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Abstract— The dimensioning of telecommunication networks

that carry elastic traffic requires the fulfillment of two con-

flicting goals: maximizing the total network throughput and

providing fairness to all flows. Fairness in telecommunica-

tion network design is usually provided using the so-called

max-min fairness (MMF) approach. However, this approach

maximizes the performance of the worst (most expensive) flows

which may cause a large worsening of the overall through-

put of the network. In this paper we show how the concepts

of multiple criteria equitable optimization can be effectively

used to generate various fair and efficient allocation schemes.

We introduce a multiple criteria model equivalent to equi-

table optimization and we develop a corresponding reference

point procedure for fair and efficient network dimensioning

for elastic flows. The procedure is tested on a sample net-

work dimensioning problem for elastic traffic and its abilities

to model various preferences are demonstrated.

Keywords— multiple criteria optimization, efficiency, fairness,

equity, reference point method, telecommunications, network

design, elastic traffic.

1. Introduction

The problem of fairness in the allocation of resources oc-
curs in many contexts, from economics and law to engi-
neering. In all cases, a scarce or constrained resource must
be divided among many users in a way that respects fair-
ness and does not ignore efficiency [9, 13]. In the area of
telecommunication and computer networks, fair resource
allocation usually concerns the allocation of bandwidth to
users, services or flows. This problem may be dynamic
and solved by adaptive protocols like transmission control
protocol (TCP) [3], or it may concern the design or config-
uration of the network [16, 20]. This paper deals with the
problem of fair and efficient network dimensioning.
Telecommunication network design is usually based on
a set of estimated traffic demands. The task is then to
design the cheapest networks that can satisfy the demands.
The estimation of traffic demands is usually possible in net-
works that are mainly used to communicate voice (like the
public switched telephone network – PSTN), since voice
communication uses a fixed amount of bandwidth. In data
networks, traffic is much more variable and hard to pre-
dict; also, data communications does not have quality of
service (QoS) requirements that need a fixed bandwidth
share. Data traffic is usually carried by the TCP protocol
that adapts its throughput to the amount of available band-

width. Such traffic, called elastic traffic, is capable to use
the entire available bandwidth, but it will also be able to
reduce its throughput in the presence of contending traffic.
Nowadays, the network management often faces the prob-
lem of designing networks that carry elastic traffic. These
network design problems are, essentially, network dimen-
sioning problems as they can be reduced to a decision about
link capacities. Flow sizes are outcomes of the design prob-
lem, since the flows adapt to given network resources on
a chosen path.
Network management must stay within a budget constraint
on link bandwidth to expand network capacities. They want
to achieve a high throughput of the IP network, to increase
the multiplexing gains (due to the use of packet switching
by the Internet Protocol – IP). This traffic is offered only
a best-effort service, and therefore network management
is not concerned with offering guaranteed levels of band-
width to the traffic. A straightforward network dimension-
ing with elastic traffic could be thought of as a search for
such network flows that will maximize the aggregate net-
work throughput while staying within a budget constraint
for the costs of link bandwidth. However, maximizing ag-
gregate throughput can result in extremely unfair solutions
allowing even for starvation of flows for certain services.
On the other extreme, while looking at the problem from
the perspective of a network user, the network flows be-
tween different nodes should be treated as fairly as pos-
sible [2]. The so-called max-min fairness (MMF) [1, 4]
is widely considered as such ideal fairness criteria. In-
deed, the lexicographic max-min optimization used in the
MMF approach generalizes equal sharing at a single link
bandwidth to any network while maintaining the Pareto
optimality. Certainly, allocating the bandwidth to optimize
the worst performances may cause a large worsening of
the overall throughput of the network. Therefore, network
management must consider two goals: increasing through-
put and providing fairness. These two goals are clearly con-
flicting, if the budget constraint has to be satisfied.
The purpose of this work is to show that it is possible
to balance the two conflicting goals of increasing the to-
tal network throughput and providing fairness to all flows.
The tradeoff between these two goals can be controlled us-
ing a multiple criteria model that allows to represent the
overall efficiency and fairness goals. The network manager
can choose among many compromise solutions by specify-
ing his preferences using the so-called quasi-satisficing ap-
proach to multiple criteria decision problems [22]. The best
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formalization of the quasi-satisficing approach to multiple
criteria optimization was proposed and developed mainly
by Wierzbicki [21] as the reference point method. The
reference point method (RPM) is an interactive technique
where the decision maker (DM) specifies preferences in
terms of aspiration levels (reference point), i.e., by intro-
ducing desired (acceptable) levels for several criteria. This
allows the DM to simultaneously learn about the problem
during the process of expressing his (possibly evolving)
preferences. Our methods also enable the DM to choose
solutions obtained by methods developed in previous work,
that depend on maximization of the sum of the flows eval-
uated with some (concave) utility function. In particular,
the so-called proportional fairness (PF) approach [5] max-
imizes the sum of logarithms of the flows. This approach
has been further extended to a parametric class of concave
utility functions [11]. However, the methods developed in
this paper are more general and allow the DM to choose
among many solutions, including solutions that would be
obtained by other methods.
The paper is organized as follows. In the next section we
formalize the network dimensioning problem, we consider.
In Section 3, basic fair solution concepts for resource allo-
cation are related to the multiple criteria equitable optimiza-
tion theory. In Section 4, the reference point methodology
is applied to the multiple criteria allowing us to model vari-
ous fair and efficient allocation schemes with simple control
parameters. Finally, in Section 5, we present some results
of our initial computational experience with this new ap-
proach.

