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Abstract— In various types telecommunication networks,

namely mobile ad hoc networks, WDM networks and MPLS

networks, there is the necessity of calculating disjoint paths

for given node to node connections in order to increase the

reliability of the services supported by these networks. This

leads to the problem of calculating a pair of disjoint paths

(or a set of disjoint paths) which optimises some measure of

performance in those networks. In this paper we present an al-

gorithm, designated as OptDP, for obtaining the most reliable

pair of disjoint paths based on the loopless version of MPS,

a very efficient kkk-shortest path algorithm, and on Dijkstra al-

gorithm. Since to the best of our knowledge there is no other

proposal of an algorithm capable of solving exactly the same

problem we perform a comparison with the application to

this problem of the DPSP algorithm which calculates a set of

disjoint paths with high reliability. Also a comparison with

a simplified version (designated as NopDP) of the proposed al-

gorithm, which stops after a maximal number FFF of candidate

pairs of paths have been found, is presented. The comparison

also includes the percentage of cases in which both algorithms

were not capable of finding the optimal pair.

Keywords— reliability, OR in telecommunications, routing.

1. Introduction

In various types telecommunication networks, namely

mobile ad hoc networks, wavelength division multiplex-

ing (WDM) networks and multiprotocol label switch-

ing (MPLS) networks, there is the necessity of calculating

disjoint paths for given node to node connections in or-

der to increase the reliability (hence improving the quality

of service – QoS) of the services supported by these net-

works. This leads to the problem of calculating a pair of

disjoint paths (or a set of disjoint paths) which optimises

some measure of performance in those networks.

Performance measures are generally defined having as ba-

sis the cost of the arcs. If the metric associated with each

arc and the function to be optimised are additive measures,

the calculation of a set of disjoint paths can be made using

the well known algorithm proposed in [10]. If only a pair

of paths is required, then the efficient polynomial time al-

gorithm proposed by Suurballe and Tarjan [11] will solve

the problem. If the most reliable pair of paths is desired,

the algorithm in [11] cannot be used because the reliability

of the union of the two paths is not additive in the path

reliabilities.

The problem of finding the set of paths which maximises

the two-terminal (ie., node-to-node) reliability metric has

not received much attention according to Papadimitratos

et al. [9]. These authors propose an algorithm (with poly-

nomial worst case complexity) which calculates a set of

disjoint paths (without length constraints) with high reli-

ability, that was applied in the context of mobile ad hoc

networks (MANET).

In [5] an algorithm is proposed for obtaining k disjoint

paths between two different nodes, s and t, in a network

with k different costs on every edge, such that the total

cost of the paths is minimised (where the jth edge-cost is

associated with the jth path).

The approach used in the present work has similarities with

the enhancement of the two-step-approach [4] and with the

iterative two-step-approach (ITSA) algorithm [8] for op-

timal diverse routing with shared protection in connec-

tion-oriented networks, where the arc costs of the protec-

tion path depend on the selected working path. Note that,

in our case, the cost of the protection path does not de-

pend on the selected working path, and the function to be

optimised is not a linear combination of the costs of the

working and protection paths, unlike the problem in [8].

In this paper we present an algorithm, designated as OptDP,

for obtaining the most reliable pair of disjoint paths based

on the loopless version of the k-shortest paths algorithm

MPS [7] and on Dijkstra algorithm. The basic structure is

analogous to the one of the algorithm RLDPC-BF proposed

by the authors in [2] for calculating the most reliable pair

of disjoint paths with a maximum number of arcs per path,

based on KD (k-shortest paths with at most D arcs [3]) and

Bellman-Ford algorithms.

Since to the best of our knowledge there is no other pro-

posal of an algorithm capable of solving exactly the same

problem we performed a comparison with the disjoint path

selection protocol (DPSP) algorithm [9] which calculates

a set of disjoint paths with high reliability. Note that this al-

gorithm does not guarantee the determination of the optimal

set of disjoint paths in terms of reliability. We compared the

proposed algorithm with DPSP when this is used to obtain

a pair of disjoint paths with high reliability DPSP(k = 2), in

terms of central processing unit (CPU) time, for four sets

of test networks, with low and high reliability in the edges,

a number of nodes (n) varying from 50 to 500 and number

of edges, m = 3n and m = 2n. Also a comparison with

a simplified version (designated as NopDP) of our algo-

rithm which stops after a maximal number F of candidate
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pairs of paths has been found, is presented (the used imple-

mentation considers F = 5). The comparison also includes

the percentage of cases in which both algorithms were not

capable of finding the optimal pair.

