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Abstract— The paper addresses issues associated with the

application of federations of parallel/distributed simulators

to large scale networks simulation. We discuss two princi-

pal paradigms for constructing simulations today. Particu-

lar attention is paid to an approach for federating paral-

lel/distributed simulators. We describe the design and per-

formance of frame relay network simulator (FR/ASimJava)

implemented based on a Java-based library for distributed

simulation – ASimJava. Six practical examples – six networks

operating under frame relay – are presented to illustrate the

operation of the given software tool. The focus is on the effi-

ciency of presented network simulator.

Keywords— parallel simulation, computer networks simulation,

frame relay, federated simulators.

1. Introduction

Network simulation is an important tool for researches that

allows to analyze the behavior and performance of the con-

sidered network and verify new ideas. A variety of software

environments simulating packets transmission through the

network are available today. There are a number of possible

sets of criteria that could be used for network simulators

comparison, e.g., the model size, the execution time, mem-

ory requirements, scalability, programming interface, etc.

Different tools are optimized for different purposes. The

comparative study of some popular simulators are reported

in many papers, e.g., the results of the performance study

involving: JavaSim [7], ns-2 [19], SSFNet-Java [18], and

SSFNet-C++ [17] are described in [13], the comparison of

ns-2, JavaSim and OPNET [15] is concluded in [9].

We are involved in large heterogenous networks simulating

in near real time. The main difficulty in packet level sim-

ulation is the enormous computational power, i.e., speed

and memory requirements needed to execute all events in-

volved by packets transmission through the network. An-

other problem is scalability, i.e., how a given simulator

scales for large topologies and high speed links. Parallel

and distributed simulation has already proved to be very

useful when performing the analysis of different real com-

plex systems [20]. It allow us to reduce the computation

time of the simulation programme, to execute large pro-

grams that cannot be put on a single processor and to

better reflect the structure of physical system. Last years

a new paradigm for constructing parallel and distributed

simulations was developed. It is based on the idea of feder-

ating disparate simulators, utilizing runtime infrastructure

to interconnect them. In this paper we investigate issues

concerning federations of parallel simulators. A novel ap-

proach to scalability and efficiency of parallel/distributed

frame relay (FR) network simulation is described and dis-

cussed.

2. An approach for federating

parallel/distributed simulators

Parallel/distributed discrete-event simulation can be de-

scribed in terms of logical processes (LPs) and commu-

nicate with each other through message-passing. LPs sim-

ulate the real life physical processes (FPs). Each logical

process starts processing as a result of event occurrence

(from the event list or having received a new message).

It performs some calculations and generates one or more

messages to other processes.

The calculation tasks executed in parallel require ex-

plicit schemes for synchronization. Two simulation tech-

niques are considered [9]: synchronous and asynchronous.

Synchronous simulation is implemented by maintaining

a global clock (global virtual time – GVT). Events with

the smallest time-stamp are removed from the event lists

of all LPs for parallel execution. Parallelism of this tech-

nique is limited because only events with time-stamps equal

to that of the global clock can be executed during an event

cycle. Asynchronous simulation is much more effective due

to its potentially high performance on a parallel platform.

In asynchronous simulation each logical process maintains

its own local clock (local virtual time – LVT). Local times

of different processes may advance asynchronously. Events

arriving at the local input message queue of a logical pro-

cess are executed according to the local clock and the local

schedule scheme.

Synchronization mechanisms fall into two categories: con-

servative and optimistic. They differ in their approach to

time management. Conservative schemes avoid the possi-

bility of causality error occurring. These protocols deter-

mine safe events that can be executed. Optimistic schemes

allow occurrence of causality errors. They detect such error

and provide mechanisms for its removal. The calculations

are rolled back to a consistent state by sending out antimes-

sages. It is obvious that in order to allow rollback all results

of previous calculations have to be recorded. Now, there
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are two basic directions to take when developing parallel

and distributed simulators [2]:

– development of a problem dedicated (specialized)

simulators, specific to the environment for which they

were created;

– development of general purpose simulators designed

as federations of disparate simulators, utilizing run-

time infrastructure (RTI) software to interconnect

them.

