subkey occurred. For sufficient number

of analysed pairs the correct subkey should be the most fre-

quently appeared subkey. The indicator of how many times

the correct subkey is more frequent than other subkeys is

signal to noise (S/N) ratio. Precise calculation of this pa-

rameter can inform us about chances of success of certain

attack. Due to this parameter we can also determine the

number of pairs required to assure success of the attack. In

the next section we discuss how to calculate the S/N ratio

in attack on 9 rounds DES and how to determine the re-

quired number of pairs from the S/N ratio. Given method

is general and could be used in other attacks and for other

ciphers.

4. The signal to noise ratio in attack

on 9 rounds of DES

4.1. Differential characteristic and its probability

To attack algorithm DES reduced to 9 rounds we use the

following 6-round differential characteristic – see Fig. 3.

The characteristic is taken from [3] and it is the best differ-

ential characteristic of DES found up to now. Its probability

is a product of probabilities of 6 successive rounds and it

is equal to:

p =
(12·14·16)·1 ·(10·16)·1 · (10·16)·1

643 ·4 ·642 ·642 ·4
=

2
17
·525

246

=
525

229
≈ 9.7788870334625244140625 ·10

−7

≈
1

1000000
.

With this characteristic we can attack 9 rounds of data

encryption standard by adding three more rounds (so-cal-

led 3R attack). Due to the characteristic for good pairs

we have:
R′

6 = 40 5C 00 00x ,

hence for five s-boxes: S2, S5, S6, S7, S8:

S′E7 = S′I7 = 0 and S′O7 = 0,

where:

S′E7
means 6-bit difference after permutation E in

7th round,

S′I7
means 6-bit difference before s-boxes layer in

7th round,

S′O7
means 4-bit difference after s-boxes layer in

7th round.

Due to scheme of DES for these s-boxes we have the fol-

lowing relation:

f (R8, K9)′ = C′

L ⊕R′

5 ⊕ f (R6, K7) .

The characteristic allows us to obtain for these 5 s-boxes

input and output in 9th round required for key recov-

ery procedure. By applying the characteristic and the key

recovery procedure for one round (9th in that case) we

obtain 5 (s-boxes) · 6 bits = 30 bits of subkey K9, and

30 bits of main key as well. Remaining 26 bits of main

key can be found by exhaustive search.

Fig. 3. Six-round characteristic.

Due to the probability of the characteristic only some frac-

tion of pairs will follow it. We know only the difference of

51



Michał Misztal

plaintexts and corresponding difference of ciphertexts af-

ter 9 rounds so we cannot confirm whether it is a good or

bad pair. But we can do some analysis for s-boxes S2, S5,

S6, S7 and S8. If for any s-box obtained input difference

does not go to obtained output difference, or equivalently

set of suggested subkeys is empty, than we know for sure

that analysed pair does not follow the characteristic and

should be discarded. Some number of wrong pairs can-

not be revealed and discarded in that way. Unfiltered pairs

will suggest only wrong subkeys and they will provide only

disinformation noise. Also good pairs will suggest a few

wrong subkeys and exactly one correct subkey. To distin-

guish the correct subkey from the noise we count occur-

rences of all suggested subkeys. The correct subkey should

occurs more times than others wrong subkeys. The ques-

tion is how many pairs we need to analyse to distinguish the

correct subkey from the noise. To determine the number of

required pairs the S/N ratio is introduced. The parameter

estimates the ratio of the number of good pairs equals the

number of occurrences of the correct subkey (signal) to the

number of occurrence of all subkeys (noise).

4.2. The signal to noise ratio parameter

The S/N ratio of counting scheme is defined as ratio of

the number of good pairs and average number of counts

of wrong subkeys in counting scheme. In other words the

parameter shows how many more times will the correct

subkey occur than any other subkey. The formula for

the S/N ratio is given below:

S/N =
mp

mα
β

2k

=
2

k p

αβ
,

where:

p – the probability of the characteristic,

k – the number of bits of counted subkeys,

α – the average number of subkeys suggested by one

analysed pair,

β – the ratio of analysed pairs to all pairs, an efficiency

of filtration,

m – the number of decrypted pairs.

From the formula it is easy to see that:

– the S/N ratio is independent of the number of pairs

used in the attack,

– different schemes of counting based on the same

characteristic but counting different number of bits

of subkey have different value of the S/N ratio.