The major conclusion of the computational experiments

with the test networks was that the simplified version of

the proposed algorithm (NopDP) always performed better

than DPSP(k = 2) in terms of CPU and enabled a signifi-

cant larger relative number of optimal pairs of paths to be

obtained. As for the exact algorithm (OptDP) it is less ef-

ficient than DPSP(k = 2) for networks with high reliability

but becomes more efficient for networks with low reliabil-

ity (this improvement is particularly significant in networks

with m = 3n).

The paper is organised as follows. In Section 2 the problem

will be formalised and in Section 3 the proposed algorithm

is described. In Section 4 the DPSP algorithm is shortly

reviewed. Experimental results from the three algorithms

are shown and discussed in Section 5, followed by some

final remarks in Section 6.

2. Problem formulation

Let G = (N,L) be a directed graph where N =
{v1,v2, . . . ,vn} is the node set and L the arc (or link) set,

composed of ordered pairs of elements in N, where n rep-

resents the cardinality of set N. Let l = (i, j) be an arc

where j is the head of l and i its tail. A path from s to

t (s,t ∈ N) in this graph will be specified by the sequence

p = 〈s,(s,v1),v1, . . . ,(vw,t),t〉, where all l = (v,u) ∈ p be-

long to L. If all nodes in p are different it is called a loop-

less path. Although up till now only the term path was

used, the loopless condition is implicitly assumed. The

word “loopless” will continue to be omitted until explicit

reference is needed.

Each link l ∈ L has a probability pL(l) of being opera-

tional. Nodes are assumed not to fail. In a network where

links fail (independently) and one seeks link disjoint paths

from s to t, a cost matrix [ci j] of dimension n× n is de-

fined such that the cost of an arc is the additional cost of

introducing that arc in a path:

ci j =

{

− ln pL(l) if l = (i, j) ∈ L

+∞ if l = (i, j) 6∈ L
. (1)

The cost of a path p = 〈s,(s,v1),v1, . . . ,(vw,t),t〉 is C(p) =

∑(vi,v j)∈p cviv j
, and its reliability is:

Pr(p) = e−C(p)
, (2)

where Pr(p) represents the probability of path p being

operational. Equation 2 establishes a relation between the

cost of a path and its reliability. Using the cost matrix [ci j],
the enumeration of the k-shortest paths is equivalent to enu-

merating, by decreasing order of their reliability, the k most

reliable paths.

The most reliable pair of link disjoint paths (pw, pv) has

a reliability given by:

max
pw,pv

Pr(pw ∪ pv) = Pr(pw)+ (1−Pr(pw))Pr(pv) , (3)

where pw and pv are the working and protection paths, re-

spectively. As can be seen from Eq. (3) Pr(pw∪ pv) cannot

be written as a linear function of the costs of pw and pv.

Two disjoint paths may have minimum C(pw)+C(pv) but

they may not be the paths with maximal Pr(pw ∪ pv).

3. Description of OptDP

The sequential generation of paths pi (selected by decreas-

ing reliability order) can be made by using any k-shortest

path ranking algorithm. In this work the loopless version

of MPS algorithm was chosen [7], due to its efficiency [6].

For each i-shortest path pi (where i represents the order

of a selected path – pi is a candidate working path) there

may exist more than one link disjoint path (p j, a candi-

date protection path for pi). The path p j which maximises

Pr(pi ∪ p j) (with pi fixed) will be the one with highest

reliability among all the feasible paths; therefore a sub-

algorithm is needed for efficiently obtaining the most reli-

able path disjoint with pi. This algorithm can simply be

the Dijkstra algorithm applied to graph G with the links

in pi (temporarily) removed, the algorithm execution be-

ing stopped as soon as the destination note t is selected as

a minimum distance node.