2. The network dimensioning problem

The problem of network dimensioning with elastic traffic
can be formulated basically as a linear programming (LP)
based resource allocation model as follows [16]. Given
a network topology G =< V,E >, consider a set of pairs
of nodes as the set I = {1,2, . . . ,m} of services represent-
ing the elastic flow from source vs

i to destination vd
i . For

each service, we have given the set Pi of possible routing
paths in the network from the source to the destination.
We describe them with binary coefficients δeip = 1 if link e

belongs to the routing path p ∈ Pi (connecting vs
i with vd

i )
and δeip = 0 otherwise.
For each service i∈ I, the elastic flow from source vs

i to des-
tination vd

i is a variable representing the model outcome and
it will be denoted by xi. This flow may be realized along
various paths p ∈ Pi. The flow may be either split among
several paths or a single path must be finally selected to
serve the entire flow. Actually, the latter case of nonbifur-
cated flows is more commonly required. Both bifurcated
or nonbifurcated flows may be modeled as xi = ∑p∈Pi

xip

where xip (for p ∈ Pi) are nonnegative variables represent-
ing the elastic flow from source vs

i to destination vd
i along

the routing p. Although, the single-path model requires
additional multiple choice constraints to enforce nonbifur-
cated flows. This can be implemented with additional bi-

nary (flow assignment) variables uip equal 1 if path p ∈ Pi

is assigned to serve flow xi and 0 otherwise. Assuming
existence of some constant M upper bounding the largest
possible total flows xi, the assignment variables uip can eas-
ily be used to limit the number of positive flows xip with
the following constraints:

0 ≤ xip ≤ Muip, uip ∈ {0,1} ∀ i ∈ I; p ∈ Pi , (1)

∑
p∈Pi

uip = 1 ∀ i ∈ I . (2)

The network dimensioning problem depends on allocating
the bandwidth to several links in order to maximize flows
of all the services (demands). Typically, the network is
already operated and some bandwidth is already allocated
(installed) and decisions are rather related to the network
expansion. Therefore, we assume that each link e ∈ E has
already capacity ae while decision variables ξe represent the
bandwidth newly allocated to link e ∈ E thus expanding the
link capacity to ae +ξe. Certainly, all the decision variables
must be nonnegative: ξe ≥ 0 for all e ∈ E and there are
usually some bounds (upper limits) on possible expansion
of the links capacities: ξe ≤ āe for all e ∈ E . Finally, the
following constraints must be fulfilled:

∑
i∈I

∑
p∈Pi

δeipxip ≤ ae + ξe ∀e ∈ E , (3)

0 ≤ ξe ≤ āe ∀e ∈ E , (4)

∑
p∈Pi

xip = xi ∀i ∈ I , (5)

where Eq. (5) define the total service flows, while Eq. (3)
establish the relation between service flows and links band-
width. The quantity ye = ∑i∈I ∑p∈Pi

δeipxip is the load of
link e and it cannot exceed the available link capacity.
Further, for each link e ∈E , the cost of allocated bandwidth
is defined. In the basic model of network dimensioning it
is assumed that any real amount of bandwidth may be in-
stalled and marginal costs ce of link bandwidth is given.
Hence, the corresponding link dimensioning function ex-
pressing amount of capacity (bandwidth) necessary to meet
a required link load [16] is then a linear function. While
allocating the bandwidth to several links in the network
dimensioning process the decisions must keep the cost
within available budget B for all link bandwidths. Hence
the following constraint must be satisfied:

∑
e∈E

ceξe ≤ B. (6)

The model constraints (3)–(6) together with respective
nonnegativity requirements define a linear programming
feasible set. They turn into mixed integer LP (MILP),
however, if nonbifurcated flows are enforced with discrete
constraints (1) and (2).
In the simplified problem with linear link dimensioning
function and dimensioning of a completely new network
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(ae = 0 for all links), the cost of the entire path p for ser-
vice i can be directly expressed by the formula:

κip = ∑
e∈E

ceδeip for i = 1, . . . ,m, p ∈ Pi . (7)

The cheapest path for each service can then easily be
identified and preselected. Having preselected routing path
for each demand (|Pi| = 1) one may consider variable xi

directly as flow along the corresponding path (xi = xi1).
Constraints (6) and (3) may be then treated as equations
and together with formula (7) they allow one to eliminate
variables ξe, thus formulating the problem as a simplified
resource allocation model with only one constraint:

m

∑
i=1

κixi = B , where κi = κi1 ∀ i ∈ I (8)