The number of good pairs required to find the correct sub-

key is a function of the S/N ratio parameter. For one s-box

of DES we assume k = 6, α = 4 (average number of 6-bits

subkeys suggested by one pair), β = 0.8 (average percent-

age of possible difference transitions in s-box).

With these values we can calculate the S/N ratio for the at-

tack on 9 rounds in the following way. We use key recovery

procedure for 5 s-boxes in the last round simultaneously;

hence we assume following values:

– k = 5 ·6 = 30 bits,

– αβ = 4 · 4 · 4 · 4 · 4 = 4
5 = 2

10 = 1024, the average

number of 30-bit subkeys suggested by one anal-

ysed pair; for every s-box we have in average four

6-bit subkeys, hence to obtain 30-bit subkey for five

s-boxes we have to determine all combinations of

these 6-bit subkeys.

The parameters α and β could be determined separately as

we will do later in the precise estimation of the S/N ratio,

and now we only determine their product like above. It is

easier now and as we will show it is also precise.

We know the probability of the characteristic and above

values of parameters so we can calculate the S/N ratio

now:

S/N =
2

30
·

1

1000000

45
=

2
20

1000000

=
1048576

1000000
= 1.048576 ≈ 1 .

It was assumed in [3], that if the S/N is between 1 and 2,

then about 20–40 good pairs are sufficient. If the S/N is

high then only a few occurrences of right pairs are needed

to uniquely identify a right value of the subkey bits. If

the S/N is small the number of required pairs is big and

when S/N is less than 1 we never find the correct subkey.

In that case the correct subkey occurs more rare than other

subkeys in average. Hence the maximum value in counter

is not the value of the correct subkey even for huge number

of pairs. In that case attack would be impossible.

In our attack the S/N is small but higher than 1, what

makes the attack possible at least in theory. We have to

determine the number of pairs needed to success of the at-

tack. According to [3] 30 good pairs are sufficient. Good

pair appears statistically one time per every 1 000 000 gen-

erated pairs, hence about 30 million pairs will be needed

to perform the attack and to uniquely identify a right value

of 30-bit subkey. Experiments have shown (cf. Section 6)

that above number of pairs is too small in general. Some-

times that number is sufficient but it happens too rarely.

We would like to determine the number of needed pairs,

which is sufficient to uniquely identify a right subkey in all

cases. 30 million, it is too small for sure. How many pairs

we need and how to determine this number in the clear and

faultless way? We will try to answer the question and we

will start from precise calculation of the S/N ratio.

4.3. Precise calculation of the signal to noise ratio

To determine the number of pairs needed to success of the

attack first we have to calculate the S/N ratio in the most

52



The signal to noise ratio in the differential cryptanalysis of 9 rounds of data encryption standard

precise way. If this parameter is much higher than 1 a few

(3–4) pairs would be sufficient like in the attack on 4 or

6 rounds DES. But in the case of attack on 9 rounds DES

the ratio is only slightly higher than 1, so we have to cal-

culate it very precise. We will of course use the formula

given previously:

S/N =
2

k p

αβ
.

Value of k remains unchanged: k = 30 but the probabil-

ity p is now exact value, i.e., p = 525

229
. We have also as-

sumed different values of α and β ., We start from β pa-

rameter, which expresses the proportion of the number of

analysed pairs to the number of all generated pairs, so it

is an efficiency of filtration. Whole filtration we can do

in the 3R attack is testing for all five s-boxes and check

whether input difference obtained from ciphertexts and the

characteristic may cause obtained output difference. If for

these input and output differences in appropriate XOR pro-

file it is zero entry then it means this input-output transi-

tion is impossible. If it happens even for one s-box out

of five we know for sure that this pair is wrong and we

discard it. Hence parameter β is a probability that for all

five s-boxes simultaneously the input-output differences are

possible. In average percentage of non-zero values in XOR

profiles of all s-boxes of DES is 0.8. For five s-boxes we

may assume β = 0.85
≈ 0.32768, but it is not sufficiently

precise for us. We have to look closer at XOR profiles of

s-boxes. In [3] percentages of non-zero values are given

for all 8 s-boxes. We have determined these percentages

with bigger precision. All results are given in Table 1.

