
Paper Modeling preparation

for data mining processes
Timm Euler

Abstract— Today many different software tools for decision

support exist; the same is true for data mining which can be

seen as a particularly challenging sub-area of decision sup-

port. Choosing the most suitable tool for a particular indus-

trial data mining application is becoming difficult, especially

for industrial decision makers whose expertise is in a differ-

ent field. This paper provides a conceptual analysis of crucial

features of current data mining software tools, by establishing

an abstract view on typical processes in data mining. Thus

a common terminology is given which simplifies the compari-

son of tools. Based on this analysis, objective decisions for the

application of decision supporting software tools in industrial

practice can be made.

Keywords— data mining, data preparation, KDD process.

1. Introduction

Knowledge discovery in databases (KDD) and data min-

ing are, in practice, complex processes whose development

requires advanced skills and precise data understanding.

Increasingly, however, software systems that support many

aspects of data mining on a high level are becoming avail-

able, which makes the development of industrial mining

applications easier even for less experienced users. Exam-

ples for such systems are SPSS Clementine, SAS Enterprise

Miner or MiningMart. For industrial decision makers, the

choice of the most suitable decision support software is

becoming an important challenge, as many software tools

are available, but each has its own strengths and weak-

nesses. This paper addresses the question of how the dif-

ferent technologies can be compared with respect to their

work-saving potentials. The main thesis is that there are

critical aspects of a mining process which must be ex-

plicitly supported on a conceptual level by a high-quality

data mining software. The paper contributes a detailed,

conceptual analysis of these critical aspects. This allows

to establish a common terminology for a broad range of

functionalities, and thus to easily compare different soft-

ware solutions based on detailed, objective and quantitative

criteria.

The general focus of the paper is data processing during

data preparation and mining. For the preparation of data,

the conceptual analysis presented in Section 3 yields a list

of essential operators that must be available in order to be

able to compute arbitrary data representations. Arbitrary

data representations may be needed for a successful min-

ing phase. During mining itself there are also central data

processing tasks that must be supported, such as cross vali-

dation and parameter tuning, which is explained in Subsec-

tion 3.5. Based on this conceptual view on critical aspects

of the process, criteria for existing software solutions in

data mining and knowledge discovery are derived in Sec-

tion 4. The criteria reveal the strengths and weaknesses of

such software solutions, allowing clear and objective deci-

sions for the application of data mining software tools in

industrial practice.

2. Related work

Conceptual models of knowledge discovery processes (of

which data mining is the crucial part) have mostly been

developed in the context of data mining supporting tools.

In particular, [4, 20] attempt to assist users during the de-

velopment of discovery processes by automatically explor-

ing various options for the process. To this end, the basic

steps in a KDD process are realized by agents in [20];

meta-agents (planners) organise them to a valid process us-

ing their input and output specifications. The authors pro-

vide an ontology of KDD agents that distinguishes between

three phases of the process, namely preprocessing, knowl-

edge elicitation (modeling) and knowledge refinement. The

particular choice of agents is not explicitly justified in the

published articles; compare the minimal and complete list

of operators in Subsection 3.3. Further, the present work

includes a conceptual view on the data which is missing

in [20]. The same is true for [4], where a system to sys-

tematically enumerate and rank possible KDD processes is

presented, given some input data and a mining goal. These

authors have developed a metamodel for KDD processes.

In this respect, there system is somewhat similar to Min-

ingMart [16], which is the system that inspired much of the

present work.

A well-known standard to model the KDD process is

CRISP-DM [7]. While it gives an overview of different,

interdependent phases in a KDD process and defines some

terminology, it is not detailed enough to model concrete

instances of data preparation and modeling operations, and

does not include a data model. An early sketch of a for-

mal model of the KDD process was presented in [19]. The

new predictive modeling markup language (PMML) Ver-

sion 3.01, a standard to describe machine-learned models

in extended markup language (XML) [18], includes facili-

ties to model the data set and data transformations executed

on it before modeling. However, it is not process-oriented,

1See http://www.dmg.org/pmml-v3-0.html

81



Timm Euler

thus it does not allow to model a data flow through a com-

plex KDD process, and the data model is restricted to one

table. Other standards around data mining are Java data

mining (JDM) [13], which includes web service defini-

tions, and structured query language/multimedia extension

(SQL/MM) data mining. Though extensible, they currently

provide interfaces to modeling algorithms rather than to

complete KDD processes.