and variables xi representing directly the decisions. Note
that one cannot define directly any cost κip of the path
p ∈ Pi (similar to formula (7)) when some capacity is al-
ready available (ae > 0 for some e ∈ E). In other words
in the problem, we consider, the cost of available link ca-
pacity is actually nonlinear (piecewise linear) and this re-
sults in the lack of direct formula for the path cost since it
depends on possible sharing with other paths of the prein-
stalled bandwidth (free capacity ae).
The network dimensioning model can be considered with
various objective functions, depending on the chosen goal.
One may consider two extreme approaches. The first ex-
treme is the maximization of the total throughput (the sum
of flows) ∑i∈I xi. On the other extreme, the network flows
between different nodes should be treated as fairly as pos-
sible which leads to the maximization of the smallest flow
or rather to the lexicographically expanded max-min opti-
mization (the so-called max-min ordering) allowing also to
maximize the second smallest flows provided that the small-
est remain optimal, the third smallest, etc. This approach is
widely recognized in networking as the so-called max-min
fairness [1, 4] and it is consistent with the Rawlsian theory
of justice [17].
Note that in the simplified dimensioning model (with prese-
lected paths and continuous bandwidth), due to possible al-
ternative formulation Eq. (8), the throughput maximization
approach apparently would choose one variable xio which
has the smallest marginal cost κio = mini∈I κi and make that
flow maximal within the budget limit (xio = B/κio), while
eliminating all other flows (lowering them to zero). On the
other hand, the MMF concept applied to the simplified di-
mensioning model (resulting in Eq. (8)) would lead us to
a solution with equal values for all the flows: xi = B/∑i∈I κi

for i∈ I. Such allocating the resources to optimize the worst
performances may cause a large worsening of the overall
(mean) performances as the MMF throughput (mB/∑i∈I κi)
might be considerably smaller than the maximal through-
put (B/mini∈I κi). In more realistic dimensioning mod-
els assuming nonlinearities in link dimensioning function
(like the existence of a free capacity ae of preinstalled
bandwidth) and nonbifurcation requirements a direct for-
mula for a path cost is not available and the corresponding

solutions are not so clear. Nevertheless, the main weak-
nesses of the above solutions remain valid. The throughput
maximization can always result in extremely unfair solu-
tions allowing even for starvation of certain flows while
the MMF solution may cause a large worsening of the
throughput of the network. In an example built on the back-
bone network of a Polish Internet service provider (ISP),
it turned out that the throughput in a perfectly fair solution
could be less than 50% of the maximal throughput [14].

Network management may be interested in seeking a com-
promise between the two extreme approaches discussed
above. One of possible solutions depends on maximization
of the sum of the flows evaluated with some (concave) util-
ity function ∑i∈I Ui(xi). In particular, for Ui(xi) = log(xi)
one gets the proportional fairness approach [5]. However,
every such approach requires to build (or to guess) a utility
function prior to the analysis and later it gives only one
possible compromise solution. It is very difficult to iden-
tify and formalize the preferences at the beginning of the
decision process. Moreover, apart from the trivial case of
throughput maximization all the utility functions that really
take into account any fairness preferences are nonlinear.
Nonlinear objective functions applied to the MILP models
we consider results in computationally hard optimization
problems. In the following, we shall describe an approach
that allows to search for such compromise solutions with
multiple linear criteria rather than the use nonlinear objec-
tive functions.

3. Fairness and equitable efficiency

The network dimensioning problem, we consider, may be
viewed as a special case of general resource allocation prob-
lem where a set I of m services is considered and for each
service i ∈ I, its measure of realization xi is a function
xi = fi(ξ ) of the allocation pattern ξ ∈ A. This function,
representing the outcome (effect) of the allocation pattern
for service i we call the individual objective function. In
the network dimensioning problem the measure expresses
the service flow and a larger value of the outcome means
a better effect. This leads us to a vector maximization
problem:

max {(x1,x2, . . . ,xm) : x ∈ Q} , (9)

where Q = {(x1, . . . ,xm) : xi = fi(ξ ) for i ∈ I, ξ ∈ A} de-
notes the attainable set for outcome vectors x. For the
network dimensioning problems, we consider, the set Q is
an MILP feasible set defined by basic constraints (1)–(6).

Multiple criteria model (9) only states that for any out-
come xi (i ∈ I) larger value is preferred. In order to make
it operational, one needs to assume some solution concept
specifying what it means to maximize multiple outcomes.
The commonly used concept of the Pareto-optimal solu-
tions, as feasible solutions for which one cannot improve
any outcome without worsening another, depends on the
rational dominance �r which may be expressed in terms of
the vector inequality: x

′ �r x
′′ iff x′i ≥ x′′i for all i ∈ I.
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The concept of fairness has been studied in various areas
beginning from political economics problems of fair al-
location of consumption bundles to abstract mathematical
formulation [18]. In order to ensure fairness in a system, all
system entities have to be equally well provided with the
system’s services. This leads to concepts of fairness ex-
pressed by the equitable rational preferences [6, 12]. The
fairness requires impartiality of evaluation, thus focusing
on the distribution of outcome values while ignoring their
ordering, i.e., in the multiple criteria problem (9) one is
interested in a set of outcome values without taking into
account which outcome is taking a specific value. Hence,
we assume that the preference model is impartial (anony-
mous, symmetric) thus the preference relation must fulfill
the following axiom

(xτ(1),xτ(2), . . . ,xτ(m)) ∼= (x1,x2, . . . ,xm) (10)

for any permutation τ of I. Fairness requires also equitabil-
ity of outcomes which is formalized in the requirement that
the preference model must satisfy the (Pigou–Dalton) prin-
ciple of transfers, i.e., a transfer of any small amount from
an outcome to any other relatively worse–off outcome re-
sults in a more preferred outcome vector. As a property of
the preference relation, the principle of transfers takes the
form of the following axiom: for any xi′ > xi′′

x− εei′ + εei′′ ≻ x for 0 < ε < xi′ − xi′′ , (11)

where ei denotes the ith unit vector. The rational prefer-
ence relations satisfying additionally axioms (10) and (11)
are called hereafter fair (equitable) rational preference re-