Table 1

Percentage of non-zero values in XOR profiles of s-boxes

s-box Percentage [3] Precise values

S1 79.4 0.794921875

S2
∗ 78.6 0.786132813

S3 79.6 0.796875000

S4 68.5 0.685546875

S5
∗ 76.5 0.765625000

S6
∗ 80.4 0.804687500

S7
∗ 77.2 0.772460938

S8
∗ 77.1 0.771484375

In our attack we deal only with 5 s-boxes (denoted ∗) so

parameter β is a product of corresponding values from the

table and it equals:

β = 0.288631 < 0.85.

Than we calculate value of α . Parameter α means the num-

ber of subkeys suggested by one analysed pair. It is the

average number of different subkeys found by key recov-

ery algorithm for one non-discarded pair. To obtain α we

will again use XOR profiles. For individual s-box the aver-

age number of found subkeys is equal to average entry in

the XOR profile of the s-box. It is equal 64 (the sum of

entries in every row) divided by 16 (the number of columns)

hence it is 4. But after filtration we do not take impossible

transitions in to account. So we should calculate the aver-

age only from non-zero entries. The values of α calculated

in that way are given in Table 2. As we can see they are

different for different s-boxes.

Table 2

The average of non-zero entries in XOR profile of s-boxes

s-box Average of non-zero values

S1 5.031941032

S2
∗ 5.088198758

S3 5.019607843

S4 5.834757835

S5
∗ 5.224489796

S6
∗ 4.970873786

S7
∗ 5.178255373

S8
∗ 5.184810127

Similarly like for β , α is a product of values for five s-boxes

denoted by ∗ and it equals:

α = 3547.782689 .

Product of α and β is equal to αβ = 1024 = 4
5, so previous

estimation was also very precise. But the second method

is more universal; because it calculates values of α and β
separately, however it is also needs more work.

Now we know the values of all parameters so we can cal-

culate S/N again:

S/N =
2

30
·

525

229

0.288631 ·3547.782689

=
1050

1024
= 1.025390625 .

This value is different from previous on the third signifi-

cant position although we actually have changed only the

probability p.

Very interesting thing is that experiments (cf. Section 6)

provide different value of β parameter. We have anal-

ysed different number of pairs and obtain the number of

pairs non-discarded in filtration process. Proportion of these

numbers determines β .

From Table 3 we can see that value of the parameter is

rather constant. Small differences are consequences of

probabilistic behaviour of differential cryptanalysis. It is

also slightly different from theoretically obtained value. It

may be explained as follows. We generate pairs of plain-

texts not actually in random. First plaintext from the pair

is generated randomly but second one depends on the char-

acteristic. Than pairs of ciphertexts are not random and

differential cryptanalysis can work at all. Theoretical es-

timation of β was obtained for fully random values. And

here this difference appears. About 1/p pairs are good and

survive filtration for sure, some portion of pairs may follow

53



Michał Misztal

the characteristic for a few rounds and have more chances

to survive filtration then fully random ciphertexts. Hence

in practice more pairs remain after filtration and parame-

ter β is bigger then theoretical estimation made for fully

random pairs.

Table 3

Parameter β obtained in experiments

No. β

1 0.2916292

2 0.2915709

3 0.2915562

4 0.2914597

5 0.2920615

6 0.2915714

Parameter α obtained in those experiments was accurate

with its theoretical value.

We put value of β provided by experiments to the formula

of the S/N and we have:

S/N =
2

30
·

525

229

0.2915 ·3547.782689
= 1.015298465 .

Value of the S/N obtained in this way we will use in further

considerations.

4.4. The method of determination the number of pairs

needed to the attack based on the signal to noise

ratio

We have determined as precise as possible the S/N ra-

tio. Now we will use the ratio to estimate the number

of required pairs. If the S/N is much bigger then 1 we

can assume that even 3–4 good pairs are sufficient to suc-

cessful attack. But when the S/N is close to 1 like in

that case the number of required good pairs is much big-

ger. In-advance assumption that 20, 30 or 40 good pairs

are sufficient must be verified in certain attack. The at-

tack on 9 rounds of DES need more then suggested in [3]

30 or 40 good pairs to uniquely identify the correct key.

Sometimes these numbers are sufficient but it happens too

rarely. Rough estimation of efficiency of attack with these

numbers of pairs is smaller then 50%. So how many pairs

are needed to significantly increase this efficiency?