In the case of the first paradigm the simulation engine, in-

terface, libraries and tools to create new high performance

simulators are defined. It is difficult, in general, for the

user to modify and apply such software to new environ-

ments. A second paradigm results in coarse-grained set of

simulators creating federation. It is assumed that his entire

simulators are viewed as black boxes. They are designated

as federates. The runtime infrastructures used for federates

interconnecting are typically designed for coarse granular-

ity concurrency. This approach is utilized in high level ar-

chitecture (HLA) [5] standard for distributed discrete-event

simulation. The main advantage is high possibility of sim-

ulation models reuse. However, we pay for this universal

applicability. This approach imposes certain restrictions

concerning the structure of the federation members. In ad-

dition federates have to obey some rules of the federation

that are included in.

The federated, distributed simulation consists of a collec-

tion of autonomous simulators that are interconnected using

RTI software. The RTI implements relevant services re-

quired by the federated simulation environment. The most

important services are: time synchronization among fed-

erated simulators, secure and efficient communication and

scalable platform architecture.

Network analysis and modeling concentrate on studying

network components (from devices to requirements and

performance levels) and their inputs and outputs. We are

interested to evaluate simulated system operation under var-

ious real-life conditions. Two important characteristics of

Fig. 1. An architecture of federated simulator.

networks: interconnectivity and levels of hierarchy (from

network core to user access level) [10] have to be con-

cerned. Based on these characteristics we can define a set

of network submodels. We assume that the simulator of

each submodel implements only a part of the network being

simulated. The advantage of such application is that there

is no need to provide the shared memory access to describe

the whole simulated network system. Physical connectivity

between federated simulators executes a set of logical con-

nections between submodels. An example of this approach

is shown in Fig. 1.

Using the paradigm of federated simulators, an implemen-

tation of a federation of asynchronous parallel software

modules simulating frame relay network was developed and

examined.

3. Parallel simulation

of frame relay networks

3.1. ASimJava library

Frame relay/asynchronous simulation Java (FR/ASimJava)

network simulator is a parallel/distributed fast simulator

of frame relay networks. It was implemented based on

ASimJava, a Java-based library for large-scale systems

simulation. Although ASimJava was described in [14],

we provide a brief summary here, to make the paper

self-contained. The ASimJava library admits to do par-

allel and distributed discrete-event simulations that can

be described in terms of logical processes and commu-

nicate with each other through message-passing. LPs sim-

ulate the real life physical processes. Each logical process

starts processing as a result of event occurrence (from the

event list or having received a new message). It performs

some calculations and generates one or more messages to

other processes. The calculation tasks executed in paral-

lel require explicit schemes for synchronization. The syn-

chronous and asynchronous [20] variants of simulators are

available. In the case of asynchronous approaches four syn-

chronization protocols are provided: conservative protocol

with null messages (CMB) [11], window conservative pro-

tocol [12], time warp (TW) [8], moving time window pro-

tocol (MTW) [16].

The simulator built upon ASimJava classes has hierarchi-

cal structure. The simulated system is partitioned into sev-

eral subsystems (subtasks), with respect to functionality and

data requirements. Each subsystem is implemented as LPs.

Each LP can be divided into smaller LPs. Hence, the log-

ical processes are nested (Fig. 2). Calculation processes

belonging to the same level of hierarchy are synchronized.

The module-oriented architecture of ASimJava library al-

lows developers to add new components. One of these mod-

ules is bidirectional interface to XML configuration and

state save file that uses ASimL language – XML schema1

specification for building XML file with description of pa-

1See http://www.w3.org standard
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Fig. 2. A federation of network simulators consisting of two members: Simulator 1 and Simulator 2.

rameterized system model. Simulator configuration can be

fully loading (run, re-run) from XML file, it may contain

any number of user-defined parameters.

Two types of simulators can be distinguished:

1) the simulator consisting only of classes provided in

ASimJava; the structure of the simulated system to-

gether with all model parameters is created using

ASimJava graphical interface or may be read from

an XML file;

2) new simulator – the user’s task is to implement

the subsystems’ simulators responsible for adequate

physical systems simulation; he can create his appli-

cation applying adequate classes from the ASimJava

libraries and including his own code – numerical part

of the application.

As one of the ASimJava’s principle goals was portabil-

ity and usage in heterogeneous computing environments.