lations. We say that outcome vector x
′ fairly dominates x

′′

(x′ ≻e x
′′), iff x

′ ≻ x
′′ for all fair rational preference rela-

tions �. An allocation pattern ξ ∈ A is called fairly (eq-

uitably) efficient if x = f(ξ ) is fairly nondominated. Note
that each fairly efficient solution is also Pareto-efficient, but
not vice verse.
The relation of fair (equitable) dominance can be ex-
pressed in terms of a vector inequality on the cumulative
ordered outcomes [6]. This can be formalized as follows.
First, introduce the ordering map Θ : Rm → Rm such that
Θ(x) = (θ1(x),θ2(x), . . . ,θm(x)), where θ1(x) ≤ θ2(x) ≤
·· · ≤ θm(x) and there exists a permutation τ of set I such
that θi(x)=xτ(i) for i = 1, . . . ,m. Next, apply to ordered out-
comes Θ(x), a linear cumulative map thus resulting in the
cumulative ordering map Θ̄(x)= (θ̄1(x), θ̄2(x), . . . , θ̄m(x))
defined as

θ̄i(x) =
i

∑
j=1

θ j(x) for i = 1, . . . ,m . (12)

Quantities θ̄i(x) (i = 1, . . . ,m) express, respectively: the
smallest outcome, the total of the two smallest outcomes,
the total of the three smallest outcomes, etc. The theory
of majorization [10] includes the results which allow us
to derive the following theorem [6].

Theorem 1: Outcome vector x
′ fairly dominates x

′′, if and
only if θ̄i(x

′) ≥ θ̄i(x
′′) for all i ∈ I where at least one strict

inequality holds.

Theorem 1 permits one to express fair solutions of prob-
lem (9) as Pareto-efficient solutions to the multiple criteria
problem with cumulated ordered objectives

max {(η1, . . . ,ηm) : ηk = θ̄k(x) ∀ k ∈ I, x ∈ Q} . (13)

Alternatively one may consider problem (13) with nor-
malized objective functions µk(x) = θ̄k(x)/k thus repre-
senting for each k the mean of the k smallest outcomes,
called the worst conditional mean [13]. Note that the last
(mth) objective in (13) represents the sum of outcomes thus
corresponding to throughput maximization. Standard max-
imin optimization corresponds to maximization of the first
objective in (13). The complete MMF solution concept
represents the lexicographic approach to multiple criteria
in (13):

lexmax {(η1, . . . ,ηm) : ηk = θ̄k(x) ∀ k ∈ I, x ∈ Q} .

Hence, the MMF is only a specific (extreme) solution
concept while the entire multiple criteria problem (13)
may serve as a source of various fairly efficient allocation
schemes. Although the definitions of quantities θ̄k(x) are
very complicated, they can be modeled with simple aux-
iliary constraints. Note that for any given vector x, the
quantity θ̄k(x) is defined by the following LP problem:

θ̄k(x) = min ∑
i∈I

xiuki

s.t. ∑
i∈I

uki = k, 0 ≤ uki ≤ 1 ∀ i ∈ I.
(14)

Exactly, the above problem is an LP for a given outcome
vector x while it begins nonlinear for a variable x. This
difficulty can be overcome by taking advantages of the LP
dual to Eq. (14):

θ̄k(x) = max kt −∑
i∈I

di

s.t. t − xi ≤ di, di ≥ 0 ∀ i ∈ I ,
(15)

where t is an unrestricted variable while nonnegative vari-
ables di represent, for several outcome values xi, their
downside deviations from the value of t [15].
Formula (15) allows us to formulate the multiple criteria
problem (13) as follows:

max (η1, . . . ,ηm) s.t. x ∈ Q

ηk = ktk −∑
i∈I

dik ∀ k ∈ I

tk −dik ≤ xi, dik ≥ 0 ∀ i,k ∈ I .

(16)

The problem (16) adds only linear constraints to the original
attainable set Q. Hence, for the basic network dimension-
ing problems with the set Q defined by constraints (1)–(6),
the resulting formulation (16) remains in the class of (mul-
tiple criteria) MILP. For the simplified LP model (3)–(6)
with flows bifurcation allowed and continuous bandwidth
the multiple criteria formulation (16) remains in the class
of (multiple criteria) LP.
The expanded model (16) introduces m2 additional vari-
ables and constraints. Although the constraints are simple
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linear inequalities they may cause a serious computational
burden for real-life network dimensioning problems. Note
that the number of services (traffic demands) corresponds
to the number of ordered pairs of network nodes which
is already square of the number of nodes |V |. Thus, fi-
nally the expanded multiple criteria model introduces |V |4

variables and constraints which means polynomial but fast
growth and can be not acceptable for larger networks. For
instance, rather small backbone network of Polish ISP [14],
we analyze in Section 5, consists of 12 nodes which leads to
132 elastic flows (m = 132) resulting in 17 424 constraints
and the same number of deviational variables dik. In order
to reduce the problem size we will restrict the number of
criteria in the problem (13).
Consider a sequence of indices K = {k1,k2, . . . ,kq}, where
1 = k1 < k2 < .. . < kq−1 < kq = m, and the corresponding
restricted form of the multiple criteria model (13):

max
{

(ηk1
, . . . ,ηkq

) : ηk = θ̄k(x) ∀ k ∈ K, x ∈ Q
}

(17)

with only q < m criteria. According to Theorem 1, the
full multiple criteria model (13) allows us to generate any
fairly efficient solution of problem (9). When limiting the
number of criteria we restrict these capabilities but still one
may generate reasonable compromise solutions as stated in
the following theorem.