We want to set the number of required pairs to be as small

as possible but to be sufficient to uniquely identify the cor-

rect key. To recall, found key is a value, which has occurred

the most frequently. It means that we search the counter of

occurrences of all keys for the maximum value. If a noise

is high the maximum value may not correspond to the cor-

rect key but some other key. The number of occurrences

of the correct key may be second or third or next value in

the counter. In that case attack ends with failure. In our

attack the S/N ratio is greater than 1 (and it is possible at

all) so increasing number of generated and analysed pairs

tends to increased number of occurrences of correct key.

That number increases faster than average number of oc-

currences of incorrect key (noise). So the number of pairs

to analyse should be sufficiently big to assure that number

of occurrences of the correct key will be maximum value

in the counter. It means that number will be greater than

number of occurrences of all other keys with big probabil-

ity. Due to the probabilistic nature of our problem values in

the counter are different in different experiments. And we

can use only average numbers, which are easy to determine.

We cannot predict the maximum value of noise or signal in

the counter but we know in average how many good pairs

were analysed. Also we know that every good pair gives

one good key. We know the average value in the counter

(level of a noise) as well. Now we want to be sure that

number of occurrences of correct key would “stand out of

noise”. It means it would be greater even by 1 than other

values in the counter. Hence we have to set the number

of required pairs in order to the expected number of good

pairs and occurrences of good key as well be greater than

the expected average number in the counter. The expected

number of good pairs can be calculated as a product of

the number of all analysed pairs and the probability of the

characteristic: m · p. It is the numerator of the S/N ratio.

The expected average number in the counter can be calcu-

lated as: (m ·α ·β )/2
k (the denominator of the S/N). Now

we find such m that the numerator (m · p) is greater at least

by 1 than the denominator. We start with m = 30 000 000

because we know that value is too small. We assume step

5 million and check successive values of m. Results of our

searching are given in Table 4.

The first row gives the number of pairs used in the at-

tack. The second counts the average number in the counter,

third – number of good pairs. The fourth row is a propor-

tion of above rows (row 2/row 3), so it is the S/N ratio

actually. The last row expresses the difference: row 3 –

row 2. As we can see the difference is greater than 1 for

m = 70 million and we end our search with that value. We

believe that in some sense the last row expresses the success

of attack with corresponding number of pairs.

Precise value of m can be also calculated by using the

S/N ratio. The number of occurrence of good key grows

faster than the average number in the counter by factor

equals to the S/N ratio. We want the signal be greater by

one than noise. We put the nominator to be by 1 greater

than the denominator, hence:

mp−
mp

S/N
> 1 ⇒

(S/N−1)mp

S/N
> 1 ⇒ m >

S/N

S/N −1

1

p
.

In that way we obtain the estimation on the number of

required pairs to successful attack:

m >
S/N

(S/N −1)p
.

As we can see, with the growth of the S/N ratio the num-

ber m tends to 1/p.

54



The signal to noise ratio in the differential cryptanalysis of 9 rounds of data encryption standard

Table 4

Results of searching for required number of pairs

1. Number of pairs m 30000000 35000000 40000000 45000000 50000000

2. Average in counter 28.89462 33.71038743 38.52616 43.34192669 48.15769633

3. Number good pairs 29.33666 34.22610462 39.11555 44.00499165 48.89443517

4. The S/N ratio 1.015298 1.015298465 1.015298 1.015298465 1.015298465

5. Difference 0.44204 0.51571719 0.58939 0.66306496 0.73673884

1. Number of pairs m 55000000 60000000 65000000 67866654 70000000

2. Average in counter 52.97346596 57.7892356 62.60500522 65.3660333 67.42077

3. Number good pairs 53.78387868 58.6733222 63.56276572 66.3660333 68.45221

4. The S/N ratio 1.015298465 1.015298465 1.015298465 1.015298465 1.015298

5. Difference 0.81041273 0.884087 0.95776049 1 1.03143

The estimation can be useful in every attack, especially

when the S/N ratio is close but greater than 1. Efficacy

of attack with that number of pairs is very high (cf. Sec-

tion 6) but still less than 100%. Due to the probabilistic

nature of the problem an experiment in which that number

is too small always may happen. But now it will happen

rarely. In that case we of course can use more pairs.

In our attack we have:

m =
1.015298465 ·2

29

(1.015298465−1) ·525
= 67866653.95 .

Hence we need above 67 million pairs. It confirms the

results given in the Table 4.

Using the above estimation we can make quite interest-

ing observation. Namely, if we use the estimation with

very first calculated value of S/N ratio [3] we will obtain

m > 22074391.17. It means that for this value of the

S/N ratio 30 million pairs would be sufficient.