The proposed algorithm, designated by OptDP, requires

a condition to detect that the calculated disjoint path pair

is optimal.

Suppose that for each path pw, the most reliable link dis-

joint path pv was obtained, such that at any given step of

the algorithm the only recorded pair of paths is the one

with the highest Pr(pw ∪ pv). Considering that the next

(most reliable) path, generated by the k-shortest path sub-

algorithm, to be selected in the main algorithm is pi (i > w)

such that:

Pr(pi)+(1−Pr(pi))Pr(pi) ≤ Pr(pw)+(1−Pr(pw))Pr(pv),
(4)

then (pw, pv) is the pair of paths with maximal reliabil-

ity. The verification of this statement is straightforward.

Let p j be the most reliable path link disjoint with pi, if

Pr(p j) ≤ Pr(pi) then any other pair of paths obtained from

this point onwards will always have reliability less than

Pr(pi)+(1−Pr(pi))Pr(pi) therefore lower than Pr(pw∪ pv);
if Pr(p j) > Pr(pi) then p j was previously generated and the

reliability of the corresponding pair was not greater than the

one of the current best pair, thence this case is irrelevant.

Note that this optimal stopping condition (4) is the same

as in the algorithm [2] proposed by the authors for calcu-

lating the most reliable pair of disjoint paths with length

constraints.

Having established the optimal stopping rule of the algo-

rithm (OptDP), its flowchart is presented in Fig. 1. The ex-
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Fig. 1. Flowchart of OptDP.

perimental results will show that, although the optimal dis-

joint path is frequently among the first ones which are ob-

tained by OptDP, sometimes it is difficult to verify the op-

timal stopping condition. So a variant of the algorithm was

implemented, NopDP, which counts the number of gener-

ated path pairs and stops when the optimal stopping condi-

tion is satisfied or when the number of generated path pair

reaches a pre-established value F , returning the current best

pair of disjoint paths.

The main structure of the algorithm has two phases shown

in Fig. 1: the obtainment of the first pair of link disjoint

paths and the search and/or detection of the optimal pair

of paths. In the first phase the algorithm may terminate

without finding a solution: no single link disjoint pair of

paths was identified (in a connected network this situation

can only occur if the network is 1-line-connected).

Having completed phase 1 (we assume that at least a dis-

joint path pair is always found) and having recorded a pair

of link disjoint paths, the second phase of the algorithm

consists of improving this solution (whenever possible) un-

til either the recorded pair of paths is detected to be optimal,

or no more (working) paths can be found. This last condi-

tion implies that the best recorded pair is in fact the optimal

one.

If the graph Gu(N, l) which represents the structure of

a telecommunications network is undirected, the proposed

algorithm can still be used. Each (undirected) edge is re-

placed by two directed arcs in opposite directions with cost

equal to the cost of the edge and the corresponding di-

rected version, G, of Gu is used by OptDP. All the edges

of a working path pw have to be removed (temporarily)

from the network graph before running the Dijkstra algo-

rithm; in this case this is done by removing (temporarily)

from G all arcs in pw and also the corresponding arcs in

opposite direction.

4. A brief overview of DPSP algorithm

The DPSP algorithm, by Papadimitratos et al. [9], itera-

tively builds a set of disjoint paths of high reliability, for

undirected networks. The implementation of DPSP uses

the directed graph corresponding to the undirected network

under analysis.

Let us assume that at given step of the algorithm, k dis-

joint paths have already been obtained and are stored

in set Dk (Dk = ∪k
i=1

{pi}). The arcs which belong to the

paths in set Dk are (temporarily) removed form the network

graph, making their cost equal to ∞. The reverse arcs, that

is the arcs in opposite direction corresponding to the arcs

in Dk (recall that each edge in Gu is represented in G by

two arcs in opposite directions) have its cost (temporar-

ily) set to its symmetrical value. Using a shortest path

algorithm which works with negative arc costs (in a graph

without negative cycles) the more reliable path, pc, is found

in this modified graph and it is the candidate path which
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Table 1