Two versions of ASimJava are implemented: parallel and

Fig. 3. JXTA logical network mapping. Explanations: ID – iden-

tification number, NAT – network address translation, TCP/IP –

transmission control protocol/Internet Protocol.

distributed. It is possible to join both of them in one sim-

ulator. The JXTA technology platform provided by Sun

Microsystems was used to interprocess communication in

the case of distributed version of the library. JXTA is a set

of open, generalized peer-to-peer (P2P) protocols that al-

low any connected device on the network to communicate

and collaborate as peers (see Fig. 3). The JXTA protocols

are independent of any programming language, and multi-

ple implementations exist for different environments. This

technology enables developers to build and deploy interop-

erable P2P services and applications. The JXTA protocols

standardize the manner in which peers:

– discover each other peer,

– self-organize into peer groups,

– advertise and discover network services,

– securely communicate with each other,

– monitor each other peer remotely.

The ASimJava software framework is suitable to solve

many small and large scale problems, based on simula-

tion. The package is flexible and can be easily extended

by software modules, which are specific to a chosen appli-

cation.

3.2. Description of FR/ASimJava simulator

Frame relay is a high-performance wide area network

(WAN) protocol that operates at the physical and data

link layers of the open system interconnection (OSI) ref-

erence model. This is a standard protocol for local area

network (LAN) internetworking which provides a fast and

efficient method of transmitting information from a user
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device to LAN bridges and routers. Frame relay is an

example of a packet-switched technology. Variable-length

packets are used for more efficient and flexible data trans-

fers. These packets are switched between various seg-

ments in the network until the destination is reached. In-

ternationally, frame relay was standardized by the Inter-

national Telecommunication Union – Telecommunications

Standards Section (ITU-T) [4]. In the United States, frame

relay is an American National Standards Institute (ANSI)

standard [6].

Frame relay traffic is described based on several charac-

teristic parameters. The detailed information about FR pa-

rameters one can find on frame relay forum webside [3].

The FR/ASimJava simulator implements the following pa-

rameters describing traffic characteristics in frame relay net-

works:

• committed information rate (CIR);

• excess information rate (EIR);

• committed information size (Bc):

Bc = CIR×Tc,

where T c denotes assumed time interval;

• excess information size (Be):

Be = EIR×Tc;

• a physical line speed of the interface connecting to

the frame relay network (access rate):

∑
I
i CIRi j ≤ access rate j,

where i ∈ I denotes client and j connection.

The following features of FR protocol are taken into con-

siderations in our implementation:

• permanent virtual circuit (PVC);

• switched virtual circuit (SVC);

• data terminal equipment (DTE) – an edge, access

routers:

– classifying traffic – any number of class that

can be used in quality of service (QoS) mech-

anism,

– measuring and marking excess traffic (if greater

than CIR) with bit discard eligibility DE = 1,

– shaping input traffic (leaky bucket, token

bucket),

– dropping “bursty” traffic (if greater than CIR+
EIR),

– backward explicit congestion notification

(BECN) and forward explicit congestion

notification (FECN) reaction,

– SVC negotiation,

– stochastic traffic generators for all virtual cir-

cuits;

• Data circuit-terminating equipment (DCE) – switches

(see Fig. 4):

– quality of service: input and output buffers

management: first in, first out (FIFO), priority

queuing (PQ), class-based weighted fair queu-

ing (CBWFQ), PQ-CBWFQ discipline,

– BECN and FECN signaling,

– SVC negotiation,

– switching and routing.

Fig. 4. Exampled architecture of switch used in FR/ASimJava

simulator.

All parameters of simulation model, network topology,

characteristics of data flows (traffic) and frame relay mech-

anism are saved in XML configuration file. This file can

be simply modified and reused in many simulations.