5. Implementation issues

Implementation and performance of considered attack is

possible now thanks to progress in computational power

of computers (processor speed, capacity of operational and

disc memory). But still there are some problems and re-

strictions we have to solve. Main problem is a size of

memory to store the counter.

We count the number of occurrences of all 30-bit subkeys,

so we need the counter, which consists 2
30 at least 8-bit

values. It requires operational memory of size 1 GB. In

the attack on 8 rounds of DES the problem was solved by

dividing it on two less complicated subproblems [2]. In

the case of 9 rounds this solution is impossible. Computer

with 1 GB of operational memory is still unavailable due

to high costs. The problem was solved on computer with

operational memory of size 256 MB by time-memory trade

off 256 MB of memory allows on using a counter with

2
28 elements. The space of 2

30 was divided on four separate

subspaces of size 2
28 depending on two most significant bits

of 30-bit key. Whole process of counting keys is divided

on four substages.

In first substage we generate required number of pairs.

Than we perform key recovery algorithm and save in tem-

porary file only non-discarded pairs (ciphertexts actually).

It requires 2 · β · m · 8 bytes of disc memory and for

m = 70 million it makes about 324 MB and now it is easily

available. In that smaller counter we put only keys with

the same two significant bits equal for example 00. In the

counter we search for the maximum. If the distinct maxi-

mum exists we assume it corresponds with the correct key

and we end this stage. The distinct maximum means that

it is only one maximum value and the value is significantly

greater than any others. In the other case we proceed to

next substage. We put into the new counter only keys with

the same two significant bits equal now for example 01.

In the second substage we use saved in the first substage

non-discarded pairs. We do not perform the filtration

again what significantly reducing the time of the substage.

Than we again search for the distinct maximum in the new

counter taking into account maximum value from the first

counter. If the distinct maximum exists we finish with that

value of key. In the other case we proceed to third and

forth if it is needed. The time of that stage may differ

significantly with respect to the number of substages per-

formed until the key was found. In average we perform

two substages. That approach makes the issues of required

number of pairs very complicated. If the number appeared

too small increasing it is very troublesome and we must

repeat whole attack actually. As we can see it is very im-

portant to set the appropriate number of required pairs at

the beginning. From the other hand, the number should be

as small as possible to decrease the time of attack.

The second and very unexpected problem, which showed

out, was generating the pairs of plaintexts. As we stated

we need 70 million pairs, so we have to generate above

2
26
· 2

3 = 2
29 bytes in random. The period of standard

pseudorandom number generator in used programming lan-

guage (C++) should be 2
31, but for the least significant

byte it is smaller and it is only 2
27 (it is a discovered error

55



Michał Misztal

Table 5

First results

Number of generated

pairs [million]
Number of non-discarded

pairs
β Max in counter

Number of occurrences

of correct key
Result

30 8743769 0.2914580 64 (4 times) 63 Failure

35 10202090 0.2914883 77 77 Success

35 10203548 0.2915299 73 59 Failure

35 10205025 0.2915721 81 81 Success

35 10204767 0.2915648 71 61 Failure

35 10203362 0.2915246 70 (3 times) 70 Failure

35 10200564 0.2914447 76 76 Success

35 10204390 0.2915537 73 (2 times) 64 Failure

35 10207181 0.2916337 72 (2 times) 59 Failure

35 10205876 0.2915965 75 48 Failure

35 10201090 0.2914597 73 60 Failure

40 11655712 0.2913928 88 88 Success

40 11658656 0.2914664 92 92 Success

40 11662246 0.2915562 87 87 Success

40 11661319 0.2915330 82 76 Failure

40 11665598 0.2916400 79 (2 times) 64 Failure

40 11662246 0.2915562 84 84 Success

50 14576501 0.2914666 99 99 Success

50 14573329 0.2916178 105 105 Success

50 14580889 0.2916178 98 80 Failure

50 14575285 0.2915057 95 88 Failure

50 14586415 0.2917283 109 109 Success

50 14576447 0.2915289 101 101 Success

50 14579432 0.2915886 94 85 Failure

50 14579003 0.2915801 100 100 Success

50 14575915 0.2915183 95 94 Failure

of compiler!). So we have to use our own pseudorandom

number generator with the suitable period, which generates

numbers with uniform distribution. We did not need any

cryptographically strong generator but only fast one so we

used ordinary linear feedback shift register (LFSR) with

length 64 bits, what made its period equals to 2
64
−1 bits.