Test networks

n 50 100 150 200 250 300 350 400 450 500

m = 2n d(G) 5-7 7-8 8-9 8-10 8-10 9-10 9-11 9-11 10-11 10-12

d̄(u,v) 4.0 4.6 5.0 5.2 5.4 5.5 5.6 5.7 5.9 5.9

m = 3n d(G) 4-5 5-6 6-7 6-7 6-7 6-7 7-8 7-8 7-8 7-8

d̄(u,v) 3.4 3.9 4.1 4.3 4.4 4.5 4.6 4.7 4.7 4.8

Explanations: n – the number of nodes, m – the number of arcs, d(G) – the network diameter,

d̄(u,v) – the average node distance.

enables Dk+1 to be obtained from Dk. If no interlacing

exists, that is if the candidate path has no arcs with neg-

ative costs, which means pc is disjoint with all the paths

in Dk, then pc is added to the set: Dk+1 = Dk ∪{pc}. If an

interlacing exists, the algorithm will evaluate whether the

removal of this interlacing and the corresponding change

in the set of disjoint paths will lead to an increase in its

reliability. Let A be the sub-set of paths in Dk which in-

terlace with the candidate path pc. Let I be the interlacing

between A and pc (the sub-set of arcs in paths in A the re-

verse arcs of which belong to pc). Let B be the set of paths

which would result from the removal of that interlacing (for

details see [9]), then (by omission the algorithm does not

remove the interlacing I):

1) Pop = Pr(pc)×∏l∈I pL(l),

2) m1 = 1− (1−Pop)∏pi∈A(1−Pr(pi)),

3) m2 = 1−∏p j∈B(1−Pr(p j)),

4) if m1 < m2 then remove the interlacing I.

According to [9] m1 captures the reliability of the original

path set and the candidate shortest path (pc) and m2 the

the reliability of the original path set after removing the

interlacing. If m1 is greater than (or equal to) m2 the in-

terlacing is not removed. In this case, one or more arcs

in I are removed from the graph (their costs is set to ∞)

and their original costs are stored in a list. This will ensure

that the next candidate path will be different from pc. If

m1 < m2 then the interlacing I is removed and the costs of

the arcs in the interlacing recover their original values; the

corresponding reverse arcs also recover their original costs.

This procedure is repeated until no more candidate paths

exist.

In the implemented version of DPSP the modified ver-

sion of Dijkstra, as described in [1], was used for obtain-

ing the shortest path between a pair of nodes in a net-

work with negative costs. When the interlacing is not re-

moved, all the arcs in the interlacing are removed from the

graph.

The DPSP algorithm can be used for obtaining a pair

of disjoint paths of high reliability, stopping when D2 is

obtained. This version of DPSP will be designated by

DPSP(k = 2). The DPSP(k = 2) algorithm starts by obtain-

ing the most reliable path which is stored in set D1.

If a candidate path pc is obtained such that no inter-

lacing exists between D1 and pc then D2 = D1 ∪ {pc};

if an interlacing I is obtained between D1 and pc, the

metrics m1 and m2 are calculated and if the interlacing is

removed D2 is obtained, otherwise the algorithm proceeds

by changing arc costs so that a new candidate path pc will

possibly be obtained.

5. Experimental results

Results are presented for undirected networks, with low

connectivity, as indicated in Table 1. These types of

features are common in wavelength division multiplexing

(WDM) optical networks. For each number of nodes n, ten

different networks were randomly generated1 with the same

number of arcs and nodes; the arc reliabilities were ran-

domly generated in [1− 5 · 10
−4,1− 10

−6] and [0.8,0.99].
The first range of reliability values is adequate for WDM

networks and the second for mobile ad hoc networks. Two

different network densities were used: m = 2n and m = 3n.

In order to capture as faithfully as possible the algorithm

dependences on the range of link reliabilities, the networks

were obtained as follows. Firstly two sets of networks, for

m = 3n and m = 2n, and pL(l) ∈ [1− 5 · 10
−4,1− 10

−6],
were obtained (as already mentioned, for each value of n,

10 networks were randomly generated). Secondly, using

the same topological structure of the previous 2×100 net-

works, two new sets were obtained where the link costs

were randomly generated in the range [0.8,0.99].