4. Case study results

In the presented case study we evaluate the complexity

of frame relay network simulation. In this paper the re-

sults of experiments performed for four network configu-

rations, examples E1–E4 describing different model size,

and two variants of implementation – S (sequential) and

D (distributed) are discussed. The detailed descriptions,

i.e., network models and traffic characteristics are given in

Table 1. During the tests, we measured the simulation time

(the execution time of each experiment). We assumed in

all tests the same simulated time – 30 seconds of physical

network operation. The objective of presented case study

was to compare the efficiency of parallel, federated simu-

lators with the sequential realization. To compare the per-

formance of packet-level simulators we used two character-

istics, i.e., simulation time (execution time) in miliseconds

and average simulator speed simulated packets transmis-

sions per second (PTS) [4] defined in Eq. (1):

PT S ≈

(

NF ·PF ·HF

T

)

, (1)

where T denotes the execution time, NF – the number of

flows (edge router to edge router), PF – the number of pack-

ets sent per flow, HF – the average hops per flow (queuing,

transmitting over link, etc.). The presented definition ig-

nores lost packets, protocol generated packets.
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Table 1

Results of experiments: four exampled frame relay networks (variant S)

Example Network model LPs number Packets number
Simulation time

[ms]
PTS

E1 1 switch 7 (∼13500 · 2) = 27000 4800 22.5

2 interfaces

2 edge routers

2 links 1.544 Mbit/s

E2 1 switch 19 (∼13500 · 6) = 81000 12900 25.1

6 interfaces

6 edge routers

6 links 1.544 Mbit/s

E3 2 switches 42 (∼13500 · 12) = 162000 24300 46.6

14 interfaces

12 edge routers

12 links 1.544 Mbit/s

1 link 44.736 Mbit/s

E4 3 switches 65 (∼13500 · 18) = 243000 34100 71.2

22 interfaces

18 edge routers

18 links 1.544 Mbit/s

2 links 44.736 Mbit/s

Table 2

Computer systems used during experiments

Computer systems
AMD Athlon-M

1.2 GHz, 512 RAM

AMD Sempron

1.67 GHz, 512 RAM

AMD Sempron

1.67 GHz, 512 RAM

C1 X

C2 X X

C3 X X X

The results of simulation experiments performed on sin-

gle machine (a computer system C1 described in Table 2)

are presented in Table 1. It can be observed that the

execution time of experiment performed for exampled net-

work E4 exceeds the real time operation of the physical

network (the simulation time is greater than simulated,

virtual time).

The second series of experiments was performed in the net-

work of computers. Two hardware platforms were consid-

ered: C2 – the network of two machines, C3 – the network

of three machines (see Table 2).

Two exampled networks E3 and E4 were taken into con-

siderations. The simulator of the whole network was

composed of two federated simulators in the case of ex-

ample E3 and three federated simulators in the case of E4

(see Fig. 5). The calculations of each member of federa-

tion were performed by separate computer. The window

conservative scheme described in [12, 14] was applied to

federated simulators synchronization.

The submodels configurations, execution time of each ex-

periment and simulators speeds are given in Table 3.

Fig. 5. Federated simulator of exampled network E4.

As expected, we can observe that federated, distributed

simulation can seriously speed up simulations of network

operation w.r.t. sequential implementation. The calcula-

tion speed-up depends on the size of considered network

model and assumed degree of parallelism. It should be in-

dicated that in the case of distributed implementation the

reserve of efficiency to meet real time requirements is quite

large (see E4 in Table 3).
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Table 3

Results of experiments: two exampled frame relay networks (variant D)

Example Network model LPs number Packets number
Simulation time

[ms]
PTS

E3 1 switch 21 (∼13500 · 12) = 162000 19300 58.7

7 interfaces

6 edge routers

6 links 1.544 Mbit/s

1 link 44.736 Mbit/s

1 switch 21

6 interfaces

6 edge routers

1 link 1.544 Mbit/s

E4 1 switch 21 (∼13500 · 18) = 243000 19300 125.2

7 interfaces

6 edge routers

6 links 1.544 Mbit/s

1 link 44.736 Mbit/s

1 switch 21

6 interfaces

6 edge routers

6 links 1.544 Mbit/s

1 link 1.544 Mbit/s

1 switch 23

8 interfaces

6 edge routers

6 links 1.544 Mbit/s

5. Conclusions

In this paper we described the federated approach to par-

allel and distributed simulation of frame relay networks.

We demonstrated that this approach is suitable to perform

fast simulations of large-scale networks. Our experiences

with federated, distributed network simulations confirm the

ability of the federated simulation approach to achieve

large and detailed simulation models. JXTA peer-to-peer

technology and ASimJava library allow us to use Inter-

net and other computer networks as a secure simulation

platform.
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