That problem is irrelevant from cryptanalytic point of view

but we would like to point out that in the case of such huge

amounts of data similar problems may completely warp the

results of the cryptanalysis.

6. Results

Now we present the results of performance of considered

attack. The attack was implemented in C++ language

in Borland C++ Builder 5 on a computer with processor

Celeron II 1.3 GHz and 320 MB of operational memory.

We used implementation of 9 rounds of DES running with

speed 3.2 million blocks per second what makes through-

output 200 Mbit/s.

We start with attacks with too small number of pairs. Ta-

ble 5 shows the results of attacks with 30–50 million pairs.

The first column presents the number of generated pairs.

The second expresses the number of pairs, which survive

the filtration. The third is a proportion of two previous

columns and it is an efficacy of filtration (parameter β ).

In the next column the maximum value in the counter is

given. The number in the parenthesis means how many

times the maximum appeared if more than one. The fifth

column gives the number of occurrences of the correct key.

In the last column the result of the attack (success or fail-

ure) is given. The result can be derived from two previous

columns.

From the table we can roughly estimate the probability

of success of the attack. The probability of success of

attack with 30 or 35 million pairs is smaller than 1/3,

with 40 or 50 million pairs slightly exceeds 1/2.

Table 6 presents in similar way the results of attacks with

70 million pairs. Additionally the time of performance of

substages is given.

56



The signal to noise ratio in the differential cryptanalysis of 9 rounds of data encryption standard

Table 6

Main results

Number Number Time of substages Time of Time of Number

of all pairs of non-discarded β [s] II stage attack Max of occurrences Result

[million] pairs 1 2 3 4 [s] [s] of correct key

70 20411466 0.2915924 7391 4987 4977 – 138 17493 139 139 Success

70 20407887 0.2915412 7395 4979 4983 – 6 17363 144 144 Success

70 20400900 0.2914414 7374 – – – 245 7619 127 127 Success

70 20410516 0.2915788 7384 – – – 84 7468 134 134 Success

70 20408476 0.2915497 7363 – – – 29 7392 128 128 Success

70 20408331 0.2915476 7382 – – – 85 7467 145 145 Success

70 20402070 0.2914581 7358 4982 4948 6085 313 23686 121 116 Failure

70 20414410 0.2916344 7376 – – – 273 7649 149 149 Success

70 20411673 0.2915953 7384 4945 4955 4951 136 22371 143 143 Success

70 20404332 0.2914905 7360 4935 – – 72 12367 133 133 Success

70 20405427 0.2915061 7353 4938 – – 211 12502 132 132 Success

70 20414960 0.2916423 7389 4944 – – 155 12488 123 123 Success

70 20404748 0.2914964 7391 – – – 85 7476 133 133 Success

70 20409296 0.2915614 7353 4932 4927 – 89 17301 135 135 Success

70 20415691 0.2916527 7365 4916 – – 196 12477 148 148 Success

70 20408939 0.2915563 7455 – – – 17 7472 126 126 Success

70 20403624 0.2914803 6792 – – – 210 7002 151 151 Success

70 20409608 0.2915658 6804 4729 4707 4710 152 21102 119 118 Failure

70 20404448 0.2914921 6766 – – – 232 6998 121 – Failure

70 20412821 0.2916117 6768 – – – 182 6950 144 144 Success

70 20413305 0.2916186 6764 – – – 77 6841 152 152 Success

70 20404312 0.2914902 6772 – – – 13 6785 149 149 Success

70 20413398 0.2916200 6769 4709 4696 – 28 16202 146 146 Success

Average 0.2915574 7167 4892 4847 5249 132 11500 Succ./fail. 20/3

Lack of given time of any substage means that substage was

not necessary because the maximum was found in previ-

ous substage. The first substage is always about 1.5 times

longer than others. It results from applied procedure of

counting keys. In the first stage we generate all pairs, than

we perform the filtration and save them. In next substages

we only analyse non-discarded pairs what is significantly

faster.

As we can see only 3 out of 23 attacks have ended with fail-

ure. In the two first cases all four substages were performed,

but in any of them distinct maximum was not found, and

the correct key occurred more rare than others. In the third

case distinct maximum was found but it did not correspond

to the correct key. The efficiency of the attack with 70 mil-

lion pairs we can consider as very high and close to 90%

even for a few dozen experiments.