Recently, some new research attempts to employ grid in-

frastructures for knowledge discovery; a good overview is

given in [5]. To enable the execution of KDD processes

on a grid, these processes have to be modeled indepen-

dently from the machines that execute them, and hetero-

geneous data schemas and sources have to be modeled.

In [2], a discovery process markup language (DPML) is

used, based on XML, to model the complete KDD process.

This language is used to formalize a conceptual view on

the data mining process. Unfortunately, from the available

publications it is not clear how comprehensive and detailed

DPML is.

Criteria for the comparison of KDD and data mining tools

have been listed in several papers [1, 8, 10, 11], but have

not been linked with the conceptual works above. The

criteria are therefore not consistent across publications and

their selection is not justified. The present paper attempts

to support the choice of criteria by a conceptual analysis

of the essential data processing tasks in data mining for the

first time.

3. Data preparation

This section introduces the conceptual notions that are

needed to describe a data mining process. Subsection 3.1

introduces two description levels which are used to describe

the data (Subsection 3.2) and the data processing (Subsec-

tions 3.3 and 3.5).

3.1. Two levels of KDD descriptions

It is generally possible to describe both the data and the

preparation tasks on two different levels: a more techni-

cal one and a more KDD-related one. The technical level

describes the data and any operations on the data inde-

pendently of any application purpose. The higher level

deals with KDD concepts: the role that the data plays, and

the purpose of applying a preparation method, are seen in

the context of the knowledge discovery application. This

level will therefore be called conceptual. The differenti-

ation of the two levels will be detailed below. One may

relate the different levels to different types of users of data

collections: while for example database administrators are

concerned with the technical level, KDD experts and statis-

ticians (data analysts) tend to think and work on the con-

ceptual level, as they cannot take the application out of

their focus.

One of the purposes of this work is to argue that the two lev-

els should be explicitly supported by KDD software. This

has the following advantages:

• If the higher level is made explicit, the lower one can

be hidden. A software that hides the technical level

can present the entire KDD process to a user in terms

of familiar concepts. This eases the development of

and daily work on KDD applications.

• By making the conceptual level explicit, it is auto-

matically documented and can be stored and retrieved

for later reference [16].

• Independence of the conceptual level allows to reuse

parts or all of a conceptual process model on new

data by simply changing the mapping to the techni-

cal level. Though this may require conceptual adapta-

tions, it saves much effort compared to a development

from scratch.

• The use of the conceptual level allows the compar-

ison of different software tools by abstracting from

technical details. Criteria for comparison can be for-

mulated on the conceptual level, which makes their

communication and application much easier (see Sec-

tion 4).

3.2. Data description

Throughout the paper, the data is assumed to be in attribute-

value format. On the technical level, it is common to think

of tables which are organized in columns and rows. Con-

ceptually, data is seen as representing objects from the real

world; the objects are described in terms of their attributes;

and each attribute has a domain whose values it can take.

There can be different sets of data, with different attribute

sets; it is common to refer to the different sets as tables

even on the conceptual level, though the term concept will

be used below. Thus there is a direct and simple mapping

from attributes to columns and representation of objects to

rows. Whether the columns and rows are gained from a flat

file or a database system is unimportant on the conceptual

level.

While attributes and concepts are used to describe the data

schema – the organization of the data – on the conceptual

level, a description of the data contents is also very useful

on this level, since the data processing operations in a KDD

process depend on both. Schema- and content-related in-

formation are usually referred to as metadata. During pro-

cessing, both the data schema and the data contents, the

data itself, change. To have the data characteristics listed

below available on the conceptual level requires a data scan,

which typically consumes a substantial amount of time be-

cause the data sets are large. Therefore, this analysis should

be performed as rarely as possible, preferably only once,

on the input data (even then, it may have to be performed

on a sample of the data). Based on the characteristics of

the input data, many characteristics of later, intermediate

82



Modeling preparation for data mining processes

data sets in the process can be inferred from the types of

operations that were applied, rendering new data scans su-

perfluous.

The useful metadata for modeling a KDD process includes:

the number of rows in every table/concept; the minimum

and maximum values of each attribute with ordered values;

the list of values each discrete attribute takes; and the num-

ber of occurrences of each value of each discrete attribute.