Due to the low network connectivity a great variation in

CPU time used by OptDP was observed depending on the

s-t pair. Therefore for each network a pair of disjoint paths

was seeked for all (n× (n−1)) node pairs2 and the average

CPU time obtained per pair of disjoint paths for each node

pair in the set of all s-t pairs with t fixed (for all nodes t).

This allows MPS (and therefore OptDP) to re-use the tree

of shortest paths from all nodes to t and the ordered set of

the network arcs.

1The used program for network generation was kindly borrowed from

José Luis Santos.
2Due to the nature of MPS the cost of obtaining the optimal disjoint

pair from s to t and from t to s is not identical.
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Finding a pair of disjoint paths was easy, but detecting

the optimality condition was sometimes difficult (in the

sense that a large number of paths had to generated) but it

was always successfully achieved by OptDP. So although

OptDP has to generate a significant number of pairs of

disjoint paths, in order to verify the optimality stopping

condition, it was verified, in the test networks, that the op-

timal path was one of the first four paths (for networks

with m = 3n) in 99% of the cases on average (97% was

the lowest value obtained for all test networks). In Fig. 2 it

Fig. 2. Frequency of cases, where the optimal pair is either the

first or second pair for m = 3n. (a) pL(l)∈ [1−5 ·10
−4

,1−10
−6];

(b) pL(l) ∈ [0.8,0.99].

can be seen that the first and second pairs are the optimal

paths most of the times (results for networks with m = 2n

are similar and therefore are not presented). On average

the third and fourth pairs are the optimal ones for at most

5% of the cases. For all tested cases the first pair, calcu-

lated by OptDP, is optimal with a frequency between 85%

(for m = 3n and high reliability networks) and 96% (for

m = 2n and high reliability networks) of the cases and the

second pair is the optimal one with a frequency between

3% and 12% (both upper and lower bounds were obtained

in networks with high reliability, with m = 2n).

Based on these results, which strongly suggest that the

first four pairs represent a great percentage of the total

number of optimal pairs, it was decided to implement

a “shorter” version of the algorithm, NopDP. This algo-

rithm is similar to OptDP but will sometimes return path

pairs the optimality of which was not confirmed. Results

will be presented for NopDP, when F = 5, which means the

algorithm either stops because the 5th pair was obtained,

or because it was not necessary to generate more than

4 path pairs before detecting that the optimality condition

was true.

The CPU times per node pair are presented in Figs. 3

and 4 – the PC used was a Pentium IV at 2.8 GHz and

500 Mb of RAM. The average values (per network) ob-

tained by OptDP presented some variation and therefore an

error bar was added, centred in the average µ of the col-

lected samples (one sample per network) which goes from

Fig. 3. CPU time per pair of nodes in the networks for m = 3n.

(a) pL(l) ∈ [1−5 ·10
−4

,1−10
−6]; (b) pL(l) ∈ [0.8,0.99].

max(0,µ −σ) to µ +σ , where σ is the standard deviation

of the sample. The purpose of this bar was to show the vari-

ability of the results in the case of OptDP. The DPSP(k = 2)

algorithm does not present significant variation, therefore

no error bar was added in this case. An error bar was
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also added to the results of NopDP(F = 5) to show that

the variability in this case is rather small, when compared

to OptDP.

In Figure 3 CPU times for networks with m = 3n for

low and high edge reliability, are presented. Figure 3a

shows that OptDP is the less efficient algorithm for pL(l) ∈
[1−5 ·10

−4,1−10
−6]. However, from Fig. 3b with pL(l) ∈

[1−5 ·10
−4,1−10

−6] it is not clear which algorithm is the

less efficient, because the line for OptDP is interlaced with

the line for DPSP(k = 2). On the other hand NopDP(F = 5)

is consistently more efficient than OptDP and DPSP(k = 2).

In the case of networks with m = 2n (see Fig. 4)

OptDP continues to be the less efficient approach for

pL(l) ∈ [1− 5 · 10
−4,1− 10

−6] and although it improves

its relative performance for pL(l) ∈ [0.8,0.99], it remains

the less efficient approach (except for smaller networks:

n = 50, 100, 150). On the other hand NopDP(F = 5) contin-

ues to be the best approach, as far has CPU per node pair

is concerned.