After assuming that 70 million is the proper number of re-

quired pairs we can perform a full attack. It means after

finding the 30 bits of main key in the first stage we can

find remaining 26 bits by exhaustive search of space 2
26.

It was now a simple and fast task. The column “Time of

II stage” in Table 6 gives time (in seconds) of exhaustive

search that was needed to find remaining 26 bits of main

key. As we can see that search takes not longer than 5 min-

utes. The column “Time of attack” gives a total time of the

attack calculated as the sum of fives values in the previous

columns.

In the cases of first two failures the correct key occurred too

less times to be found. So all four substages were performed

and entire search in the II stage (313 and 152 seconds), but

without success. Of course if first 30 bits are wrong we

can never adjust the last 26 bits to get the correct key.

The last failure was of different type. In the initial sub-

stages (in the first in the certain case) a distinct maximum

was found, but it did not correspond to the correct key.

Algorithm ended without performing the next substages in

which the correct key should be found. That way we did not

found the number of occurrences of the correct key. That

failure is not based on too less number of analysed pairs,

but it comes from extorted dividing the first stage on four

57



Michał Misztal

Table 7

Final results

Number Number Time of substages Time of Time of Number

of all pairs of non-discarded β [s] II stage attack Max of occurrences Result

[million] pairs 1 2 3 4 [s] [s] of correct key

70 20407072 0.2915296 6799 4772 4782 4793 151 21297 124 124 Failure

70 20411849 0.2915978 6847 – – – 31 6878 130 130 Success

70 20412699 0.2916100 6837 – – – 138 6975 133 133 Success

70 20414234 0.2916319 6842 4934 4926 4940 73 21715 145 145 Success

70 20407731 0.2915390 6838 4907 4932 4928 179 21784 131 141 Success

70 20402279 0.2914611 6834 4919 4933 4917 152 21755 124 117 Failure

70 20409520 0.2915646 6841 – – – 233 7074 125 – Failure

70 20407149 0.2915317 6829 – – – 69 6898 156 156 Success

70 20409663 0.2915666 6835 – – – 152 6987 156 156 Success

70 20413565 0.2916224 7030 4776 4896 4812 151 21665 121 115 Failure

70 20412273 0.2916049 6827 4797 4805 – 142 16571 128 128 Success

70 20412370 0.2916053 6867 5002 5014 5015 212 22110 122 122 Failure

70 20405958 0.2915137 8277 5406 5118 4886 41 23728 130 130 Success

70 20412912 0.2916130 4704 – – – 225 4929 139 139 Success

70 20416821 0.2916689 6740 4699 4695 – 163 16297 144 144 Success

70 20406430 0.2915204 6818 4832 4855 4942 152 21599 123 120 Failure

70 20401766 0.2914548 6827 4809 – – 226 11862 149 149 Success

70 20409267 0.2915610 6855 – – – 71 6926 136 136 Success

70 20409910 0.2915701 6832 4808 4837 4819 69 21365 148 148 Success

70 20411009 0.2915858 6830 – – – 205 7035 149 149 Success

70 20406152 0.2915165 6880 – – – 109 6989 138 138 Success

70 20407093 0.2915299 7576 5120 5120 4882 68 22766 144 144 Success

70 20399601 0.2914229 6712 4806 4804 4817 146 21285 130 130 Success

70 20410754 0.2915822 6838 – – – 255 7093 136 136 Success

70 20406290 0.2915184 7796 4959 5184 – 90 18029 133 133 Success

70 20407788 0.29153983 7571 5119 5119 4895 197 22901 152 152 Success

70 20416450 0.29166357 6722 – – – 222 6944 142 142 Success

70 20413332 0.29161903 6840 4937 4929 4943 150 21799 146 146 Success

70 20408688 0.29155269 8576 5337 5115 – 208 19236 141 141 Success

70 20408957 0.29155653 6835 4925 4931 – 244 16935 136 136 Success

70 20408126 0.29154466 6831 4925 4933 4922 220 21831 135 135 Success

70 20407964 0.29154234 6836 4930 4946 4948 46 21706 154 154 Success

70 20408866 0.29155523 6835 4941 – – 31 11807 128 128 Success

Average 0.29156041 6938 4939 4944 4897 146 15599 Succ./fail. 27/6

substages. In that case we should despite to find suspect

key in the initial substages continue with next substages.