Theorem 2: If x
o is an efficient solution of the restricted

problem (17), then it is an efficient (Pareto-optimal) so-
lution of the multiple criteria problem (9) and it can be
fairly dominated only by another efficient solution x

′ of (17)
with exactly the same values of criteria: θ̄k(x

′) = θ̄k(x
o)

for all k ∈ K.

Proof: Suppose, there exists x
′ ∈ Q which dom-

inates x
o, i.e., x′i ≥ xo

i for all i ∈ I with at least one in-
equality strict. Hence, θ̄k(x

′) ≥ θ̄k(x
o) for all k ∈ K and

θ̄kq
(x′) > θ̄kq

(xo) which contradicts efficiency of x
o in the

restricted problem (17).
Suppose now that x

′ ∈ Q fairly dominates x
o. Due to The-

orem 1, this means that θ̄i(x
′) ≥ θ̄i(x

o) for all i ∈ I with
at least one inequality strict. Hence, θ̄k(x

′) ≥ θ̄k(x
o) for

all k ∈ K and any strict inequality would contradict ef-
ficiency of x

o within the restricted problem (17). Thus,
θ̄k(x

′) = θ̄k(x
o) for all k ∈ K which completes the proof.

�

According to Theorem 2 while solving the restricted mul-
tiple criteria model (17) we can essentially still expect
reasonably fair efficient solution and only unfairness may
be related to the distribution of flows within classes of
skipped criteria. In other words, we have guaranteed some
rough fairness while it can be possibly improved by redis-
tribution of flows within the intervals (θk j

(x),θk j+1
(x)] for

j = 1,2, . . . ,q− 1. Since the fairness preferences are usu-
ally very sensitive for the smallest flows, one may intro-
duce a grid of criteria 1 = k1 < k2 < .. . < kq−1 < kq = m

which is dense for smaller indices while sparser for
lager indices and expect solution offering some reasonable
compromise between fairness and throughput maximiza-

tion. In our computational analysis on the network with
132 elastic flows (Section 5) we have preselected 24 cri-
teria including 12 the smallest flows. Note that any re-
stricted model (17) contains criteria θ̄1(x) = mini∈I xi and
θ̄m(x) = ∑i∈I xi among others. Hence, it provides more de-
tailed fairness modeling than any bicriteria combination of
max-min and throughput maximization.

4. Reference point approach

Taking adavantages of model (17) and Theorem 2 we may
generate various fairly efficient network dimensioning pat-
terns as efficient solutions of the multiple criteria problem:

max (ηk)k∈K s.t. x ∈ Q

ηk = ktk −∑
i∈I

dik ∀ k ∈ K

tk −dik ≤ xi, dik ≥ 0 ∀ i ∈ I, k ∈ K ,

(18)

where K ⊆ I and the attainable set Q is defined by con-
straints (1)–(6). Actually, in the case of the complete mul-
tiple criteria model (K = I), according to Theorem 1, all
fairly efficient allocations can be found as efficient solutions
to (18) while in the case of restricted set of criteria K ⊂ I

some minor unfairness related to the distribution of flows
within classes of skipped criteria may occur (Theorem 2).
The simplest way to generate various fairly efficient dimen-
sioning patterns may depend on the use some combinations
of criteria (ηk)k∈K . In particular, for the weighted sum with
weights wk > 0

∑
k∈K

wkηk = ∑
k∈K

wkθ̄k(x) = ∑
i∈I

( ∑
k∈K:k≥i

wk)θi(x)

one apparently gets the so-called ordered weighted averag-
ing (OWA) [23] with weights vi = ∑k∈K:k≥i wk (i ∈ I). If
the weights vi are strictly decreasing, i.e., in the case of
full model (K = I), each optimal solution corresponding to
the OWA maximization is a fair (fairly efficient) solution
of (9) while the fairness among flows within classes of
equal weights vi (of skipped criteria) may be sometimes
improved. Moreover, in the case of LP models, as the sim-
plified network dimensioning (3)–(6), every fairly efficient
allocation scheme can be identified as an OWA optimal
solution with appropriate strictly monotonic weights [6].
Several decreasing sequences of weights provide us with
various aggregations. Indeed, our earlier experience with
application of the OWA criterion to the simplified problem
of network dimensioning with elastic traffic [14] showed
that we were able to generate easily allocations representing
the classical fairness models. On the other hand, in order to
find a larger variety of new compromise solutions we
needed to incorporate some scaling techniques originat-
ing from the reference point methodology. Better controlla-
bility and the complete parameterization of nondominated
solutions even for non-convex, discrete problems can be
achieved with the direct use of the reference point method-
ology.
The reference point method was introduced by
Wierzbicki [21] and later extended leading to efficient
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implementations of the so-called aspiration/reservation
based decision support (ARBDS) approach with many suc-
cessful applications [8, 22]. The approach is an interactive
technique allowing the DM to specify the requirements
in terms of aspiration and reservation levels, i.e., by
introducing acceptable and required values for several
criteria. Depending on the specified aspiration and reser-
vation levels, a special scalarizing achievement function is
built which generates an efficient solution to the multiple
criteria problem when maximized. The generated solution
is accepted by the DM or some modifications of the
aspiration and reservation levels are introduced to continue
the search for a better solution. The ARBDS approach
provides a complete parameterization of the efficient set
to multi-criteria optimization. Hence, when applying
the ARBDS methodology to the ordered cumulated criteria
in (13), one may generate any (fairly) equitably efficient
solution to the original problem (9).
In order to guarantee that for any individual outcome ηk