Fig. 4. CPU time per pair of nodes in the networks for m = 2n.

(a) pL(l) ∈ [1−5 ·10
−4,1−10

−6 ]; (b) pL(l) ∈ [0.8,0.99].

It should be noted that when DPSP(k = 2) (or DPSP) is

used, the algorithm has no way of knowing whether the op-

timal pair (set) of disjoint paths has been obtained. NopDP

on the other hand knows that some of its solutions are in-

deed optimal (the remaining might be optimal, but NopDP

did not run long enough to confirm their optimality or they

may be sub-optimal). In Table 2, the average frequency

of NopDP(F = 5) termination because an optimal solution

was found, is presented. The minimal and maximal values

obtained in all experiments were 68.3% and 98.9%.

Table 2

NopDP(F = 5) exits with the detection

of the optimal condition

m = 3n m = 2n

n A B A B

50 93.8 95.5 91.6 95.0

100 88.8 92.6 89.3 91.0

150 87.3 91.2 85.0 90.8

200 84.8 91.5 85.8 88.6

250 85.1 91.5 83.2 88.5

300 83.6 90.1 84.2 86.9

350 81.6 88.8 83.6 87.1

400 83.3 89.8 83.7 88.8

450 82.8 91.2 81.2 86.3

500 83.3 89.3 82.7 87.6

Explanations: A – high reliability,

pL(l) ∈ [1−5 ·10
−4,1−10

−6]; B – low reliability,

pL(l) ∈ [0.8,0.99].

Finally to confirm which of the algorithms, DPSP(k = 2)

or NopDP(F = 5) did obtain the greater number of opti-

mal solutions, an analysis was made (based on the op-

timal reliability value obtained by using OptDP) of the

values returned by DPSP(k = 2) and NopDP(F = 5) (using

12 significant digits). Observing the results in Table 3 the

first observation is that DPSP obtains sub-optimal solutions

in 1.1%–2.9% of the cases while NopDP only fails in less

than 1% of the cases for high reliability networks and in

less than 0.5% of the cases for low reliability networks. The

average values of the relative differences of the reliability

of the obtained sub-optimal solution with respect to the op-

timal one are shown in Tables 3 and 4. These differences

are in the same range for both algorithms, with a slight

increase for NopDP(F = 5) in the case of less reliable

networks.

Results for networks with m = 2n, regarding the frequency

of sub-optimal solutions, are presented in Table 4. For

DPSP(k = 2) this frequency is in the range 2.0%–3.2%

while NopDP(F = 5) continues to present values under 1%

for high reliability networks and under 0.5% for low reli-

ability networks (with one exception: 0.51%). The relative

errors of reliability (for sub-optimal node pairs) for m = 2n

are greater than for m = 3n, for both DPSP(k = 2) and

NopDP(F = 5). The relation between this relative error is

around 3 when comparing NopDP(F = 5) and DPSP(k = 2)

and the relative frequency of sub-optimal solutions is

around 9 for low reliability networks and around 4 for
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Table 3

Frequency of non optimal pairs obtained with DPSP(k = 2) and NopDP(F = 5), and corresponding average reliability

relative error (of non optimal pairs) for m = 3n

m = 3n

pL(l) ∈ [1−5 ·10
−4,1−10

−6]

DPSP(k = 2) NopDP(F = 5)

n [%] ∆Pr [%] ∆Pr

50 1.91 1.6 ·10
−8 0.31 4.9 ·10

−8

100 2.34 1.6 ·10
−8 0.35 4.7 ·10

−8

150 2.52 1.6 ·10
−8 0.42 4.7 ·10

−8

200 2.74 1.7 ·10
−8 0.68 5.1 ·10

−8

250 2.78 1.6 ·10
−8 0.61 4.7 ·10

−8

300 2.75 1.7 ·10
−8 0.82 5.0 ·10

−8

350 2.86 1.7 ·10
−8 0.94 4.6 ·10

−8

400 2.73 1.7 ·10
−8 0.88 4.9 ·10

−8

450 2.93 1.8 ·10
−8 0.87 5.2 ·10

−8

500 2.69 1.8 ·10
−8 0.85 5.6 ·10

−8

m = 3n

pL(l) ∈ [0.8,0.99]

