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Abstract—Recently, a radial basis functions (RBFs) method,

which was originally proposed for interpolation problems, has

been developed and applied to solve partial differential equa-

tions and eigenproblems. Properties of that method (mesh-

free algorithm) allows one to use it in many areas, including

electromagnetics. In this paper the mesh-free RBF method for

solving Helmholtz equation was applied and a new adaptive

algorithm for defining the set of interpolation centers was pro-

posed. Using the proposed approach the cutoff wavelengths

and the field distribution in cylindrical waveguides of arbi-

trary cross-section were calculated with a high accuracy.

Keywords—Helmholtz equation, radial basis functions, mesh-
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1. Introduction

Radial basis functions (RBFs) were originally proposed

for a multidimensional interpolation problem of scattered

data [1]. The RBFs method is similar to the most of

the interpolation methods and involves the same general

idea: for a given set of distinct points {x j}N
j=1 ∈ Ω ⊂ R

d

(called interpolation points) the corresponding values are

known {Ψ(x j)}N
j=1 and the interpolant Ψ(x) (where x ∈ Ω)

is chosen such that the interpolation conditions are fulfilled.

The expression for the interpolant has a following form:

Ψ(x) =
N

∑
i=1

αiφ(||x−yi||) , (1)

where || · || is the Euclidean norm, the set {yi}N
i=1 ∈ R

d is

a set of interpolation centers (usually, the same set of points

is used for centers and interpolation) and finally φ(·) is the

radial basis function. It has to be noted that φ(·) is one-

argument function φ : R+ → R.

There is many different types of RBFs. However, as men-

tioned before, choosing a particular form of RBF depends

on the type of the problem. A few of the most commonly

used RBFs include: the Gaussian function φ(r) = e−r2
,

the multiquadric function φ(r) =
√

1+ r2 or the Wendland

function which will be described later [2–4].

The argument r of the function φ(·) is usually scaled by

the factor c: r → r
c

, where c ∈R+ is called a shape param-

eter. If c is properly selected, the accuracy of the method

increases, but despite intensive research [4] the choice of

the parameter c remains an unsolved problem.

For a given form of RBF, the value of the parameter c
and centers distribution {yi}, one gets the interpolant from

substitution of given data to Eq. (1):

Ψ(x j) =
N

∑
i=1

αiφ(||x j −yi||), j = 1, ...,N. (2)

Using a matrix notation Aααα =ΨΨΨ, where ααα = [α1, · · · ,αN ]T ,

ΨΨΨ = [Ψ(x1), · · · ,Ψ(xN)]T and the elements of the matrix A

have a form [A]i, j = φ(||xi −y j||) for i, j = 1, . . . ,N.

Recently RBFs have been also applied to solve partial dif-

ferential equations [5] and eigenproblems [3]. The standard

numerical methods such as the finite element method or the

finite-difference method require mesh generation, which of-

ten is very burdensome task, especially when the contour

of the domain is of complex geometry. The RBFs method

is based on extrapolation of scattered data, therefore it is

very suitable schemes for problems defined in irregular ge-

ometries; its algorithm is totally grid-free.

In this paper we further develop the technique proposed

in [6] to find the cutoff wavelengths and the field distri-

bution in cylindrical waveguides of arbitrary cross-section

shapes. Instead of defining the set of centers a priori, we

propose a new adaptive algorithm.

2. Formulation

Let us assume that the wave propagates in the z-direction

inside a homogeneous and uniform cylinder of arbitrary but

homogeneous cross-section Ω. The problem is governed by

the scalar Helmholtz equation:

∇2Ψ(x)+ k2Ψ(x) = 0, (3)

where ∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 and k is the cutoff wavenumber. For

TM modes Hz = 0, Ez = Ψ(x) and function Ψ(x) satisfies

the Dirichlet conditions imposed on boundary ∂Ω, whereas

for TE modes Ez = 0, Hz = Ψ(x) and Ψ(x) satisfies the

Neumann conditions.

The problem can be solved by applying a modified form of

the interpolant [6]:

Ψ(x) =
n

∑
i=1

αiφ(||x−yi||)

+
N

∑
i=n+1

αi(x−yi) ·∇φ(||x−yi||) , (4)

where the set of centers {yi}N
i=1 ∈ Ω̄ (Ω̄ consists of Ω and

boundary ∂Ω) are chosen arbitrarily, but in such a way

71



Piotr Kowalczyk and Michał Mrozowski

that n of yi are inside Ω and the rest of them are on bound-

ary ∂Ω. The second term in Eq. (4) is due to the first-

order approximation by the Taylor series expansion and

it is included to improve the accuracy of the derivatives.

Function φ(·) is the Wendland radial basis function of the

following form

φ(r) = (1− r)8
+(32r3 +25r2 +8r +1) , (5)

where (1− r)+ =

{
1− r, r ∈ (0,1)

0, otherwise
.