more is preferred to less (maximization), the scalarizing
achievement function must be strictly increasing with re-
spect to each outcome. A solution with all individual out-
comes ηk satisfying the corresponding reservation levels is
preferred to any solution with at least one individual out-
come worse (smaller) than its reservation level. Next, pro-
vided that all the reservation levels are satisfied, a solution
with all individual outcomes ηk equal to the corresponding
aspiration levels is preferred to any solution with at least
one individual outcome worse (smaller) than its aspiration
level. That means, the scalarizing achievement function
maximization must enforce reaching the reservation levels
prior to further improving of criteria. In other words, the
reservation levels represent some soft lower bounds on the
maximized criteria. When all these lower bounds are sat-
isfied, then the optimization process attempts to reach the
aspiration levels.
The basic scalarizing achievement function takes the fol-
lowing form [21]:

σ(η) = min
k∈K

{σk(ηk)}+ ε ∑
k∈K

σk(ηk) , (19)

where ε is an arbitrary small positive number and σk, for
k ∈ K, are the partial achievement functions measuring ac-
tual achievement of the individual outcome ηk with re-
spect to the corresponding aspiration and reservation levels
(ηa

k and ηr
k , respectively). Thus the scalarizing achievement

function is, essentially, defined by the worst partial (indi-
vidual) achievement but additionally regularized with the
sum of all partial achievements. The regularization term
is introduced only to guarantee the solution efficiency in
the case when the maximization of the main term (the
worst partial achievement) results in a non-unique optimal
solution.
The partial achievement function σk can be understood as
a measure of the DM’s satisfaction with the current value
(outcome) of the kth criterion. It is a strictly increasing
function of outcome ηk with value σk = 1 if ηk = ηa

k , and
σk = 0 for ηk = ηr

k . Thus the partial achievement functions

map the outcomes values onto a normalized scale of the
DM’s satisfaction. Various functions can be built meeting
those requirements [22]. We use the piecewise linear partial
achievement function introduced in [12] as

σk(ηk) =











γλk(ηk −ηr
k) for ηk ≤ ηr

k ,

λk(ηk −ηr
k) for ηr

k < ηk < ηa
k ,

β λk(ηk −ηa
k )+ 1 for ηk ≥ ηa

k ,

where λk =1/(ηa
k−ηr

k ) while β and γ are arbitrarily defined
parameters satisfying 0 < β <1< γ . This partial achieve-
ment function is strictly increasing and concave which guar-
antees its LP computability with respect to outcomes ηk.

In our network dimensioning model (18) outcomes ηk rep-
resent cumulative ordered flows xi, i.e., ηk = ∑k

i=1 θi(x).
Therefore, the reference vectors (aspiration and reservation)
represent, in fact, some reference distributions of outcomes
(flows). Moreover, due to the cumulation of outcomes,
while considering equal flows φ as the reference (aspira-
tion or reservation) distribution, one needs to set the cor-
responding levels as ηk = kφ . Certainly, one may specify
any desired reference distribution in terms of the ordered
values of the flows (quantiles in the probability language)
φ1 ≤ φ2 ≤ . . . ≤ φm and cumulating them automatically get
the reference values for the outcomes ηk representing the
cumulated ordered flows. However, such rich modeling
technique may be too complicated to control effectively the
search for a compromise solution. Therefore, we rather
consider to begin the search with a simplified approaches
based on the reference flow distribution given as a linear
sequence φk = φ1(1+(k−1)r) with the (relative) slope co-
efficient r thus leading to the cumulated reference levels
increasing quadratically θ̄k(φ) = φ1k(2 +(k− 1)r)/2. Al-
though, special meaning of the last (throughput) criterion
should be rather operated independently from the others.
Such an approach to control the search for a compromise
fair and efficient network dimensioning has been confirmed
by the computational experiments.

5. Computational analysis

The reference distribution approach has been tested on
a sample network dimensioning problem with elastic traffic.
The outcome of the network dimensioning procedure (using
elastic traffic) are the capacities of links in a given network,
because the flows will adapt to the bandwidth available on
the links in the designed network. The data to a network
dimensioning problem with elastic traffic consists of a net-
work topology, of pairs of nodes that specify sources and
destinations of flows, of sets of network paths that could be
used for each flow, and of optional constraints on the ca-
pacities of links or on flow sizes. Moreover, there are also
given pricesof a unit of link capacity (possibly different for
each link, ce in (6)), and the budget amount for purchas-
ing link capacity (B in (6)). The given network topology
may contain information about preinstalled link capacities
(ae in (3)): the budget is then spent on additional link ca-
pacities that extend the present capacity of a link.
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Fig. 1. Sample network topology patterned after the backbone
network of Polish ISP.

For our computational analysis we have used the network
(Fig. 1) patterned after the network topology of the back-
bone network of Polish ISP [14]. The network consists of
12 nodes and 18 links. Flows between any pair of different
nodes have been considered (i.e., 144− 12 = 132 flows).
In real networks flows are usually realized on small number
of paths. Therefore, we have used lists with only 2 alterna-
tive paths for one flow. We have used a single-path formu-
lation (nonbifurcation formulation (1) and (2)), meaning
that the entire flow had to be switched to the alternative
path. Flows could not be split, which is consistent with
several traffic engineering technologies used today.