DPSP(k = 2) NopDP(F = 5)

n [%] ∆Pr [%] ∆Pr

50 1.13 1.9 ·10
−3 0.05 7.0 ·10

−3

100 1.84 2.2 ·10
−3 0.18 5.8 ·10

−3

150 2.09 2.3 ·10
−3 0.24 5.9 ·10

−3

200 2.10 2.3 ·10
−3 0.27 6.1 ·10

−3

250 2.12 2.4 ·10
−3 0.25 6.7 ·10

−3

300 2.17 2.5 ·10
−3 0.32 7.1 ·10

−3

350 2.24 2.5 ·10
−3 0.41 7.1 ·10

−3

400 2.23 2.7 ·10
−3 0.35 7.3 ·10

−3

450 2.03 2.6 ·10
−3 0.29 7.0 ·10

−3

500 2.21 2.6 ·10
−3 0.39 7.0 ·10

−3

Table 4

Frequency of non optimal pairs obtained with DPSP(k = 2) and NopDP(F = 5), and corresponding average reliability

relative error (of non optimal pairs) for m = 2n

m = 2n

pL(l) ∈ [1−5 ·10
−4,1−10

−6]

DPSP(k = 2) NopDP(F = 5)

n [%] ∆Pr [%] ∆Pr

50 2.38 4.9 ·10
−8 0.29 8.7 ·10

−8

100 2.48 4.3 ·10
−8 0.40 1.35 ·10

−7

150 2.75 4.6 ·10
−8 0.62 1.22 ·10

−7

200 2.78 4.7 ·10
−8 0.60 1.33 ·10

−7

250 3.00 5.1 ·10
−8 0.77 1.46 ·10

−7

300 2.77 5.0 ·10
−8 0.73 1.47 ·10

−7

350 2.95 5.1 ·10
−8 0.76 1.56 ·10

−7

400 2.83 4.8 ·10
−8 0.80 1.44 ·10

−7

450 3.17 5.3 ·10
−8 0.93 1.48 ·10

−7

500 2.90 5.3 ·10
−8 0.85 1.56 ·10

−7

m = 2n

pL(l) ∈ [0.8,0.99]

DPSP(k = 2) NopDP(F = 5)

n [%] ∆Pr [%] ∆Pr

50 1.99 4.4 ·10
−3 0.10 9.8 ·10

−3

100 2.43 5.9 ·10
−3 0.15 1.47 ·10

−2

150 2.50 5.1 ·10
−3 0.23 1.31 ·10

−2

200 2.70 5.3 ·10
−3 0.37 1.38 ·10

−2

250 2.82 5.4 ·10
−3 0.39 1.24 ·10

−2

300 2.90 6.0 ·10
−3 0.46 1.38 ·10

−2

350 2.87 5.9 ·10
−3 0.46 1.45 ·10

−2

400 2.72 6.0 ·10
−3 0.38 1.36 ·10

−2

450 2.88 5.9 ·10
−3 0.51 1.41 ·10

−2

500 2.83 6.1 ·10
−3 0.43 1.46 ·10

−2

high reliability networks when comparing DPSP(k = 2))

and NopDP(F = 5). Therefore the results for NopDP(F = 5)

are significantly more favourable than for DPSP(k = 2).

6. Conclusions

A new algorithm, OptDP, for obtaining the most reliable

pair of edge disjoint paths, and a “shorter” variant, NopDP,

which does not always guarantee the generated path pair is

optimal, have been proposed. Algorithm DPSP was also

reviewed and a “truncated” version DPSP(k = 2) was used

for obtaining a pair of disjoint paths with high reliability.

The performances of OptDP, NopDP(F = 5) and

DPSP(k = 2) were evaluated through numerous exper-

iments for randomly generated networks, with different

connectivities. For each value of connectivity two sets of

networks were generated, one with low reliability and the

other with high reliability.

These experiments enabled the good performance of

OptDP to be put in evidence for less reliable networks when

compared with DPSP(k = 2). In particular NopDP(F = 5)

was shown to be a good compromise between preci-

sion (number of optimal solutions obtained) and required

CPU time.
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