One important task that can be solved based on this meta-

data is the estimation of the storage size needed for storing

the data set. This is important during the declarative set-up

of the KDD process, as it allows to decide before execut-

ing the process whether and how to store intermediate data

sets (due to limited main memory), because the necessary

metadata can be inferred in many cases (though not al-

ways). An intelligent administration of intermediate data

processing results is important for a smooth execution of

the process.

The administration of the above metadata allows not only

size estimation, but also an easier declarative development

of the KDD process model, as many operations depend

on the values that certain attributes take. For example,

Value mapping is an operator used to change these val-

ues, and a specification of an instance of this operator is

easy if the available values can be chosen in a graphical

interface, rather than be looked up elsewhere and typed in

by hand.

Another useful kind of metadata is given by data types.

On the technical level, the common data types are numbers

(integer or real), strings, and calendar dates/clock times.

Conceptually, however, one would distinguish types accord-

ing to the way they represent real-world objects. In this

work, four conceptual data types are proposed as essen-

tial because their distinction is needed during the devel-

opment of a KDD process using the processing operators.

These types are date/time, key, discrete (further divided into

binary and set), and continuous.

In principle, every conceptual domain type can be realized

by any technical data type. For example, keys can be re-

alized by strings or by numbers; dates can be represented

by strings; and so on. To hide the technical level, a flexi-

ble mapping is needed. When new data is introduced, the

mapping from the technical to the conceptual level can be

done automatically (by inspection of occurring values), but

must also be manually manipulable to allow uncanonical

mappings, like strings representing dates. The need for

flexibility arises from the unpredictable ways in which data

preparation operations may be combined. For example, one

certain operator produces a binary output consisting of the

numbers 0 and 1, where from the view of this operator the

output is discrete (no ordering implied). Yet the next op-

erator in a given application chain may compute the mean

of that output, interpreting the 0s and 1s as real numbers,

which is a neat way of computing the ratio of 1s. Even

when such interpretation changes occur, it is still possible

to hide the technical level by adjusting it automatically, de-

termined by the kinds of manipulations that an operator

defines. This is one example of how a conceptual analysis

leads to objective criteria for software.

Further information about attributes (beyond conceptual

data type and data characteristics) is given by the role it

plays in the KDD process. Some attributes are used as in-

put for learning; one or more may contain the target (the

label) for learning; still others relate several tables to each

other. Thus, four roles are distinguished on the concep-

tual level (without a correspondence on the technical level):

predictor, label, key and no role.

Changing the perspective now from (domains of) attributes

to whole tables, their contents, and how they relate to each

other, it is easy to see that the two levels of description

can be applied in a similar fashion. Data represents ob-

jects from the real world and describes them along several

dimensions. Some objects share similarities, which allows

to subsume them in a class; the science of what classes

exist and how they should be described is called ontology.

Leaving philosophical approaches aside, the word ontology

is used in computer science as a countable noun, where an

ontology is the description of a shared conceptualization

of an application domain [12]. Obviously, a conceptual

description of data sets could make use of ontologies. If

an ontology exists for the application domain from which

the data is collected, it would be very helpful to describe

a KDD application on that data in terms of that ontol-

ogy [6, 9]. However, realizing this idea is fraught with the

difficulty that not all ontology formalisms are suitable for

supporting KDD-oriented data processing. Data for KDD

comes in tables, and the tables are the objects of the exten-

sive modifications which are usual during data preparation.

A useful conceptualization, from an operational point of

view, should therefore introduce a concept for each table,

even though some concepts from the application domain

may, in a given data set, be described using several tables,

or only a part of one table. The latter problem can how-

ever be remedied by the availability of data transformations

in KDD to bring the tables into a suitable shape [9].

A mining process consists of a sequence of transformation

operations, as explained in Section 3, and each operation

introduces a new data set, or in the conceptual view, a new

concept. Thus a large number of intermediate concepts is

created in a large process, and the intermediate concepts

are related by the data flow or process view. However, they

are also related in a different way, namely by the nature of

their creation: some processing operations create subsets of

the input data, while others create specializations. It will

be seen in Subsection 3.3 that several essential processing

operations produce such relations. Further, the intermediate

concepts may be related by foreign key links. The web of

these relations allows an alternative view on the data mining

process which can help the user to keep an overview of it.