We set all unit costs ce = 1, and the total budget amount
B = 1000. For certain links, free link capacity was set to
values from 5 to 20, and the upper limit on the capacity of
certain links was set to 20. Due to the presence of free link
capacity and upper limits on link capacity, the MILP solver
found solutions where certain flows had to use alternative
paths rather than shortest paths. These flows were more
expensive than other flows that were allowed to use their
shortest paths.

A simplified LP model for network dimensioning problem
without additional constraints on link capacity, with a lim-
itation that flows could only use the shortest path has been
studied in [14]. For such a problem it is simple to cal-
culate the solution obtained by the MMF and PF meth-
ods. Indeed, in [14] we have calculated these solutions
and have shown the appropriate OWA aggregations allows
us to obtain similar results. Additionally, using the OWA
criterion, it was possible to obtain alternative solutions.
Here, we focus on extensions of the problem studied in [14]
that make the studied models more practical and realistic.
Our extension allowed flows to choose one of two paths
for transport (1) and (2), added constraints that limited the
capacity of certain links from above and added free link
capacity for certain links (3). The intention behind the
modification has been to model a situation when the net-
work operator wishes to extend the capacity of an existing
network. In this network, certain links cannot be upgraded
beyond a certain values to the use of legacy technologies,
due to prohibitive costs or administrative reasons (for in-
stance, it may be cheap to use already installed fiber that has

not been in use before, but it may be prohibitively expensive
to install additional fiber). The existence of free link capac-
ity and of link capacity constraints may be the reason for
choosing alternative paths for certain flows. The extended
model we consider is too complex for a simple application
of MMF and PF methods. To apply either of these methods
to the discussed problem extensions, it would be necessary
to solve a nonlinear optimization problem or a sequence
of MILP problems with changing constraints.
In our analysis while using the RPM methodology we
do not have used all 132 criteria ηk as in [14]. Instead,
we have selected only 24 criteria by choosing the indices
1,2,3, . . . , 10,11,12,18,24,30,36,48,60,72, . . . , 120,132.
As a result, the computation time has dropped from around
one hour for each problem to the order of seconds. At
the same time, the ability to control the outcomes using
the reservation levels has not deteriorated; we were able
to obtain similar results with the reduced set of criteria
as with the full set. For our approach the final input to
the model consisted of the reservation and aspiration
levels for the sums of ordered criteria. For simplicity, all
aspiration levels were set close to the optimum values
of the criteria, and only reservation levels were used to
control the outcome flows. One of the most significant
parameters was the reservation level for the sum of all
criteria (the network throughput). This value denoted
by ηr

m was selected (varying) separately from the other
reservation levels. All the other reservation levels were
formed following the linearly increasing sequence of the
ordered values with slope (step) r and where the reserva-
tion level for minimal flow was taken φ1 = 1. Hence, for
the final criteria ηk = θ̄k(x) representing the sums of or-
dered outcomes in model (16), the sequence of reservation
levels increased quadratically (except from the last one).
Thus, the three parameters have been used to define the
reference distribution but we have managed to identify
various fair and efficient allocation patterns by varying
only two parameters: the reservation level ηr

m for the
total throughput and the slope r for the linearly increasing
sequence.

In the experiment, we have searched for various compro-
mise solutions that traded off fairness against efficiency
while controlling the process by the throughput reserva-
tion level ηr

m and the slope r. The throughput reservation
has been varied between 500 and 1100. The linear in-
crease of the other reservation levels was controlled by the
slope parameter r. In the experiment this parameter have
set to values of: 0.02, 0.03 and 0.04. The results of the ex-
periment are shown in Figs. 2–4 with the corresponding
absolute Lorenz curves [7]. The figures present plots of
cumulated ordered flows θ̄k(x) versus number k (rank of
a flow in ordering according to flow throughput) which
means that the normalizing factor 1/m = 1/132 has been
ignored (for both the axes). The total network throughput is
represented in the figures by the altitude of the right end of
the curve (θ̄132(x)). A perfectly equal distributions of flows
would be graphically represented by an ascending line of
constant slope.
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Fig. 2. Flows distributions for varying throughput reservation
with r = 0.02.

Fig. 3. Flows distributions for varying throughput reservation
with r = 0.03.

As throughput reservation ηr
m increases, the cheaper flows

receive more throughput at the expense of more expensive
(longer) flows. For values of ηr

m above 1100, some flows
were starved, and therefore these outcomes were not con-
sidered further. Under moderate throughput requirements,
as r increases, the medium flows gain at the expense of the
larger ones thus enforcing more equal distribution of flows
(one may observe flattening of the curves). On the other
hand, with higher throughput reservations the larger flows
are protected by this requirement and increase of r causes
that the medium flows gain at the expense of the smallest
flows (one may observe convexification of the curves). For
values of r higher than 0.04, the increase of the throughput
reservation resulted in flow starvation.
Note from Fig. 4 that the boundary between the smallest
flows for ηr

m = 500 and for ηr
m = 1100 is not in the same

position. The reason for this is the upper constraint on link
capacities. For ηr

m = 500, there are 8 flows that ought be in
the middle group of flows but they cannot, since flows in
the middle group receive so much throughput that the con-

Fig. 4. Flows distributions for varying throughput reservation
with r = 0.04.