So the open problem appears: should we always perform

all four substages what will increasing time of the attack

significantly or like it was done stop after finding the first

distinct maximum what is faster but generate above fail-

ures?

The way of omitting that problem is fixing a threshold

on the maximum value in the counter. If the found max-

imum is lower than the threshold we will continue with

the next substages. As the performed experiments show

“the level of noise” which is the maximum number of oc-

currences of incorrect key does not exceed 125. However

the correct key usually occurs (if we reached adequate sub-

stage) more often, and even more than 130 times. Hence

we can assume that if we find the distinct maximum but

lower than 125 that value does not correspond to the cor-

rect key and we will continue with next substages. The

results of attacks performed with that rule are presented

in Table 7.

58



The signal to noise ratio in the differential cryptanalysis of 9 rounds of data encryption standard

Introducing the threshold almost eliminated the failures,

which comes from dividing problem on substages. Fail-

ures, which appeared now, derive from too small number

of occurrences of the correct key. In those cases we should

generate more pairs to analyse. The exception is the first

failure and the failure where the number of occurrences of

the correct key is not given. In the first case the maximum

value in the counter corresponded to the correct key but it

did not exceeded the fixed threshold and was not taken in to

account. In that case even without applying the “threshold”

rule attack would end with failure, because found maximum

was not distinct, the second biggest value was only smaller

by 1. In the second case the distinct maximum was found

and it exceeded the threshold but it was not the correct key.

In that case the threshold should be higher. But the higher

threshold may cause more failures of the first (previous)

type. Fixing the threshold is very hard and important case.

Increasing the threshold will reduce the number of failures

of second type but will increase the number of failures of

the first type and vice versa. However the small number

of total failures in our experiments let us consider that we

fixed the threshold correctly.

The efficiency of the attack we can roughly approximate

on 80%, 6 failures in 33 tries, and the average time of

performance of entire attack was 15 600 seconds, which is

about 4 hours and 20 minutes. It is very short time for

recovering full 56-bit key of 9-round algorithm.

Acknowledgement

This work has been partly supported by Polish Committee

of Science Research project number 0 T00A 020 25 and

partly supported by the European Commission under con-

tract IST 2002-507932 (ECRYPT).

References

[1] E. Biham, V. Furman, M. Misztal, and V. Rijmen, “Differential crypt-

analysis of Q”, in Fast Software Encryption: 8th International Work-

shop, FSE 2001, Yokohama, Japan, April 2–4, 2001, M. Matsui, Ed.,

Lecture Notes in Computer Science. Berlin [etc.]: Springer-Verlag,

2002, vol. 2355, pp. 174–186.

[2] M. Misztal, “Praktyczna kryptoanaliza różnicowa algorytmu DES zre-

dukowanego do 8 rund”, Bull. WAT Cryptology Part I, vol. XLVII,

no. 10(566), pp. 125–146, 1999 (in Polish).

[3] E. Biham and A. Shamir, Differential Cryptanalysis of the Data En-

cryption Standard. New York: Springer-Verlag, 1993.

[4] D. Kwiatkowski, “Implementacja i kryptoanaliza wybranych szyfrów

blokowych”, Warszawa, Wojskowa Akademia Techniczna, Wydział

Cybernetyki, 1998, Master thesis (in Polish).

[5] B. Schneier, Kryptografia dla praktyków. Protokoły, algorytmy i pro-

gramy źródłowe w języku C. Warszawa: WNT, 2002 (in Polish).

Michał Misztal was born in

1973 in Kielce, Poland. He got

his M.Sc. in 1997 from Fac-

ulty of Cybernetics of Mili-

tary University of Technology

(MUT), Warsaw. He has studied

on “cryptology” specialty in the

individual course. He works as

an Assistant in the Institute of

Mathematics and Cryptology on

Faculty of Cybernetics MUT.

He conducts tutorials and lectures on mathematics and lin-

ear algebra, but also on profiled by the Institute “cryptol-

ogy” specialty on such subjects like cryptanalysis of block

and stream ciphers, differential and linear cryptanalysis and

designing of block ciphers. He is the co-author of hand-

book entitled “Introduction to Cryptology” and the author

of several papers published among others in the bulletin

of MUT. He has also given many lectures on scientific

conferences devoted to cryptology.

e-mail: mmisztal@wat.edu.pl

Institute of Mathematics and Cryptology

Faculty of Cybernetics

Military University of Technology

S. Kaliskiego st 2

00-908 Warsaw, Poland

59