3.3. Data preparation operators

Usually, data preparation is seen as the execution of basic

steps, each of which applies some predefined data trans-

formation to the output of the previous step(s), resulting

83



Timm Euler

in dependency graphs of data preparation. The predefined

data transformations are defined through operators, which

are specified by their input, their transformation task and

their output. It is important to note that input and output

can be specified on the higher, conceptual description level.

In [14], a list of atomic operations for data preparation

was given for the first time. One main contribution of

the present work is the classification of these and other

operators into primitive and convenience operators. The

former correspond to the technical description level. They

provide basic operations without which no complex data

preparation can be performed. Their computational power

is examined in Subsection 3.4.

The operator Model learning has a special status; it is not

a primitive operator for data preparation, and does not pro-

duce output in terms of the data ontology, but is indispens-

able for a complete KDD process.

The convenience operators describe data transformations in

conceptual, KDD task-related terms; they are mere combi-

nations or special cases of the primitives. As an example,

the convenience operator Dichotomization takes a discrete

attribute and outputs several attributes, one for each value

occurring in the given attribute, where the output attributes

contain a Boolean flag indicating whether the value they

correspond to occurs in that row in the input. This conve-

nience operator can be realized by a repeated application

of the primitive operator Attribute derivation. However, for

a KDD expert user, using the convenience operators where

possible is more intuitive than using many primitive oper-

ators, and provides an aggregated, high-level view of the

preparation graph. Thus again the claim that KDD can be

extensively supported on the conceptual level is justified.

In the following, brief descriptions of all primitive and

some convenience operators are given.

• Attribute derivation (primitive) – a very general oper-

ator to create a new attribute, usually based on values

of existing attributes. To allow this, extensive date,

string and numeric arithmetics must be offered by

this operator. In fact, to make the list of primitive

operators complete in the above sense, arbitrary com-

putations must be allowed to derive a new attribute.

This requires a computationally complete formalism

such as a programming language. The input for this

operator is any concept; the output is a concept that

is a specialization of the input concept.

• Attribute selection (primitive) – this operator removes

attributes from the input concept. The selection of

attributes to be removed is either done by the user

or, for advanced applications, automatically, using re-

dundancy criteria or the performance of a modeling

algorithm on different attribute sets. The input is

any concept with at least two attributes. The output

is a concept of which the input concept is a special-

ization.

• Join (primitive) – this operator joins two or more in-

put concepts according to the values of a key attribute

specified for each concept. All attributes from the

input concepts occur in the output concept without

duplicating keys. The input are two or more con-

cepts, each of which has a key that relates it to one

of the other input concepts. The output is a concept

that is a specialization of all input concepts.

• Model learning (special) – this operator is a general

place holder for model learning algorithms. In pre-

dictive settings, the model gives a prediction function

that can be applied to other concepts in the Attribute

derivation operator. In descriptive settings, only the

model itself is produced.

• Row selection (convenience) – this operator copies

certain rows from the input concept to the output

concept, according to some criteria. The input is any

concept. The output is a concept that is a subconcept

of the input concept.

• Union (convenience) – this operator unifies two or

more concepts that have the same attributes. The

extension of the output concept is the union of the

extensions of the input concepts. The input are two

or more concepts, each with the same set of at-

tributes. The output is a concept with again the same

attributes, of which every input concept is a subcon-

cept.

• Aggregation (convenience) – this operator aggregates

rows of the input concept according to the values

of given Group by-attributes. Aggregation attributes

are chosen in the input concept; in the output con-

cept, values that are aggregated over an aggregation

attribute appear for each combination of values of the

Group by-attributes. The input is any concept with

at least two attributes. The output is a new concept

not related to the input concept.

• Discretization (convenience) – this operator discre-

tises a continuous attribute. That is, the range of

values of the continuous attribute is divided into in-

tervals, and a discrete value is given to every row

according to the interval into which the continuous

value falls.

• Value mapping (convenience) – this operator maps

values of a discrete attribute to new values. In this

way, different values can be mapped to a single value,

thus be grouped together, if they should not be dis-

tinguished later in the process.

• Dichotomization (convenience) – this operator takes

a discrete attribute and produces one new attribute

for each of its values. Each new attribute indicates

the presence or absence of the value associated with

it by a binary flag.

• Missing value replacement (convenience) – this op-

erator fills gaps left in an input attribute (the target

attribute) by missing or empty values.

84



Modeling preparation for data mining processes

3.4. Computational power of the primitive operators

This section considers the range of convenience operators

that are definable by the primitives from Subsection 3.3.