straints on link capacity would be violated. Consequently,
these flows are downgraded to the group of smallest flows
and they receive the same amount of throughput as the
smallest flows, due to the fairness rules.
In our experiments the throughput reservation was effec-
tively used to find outcomes with the desired network
throughput. Note that, especially for large throughput reser-
vations, the optimization procedure automatically found
outcomes that divided flows into four categories according
to their path costs. This demonstrates that our method-
ology is cost-aware, and that it guarantees fairness to all
flows with the same path cost (if link capacity constraints
do not interfere). For the lowest throughput reservation of
ηr

m = 500 and r = 0.04, the outcome was close to a per-
fectly fair distribution. Thus methodology described in this
paper, can offer the user an opportunity to choose from
a large gamut of different outcomes and control the trade-
off between fairness and efficiency.
We have also tested an alternative scheme of the prefer-
ence modeling within our reference point method imple-
mentation. Namely, we analyzed the initial scheme (see
Section 4) based on the reference flow distribution given as
a linear sequence φk = φ1(1 +(k−1)r) with the (relative)
slope coefficient r thus leading to the cumulated reference
levels increasing quadratically θ̄k(φ) = φ1k(2+(k−1)r)/2

is strictly implemented. The sequence was applied to
construct all the reservation levels including ηr

1 for the
minimum flow and ηr

m for the network throughput. Al-
though the value of ηr

m, due to the represented through-
put criterion, had to be selected (varying) directly. There-
fore, all the other reservation levels were formed accord-
ing to the linearly increasing sequence of the ordered val-
ues with slope (step) r where the reservation level for the
minimal flow φ1 had allocated a value guaranteeing that
ηr

m = φ1m(2+(m−1)r)/2. Thus, the two parameters have
been used to define the reference distribution: the reserva-
tion level ηr

m for the total throughput and the slope r for
the linearly increasing sequence but (opposite to the scheme
from Section 5) φ1 has not been fixed.
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Fig. 5. Results for varying throughput reservation with r = 0.02

defining all other reservation levels.

We have applied this preference model to the first network
dimensioning problem consisted of the single paths require-
ments, free link capacity and upper limits on capacity for
certain links. The results of the experiment with r = 0.02

and varying ηr
m are shown in Fig. 5 with the corresponding

absolute Lorenz curves. As ηr
m increases, the cheaper flows

receive more throughput at the expense of more expensive
(longer) flows. It turned out that except from relatively mi-
nor throughput requirements (values 500 to 700), increasing
values of ηr

m introduced significant inequity among flows
and numerous flows were starved. Similar solutions ap-
peared for various values of r. Therefore, we have abandon
such a two parameter control scheme and we have decided
that the throughput criterion should be rather operated in-
dependently from the others. Such an approach to control
the search for a compromise fair and efficient network di-
mensioning has been confirmed by the computational ex-
periments as described in Section 5.
Overall, the experiments on the sample network topology
demonstrated the versatility of the described methodology
for equitable optimization. The use of reference levels, ac-
tually controlled by a small number of simple parameters,
allowed us to search for compromise solutions best fitted to
various possible preferences of a network designer. Using
appropriate reference point based procedure, one should be
able to find a satisfactory fair and efficient network dimen-
sioning pattern in a few interactive steps.

6. Concluding remarks

Network dimensioning problems today must take into ac-
count the existence of elastic traffic. The usual approach
is to maximize the amount of elastic traffic that uses the
best-effort network service, since this increases the mul-
tiplexing gain. This approach is equivalent to maximizing
network throughput for elastic traffic in a network dimen-
sioning problem. However, this may lead to a starvation and
unfair treatment of diverse network flows and, as a conse-
quence, to customer dissatisfaction. While it is true that

elastic traffic has no strict QoS requirements, it is also true
that the utility of a customer that uses best-effort network
services depends on the amount of available throughput.

These considerations lead to the problem of fair and effi-
cient network dimensioning for elastic traffic. In our pre-
vious research and in this paper, we have shown that this
problem leads to a tradeoff between fairness (where the
goal is to decrease differences in throughput for different
flows) and efficiency (increasing total network throughput).
We have also shown that the problem of fair and efficient
network dimensioning is a multiple criteria problem that
has many possible solutions (Pareto-optimal solutions that
are also optimal for the initial problem without fairness
constraints). Previous work on the problem always found
a single solution. This did not allow to control the basic
tradeoff between fairness and efficiency.
In this paper, we have used the reference point methodol-
ogy, a standard multiple criteria optimization method that
allows for good controllability and the complete parame-
terization of nondominated solutions. While looking for
fairly efficient network dimensioning, the reference point
methodology can be applied to the cumulated ordered out-
comes. Our initial experiments with such an approach to
the problem of network dimensioning with elastic traffic
have confirmed the theoretical advantages of the method.
We were easily able to generate various (compromise) fair
solutions, although the search for fairly efficient compro-
mise solutions was controlled by only two parameters. One
of these parameters was a reservation level for the net-
work throughput. The second parameter allowed the net-
work designer to control the difference in throughputs of
cheaper and more expensive flows. Still, flows with the
same cost were always treated fairly. Moreover, the ob-
tained solutions divided flows into categories determined
by flow cost. These characteristics demonstrate that the
model is cost-aware and fulfills the axioms of equitable
optimization. Also, the achieved total network throughputs
in our solutions were higher than the throughput obtained
by the max-min fairness method.
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