Though Attribute derivation is assumed to use computa-

tionally complete mechanisms, it does not add tuples to its

input, and it derives only one attribute. Thus it is a natural

question to ask whether the three primitives can produce

any output concept that is computable from given input

concepts. This is a notion of computational completeness

based on the given data model. The answer is that the

three primitives alone cannot provide this computational

completeness without iteration or recursion constructs and

counting devices. However, even using the three prim-

itives in schematic algorithms (without looping, recursion

or counting) allows to realize a number of important conve-

nience operators as demonstrated above. Below some more

precise observations on the expressiveness of the primitives

are given, without proof because they are easy to verify.

First, it is easy to see that the six basic operators of the

relational algebra, which is used in relational databases,

can be reduced to the three primitives above. For projection

(Attribute selection) and natural join this is trivial; for the

other relational operators the reduction to primitives is not

difficult either, but is omitted here.

Second, the primitives are in fact more expressive than the

relational algebra: it is well-known that the transitive clo-

sure of an arbitrary directed graph cannot be computed

using the relational algebra [3], but this is possible using

the three primitives defined here. Indeed, any function on

a given set of input concepts that produces a fixed number

of output concepts with known arities, and where the sizes

of these output concepts are bounded in terms of the input

sizes, can be computed by the three primitives, essentially

by computing the cross-product of all values occurring in

inputs as many times as needed to create enough entities,

and using the power of Attribute derivation to compute the

function results2. The number of edges in the transitive clo-

sure of a graph is of course bounded by O(n2) for n nodes

and the arity of the result concept is 2. Thus the transi-

tive closure of any graph given as a 2-ary concept can be

computed by forming the cross-product of its nodes (join-

ing the input concept with itself) and then using Attribute

derivation to mark the relevant edges. The latter are then

selected using Row selection.

Third, it is easy to see that given an arbitrary function on

sets of input concepts, there may be no fixed schema of

applying the three primitives to compute it. For example,

the function that creates n copies of an input concept, where

n is the number of entities in the instance of the input

concept, is dependent on the input size and thus cannot be

expressed on arbitrary inputs using a constant number of

primitives.

From these observations it is clear that the three primitives

do not provide full computational power, but they do allow

2This argument presumes that at least one input instance has more than

one entity.

to construct powerful convenience operators for practical

purposes, since for many computations which are needed in

practical applications, bounds on the output size can easily

be given and thus no iteration or recursion constructs are

needed in addition to the three primitives.

Obviously the computational power of the primitive oper-

ators stems from Attribute derivation, but it is a useful in-

sight that these three conceptually simple operators, applied

to instances of the intuitive modified entity-relationship

(ER) data model, provide very powerful operations. So

it suffices to think of data processing on instances of the

modified ER metamodel in terms of attribute addition, at-

tribute removal, and joining by keys. For many KDD appli-

cations, the full computational power of Attribute deriva-

tion is not even needed. It will often suffice to employ

some of the simpler functions it offers. But KDD is a com-

plex field, and users will need flexible devices to cope with

very different situations in different KDD projects. There-

fore a KDD workbench should offer the full computational

power of Attribute derivation as a fall back mechanism for

unforeseen situations.

3.5. Data mining

During modeling, conceptual support is mainly needed for

training, testing (evaluation of models), and parameter tun-

ing, as well as the visualization of models. Conceptual

support here means again to present these tasks in suitable

terms; for example, standard operations should be offered

to split a data set into training set and test set, to learn,

evaluate and apply a model, to automatically find optimal

parameter settings, and so on. Since modeling is in itself

a complex process, in fact this often leads to a separate

graph of processing tasks. Following [15], trees of nestable

operators are a suitable, conceptual representation for these

tasks. The leaves of the trees represent operations such as

the learning or application of a model, while the inner nodes

correspond to more abstract, control-oriented tasks such as

cross validation or meta learning. This representation pro-

vides great flexibility for the design of complex mining

experiments, which are independent of the data preparation

in that they take a single, fixed data table as input.

4. Criteria for data mining tools

How can the conceptual analysis from Section 3 be ap-

plied in practice? The analysis focused on data process-

ing during preparation and mining. According to [17] and

a 2003 KDnuggets poll3, most of the efforts spent on

a KDD project are consumed by data preparation. There-

fore the analysis above directly concerns work-intensive ar-

eas of KDD. It provides the details for a declarative devel-

opment of KDD processes on the conceptual level, given

a system that realizes a translation to the technical level.

3See http://www.kdnuggets.com/polls/2003/data preparation.htm

85



Timm Euler

Various data mining systems, like Clementine, IBM Intelli-

gent Miner, SAS Enterprise Miner or MiningMart already

realize certain parts of the notions from Section 3, but no

“ideal” system exists (yet) that includes all of these notions.

The concepts can be directly translated to functional cri-

teria for data mining systems that include data preparation

facilities. As a simple example, all primitive operators from

Subsection 3.3 must be available in such systems, otherwise

the data preparation facilities are incomplete (the operator

Row derivation is an exception). The more convenience

operators are available, the better. Attribute roles must be

supported as well as the three types of relations between

intermediate concepts (see Subsection 3.2); for this, con-

cepts (representing tables) must be explicitly represented;

and so on. These criteria can be objectively and simply

checked in any data mining tool. They can also be easily

quantified, as explained in the following.

Every notion from Section 3 can be broken down into

a number of Boolean criteria. For example, each opera-

tor from Subsection 3.3 corresponds to one Boolean flag

indicating its presence or absence in a given tool. The

same is true for the four attribute roles. Other ideas from

Section 3 can be set up as Boolean lists as well: for exam-

ple, the explicit support for conceptual data types can be

present or absent; the mapping from conceptual data types

to technical types may be adjusted automatically in a given

tool or not; and so on. This results in a set of detailed,

Boolean criteria for data mining tools.

However, while a long list of Boolean criteria is very de-

tailed, it does not serve well to gain a quick overview of the

strengths and weaknesses of a tool. To make the evaluation

clearer, related criteria can be grouped. Assuming a group

of m > 0 criteria, any given data mining tool will fulfill

0 ≤ n ≤ m of them. This leads to the n-of-m metric for

evaluating KDD tools, or indeed any type of systems given

functional criteria. The size of the groups is variable; each

group can have an own value of m. Further, the grouping

itself can be adjusted to different purposes. To gain a quick,

broad overview, larger groups (larger values of m) can be

used, while for detailed inspections smaller groups are rec-

ommended. So the n-of-m metric is adaptable to different

evaluation purposes and different audiences for the presen-

tation of evaluation results. Based on a single, detailed list

of Boolean criteria, humanly comprehensible quantitative

scores can be formed to compare and evaluate KDD tools.

5. Conclusions

This paper has addressed the important, time-consuming

data processing phases of the KDD process, namely data

preparation and data mining. It was shown how these tasks

and the methods to solve them can be described on two

levels, a higher, conceptual one which is independent of

the realization of the KDD process, and a lower one that

realizes the process. Critical aspects for declarative models

of KDD processes were identified, in the area of data de-

scriptions (data models), preparation operators (with a min-

imal and complete list of essential operators), and data pro-

cesses around the actual mining algorithm (such as cross

validation or parameter tuning). Based on these critical as-

pects, a methodology to set up objective and quantifiable

criteria for the comparison and evaluation of KDD tools

was presented. The methodology is adaptable to different

evaluation purposes and audiences for the presentation of

evaluation results.

References

[1] D. W. Abbott, I. P. Matkovsky, and J. F. Elder IV, “An evaluation of

high-end data mining tools for fraud detection”, in IEEE Int. Conf.

Syst., Man. Cybern., San Diego, USA, 1998.

[2] S. AlSairafi, F.-S. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo,

D. Kalaitzopoulos, M. Osmond, A. Rowe, J. Syed, and P. Wen-

del, “The design of discovery net: towards open grid services for

knowledge discovery”, High-Perform. Comput. Appl., vol. 17, no. 3,

pp. 297–315, 2003.

[3] A. V. Aho and J. D. Ullman, “Universality of data retrieval lan-

guages”, in Proc. 6th ACM Symp. Princ. Programm. Languag., San

Antonio, USA, 1979, pp. 110–117.

[4] A. Bernstein, S. Hill, and F. Provost, “Toward intelligent assistance

for a data mining process: an ontology-based approach for cost-

sensitive classification”, IEEE Trans. Knowl. Data Eng., vol. 17,

no. 4, pp. 503–518, 2005.

[5] M. Cannataro, A. Congiusta, C. Mastroianni, A. Pugliese, D. Talia,

and P. Trunfio, “Grid-based data mining and knowledge discovery”,

in Intelligent Technologies for Information Analysis, N. Zhong and

J. Liu, Eds. Berlin: Springer, 2004.

[6] H. Cespivova, J. Rauch, V. Svatek, M. Kejkula, and M. Tomeck-

ova, “Roles of medical ontology in association mining CRISP-DM

cycle”, in Worksh. Knowl. Discov. Ontol. ECML/PKDD, Pisa, Italy,

2004.

[7] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz,

C. Shearer, and R. Wirth, “CRISP–DM 1.0.”, Tech. Rep., The

CRISP–DM Consortium, Aug. 2000.

[8] K. W. Collier, D. Sautter, C. Marjaniemi, and B. Carey, “A method-

ology for evaluating and selecting data mining software”, in Proc.

32nd Hawaii Int. Conf. Syst. Sci. HICSS-32, Hawaii, USA, 1999.

[9] T. Euler and M. Scholz, “Using ontologies in a KDD work-

bench”, in Worksh. Knowl. Discov. Ontol. ECML/PKDD, Pisa, Italy,

2004.

[10] Ch. G. Giraud-Carrier and O. Povel, “Characterising data mining

software”, Intell. Data Anal., vol. 7, no. 3, pp. 181–192, 2003.

[11] M. Goebel and L. Gruenwald, “A survey of data mining and knowl-

edge discovery software tools”, ACM SIGKDD Explor., vol. 1,

no. 1, pp. 20–33, 1999.

[12] T. R. Gruber, “Towards principles for the design of ontologies used

for knowledge sharing”, in Formal Ontology in Conceptual Anal-

ysis and Knowledge Representation, N. Guarino and R. Poli, Eds.

Deventer: Kluwer, 1993.

[13] M. F. Hornick, H. Yoon, and S. Venkayala, “Java data mining

(JSR-73): status and overview”, in Proc. Worksh. Data Min. Stand.,

Serv. Platf. 10th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.

(KDD), Seattle, USA, 2004, pp. 23–29.

[14] J.-U. Kietz, A. Vaduva, and R. Zücker, “Mining mart: combining

case-based-reasoning and multi-strategy learning into a framework

to reuse KDD-application”, in Proc. Fifth Int. Worksh. Multistrat.

Learn. (MSL2000), Guimares, Portugal, 2000.

[15] I. Mierswa, R. Klinkberg, S. Fischer, and O. Ritthoff, “A flexible

platform for knowledge discovery experiments: YALE – yet another

learning environment”, in LLWA 03 Tagung. GI-Worksh. Woche Lern.

Leh. Wiss. Adapt., Karlsruhe, Germany, 2003.

86



Modeling preparation for data mining processes

[16] K. Morik and M. Scholz, “The miningmart approach to knowledge

discovery in databases”, in Intelligent Technologies for Information

Analysis, N. Zhong and J. Liu, Eds. Berlin: Springer, 2004.

[17] D. Pyle, Data Preparation for Data Mining. San Francisco: Morgan

Kaufmann, 1999.

[18] S. Raspl, “PMML Version 3.0 – overview and status”, in Proc.

Worksh. Data Min. Stand., Serv. Platf. 10th ACM SIGKDD Int.

Conf. Knowl. Discov. Data Min. (KDD), Seattle, USA, 2004,

pp. 18–22.

[19] G. J. Williams and Z. Huang, “Modelling the KDD process”, Tech.

Rep. TR-DM-96013, Commonwealth Scientific and Industrial Re-

search Organisation (CSIRO), DIT Data Mining, 1996.

[20] N. Zhong, C. Liu, and S. Ohsuga, “Dynamically organizing KDD

processes”, Int. J. Patt. Recogn. Artif. Intell., vol. 15, no. 3,

pp. 451–473, 2001.

Timm Euler received his

dipoma in computer science

from the University of Dort-

mund in Germany in 2001,

after studies in Dortmund and

Edinburgh, UK. Since then he

has been a Research Assistant at

the Artificial Intelligence Unit

at the University of Dortmund.

His research interests include

natural language processing,

data mining and modeling the KDD process.

e-mail: timm.euler@cs.uni-dortmund.de

Computer Science VIII

University of Dortmund

D-44221 Dortmund, Germany

87