Substituting Eq. (4) into Eq. (3) one gets

n

∑
i=1

αi∇2φ(||x−yi||)

+
N

∑
i=n+1

αi∇2 [(x−yi) ·∇φ(||x−yi||)]

= −k2

[
n

∑
i=1

αiφ(||x−yi||)

+
N

∑
i=n+1

αi(x−yi) ·∇φ(||x−yi||)
]

. (6)

Taking the set of interpolation points identical to the set

of centers and substituting the inner points {x j}n
j=1 ∈ Ω to

Eq. (6) one gets the system of equations which in a matrix

notation have a form

LIααα I +LBαααB = −k2 (AIααα I +ABαααB) . (7)

Analogously, for {x j}N
j=n+1 ∈ ∂Ω substituted into Dirichlet

or Neumann conditions one gets

BIααα I +BBαααB = 0, (8)

where BI and BB have a different form for TM modes or

TE modes. Eliminating αααB in Eq. (7) using Eq. (8) one

gets the following (n-dimensional) generalized eigenprob-

lem
[
LI −LB

(
B

−1
B BI

)]
ααα I

= −k2[
AI −AB

(
B

−1
B BI

)]
ααα I . (9)

The field distribution represented by Eq. (4) can be obtained

from eigenvectors ααα I (and αααB =−B
−1
B BIααα I) and the cutoff

wavenumbers from the eigenvalues of Eq. (9), λ =
2π
k

.

3. Self-adaptive algorithm for choosing

the set of interpolation centers

The main aim of that method is to generate the set of in-

terpolation points which for a small number of points gives

the highest accuracy of the solution.

In the first step one has to solve eigenproblem for the

initial set of points – obtaining the initial eigenvalue and

the corresponding initial eigenvector. It is equivalent to

obtaining initial function Ψ(x) defined for an an ar-

bitrary point in Ω̄. In the next step one has to take

a new arbitrary (usually larger) set of points {x̃m}M
m=1 ∈ Ω̄

different than {x j}. For any point x̃m inaccuracy of the

initial solution can be checked – if x̃m ∈ Ω, then the

interpolation error can be obtained from substituting it

into Eq. (3)

EI(x̃m) = ∇2Ψ(x̃m)+ k2Ψ(x̃m), (10)

when x̃m ∈ ∂Ω the error can be expressed by

EB(x̃m) = Ψ(x̃m) (11)

for TM modes or

EB(x̃k) = n ·∇Ψ(x̃k) (12)

for TE modes. Using a matrix notation

EI =
[
L̃I − L̃BB

−1
B BI + k2

(
ÃI − ÃBB

−1
B BI

)]
ααα I (13)

and

EB =
[
B̃I − B̃BB

−1
B BI

]
ααα I . (14)

The values of elements of the vectors EI and EB correspond

to inaccuracy of the initial solution at given points. Select-

ing elements whose values exceed the assumed inaccuracy

one gets a subset of points x̃m which should be added to

the initial set.

This algorithm is computationally by far more efficient than

solving the eigenproblem for a set of points consisting of

sets: {x j} and whole {x̃m}. It has to be noted that the

operation can be repeated until the assumed accuracy is

achieved.

4. Numerical results

Numerical tests were made for a few chosen shapes of

waveguide cross-sections for which analytical results are

known:

– circular waveguide of the radius R = 1;

– elliptical waveguide of the eccentricity e = 0.9 and

the semimajor axis a = 1;

– rectangular waveguide of the width a = 2 and the

height b = 1.
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As it was noted, the results depend on the distribution of

points (the set of centers) as well as shape parameter c.

In the results presented, the initial set of the centers has

a regular distribution (Fig. 1) and shape parameter c = 3.

Fig. 1. The initial sets of points for: (a) circular (N = 61, n = 41);

(b) elliptical (N = 61, n = 41); (c) rectangular (N = 128, n = 84)

waveguides.

After using the self-adaptive algorithm, the density of

points increased in regions where the accuracy was too

low (Fig. 2).

Tables 1–3 shows the cutoff wavelengths for a few low

order TM modes for considered shapes obtained from

the standard RBFs method and the RBFs method with

a self-adaptive algorithm. Analytical solutions are collected

in the last column.

Table 1

The cutoff wavelengths for three lowest order TM modes

for circular waveguide

RBF method RBF with S-A Analytical

2.6129 2.6127 2.6127

1.6420 1.6400 1.6397

1.2284 1.2238 1.2234

Fig. 2. The enriched (self-adapted algorithm) sets of points for:

(a) circular (N = 113, n = 73); (b) elliptical (N = 99, n = 63);

(c) rectangular (N = 220, n = 168) waveguides.

It can be seen that more nodes are needed for domains with

corners to achieve the required accuracy.

Table 2

The cutoff wavelengths for three lowest order TM modes

for elliptical waveguide

RBF method RBF with S-A Analytical

1.4912 1.4904 1.4906

1.1619 1.1605 1.1607

0.9420 0.9378 0.9375

Table 3

The cutoff wavelengths for three lowest order TM modes

for rectangular waveguide

RBF method RBF with S-A Analytical

1.7896 1.7889 1.7889

1.4167 1.4143 1.4142

1.1085 1.1096 1.1094
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5. Conclusions

The numerical tests shown in this paper are focused on TM

modes analysis, however, it has to be noted that TE modes

as well as TM can be found. The proposed method is appli-

cable not only to waveguides of arbitrary cross-section, but

also for any 3D structures. However, for regions of com-

plex geometry (especially with re-entrant corners) number

of interpolation points can be very large and method may

be computationally not efficient (because of matrices which

occur in eigenproblem are dense).

One of the essential problems of RBFs method is also se-

lecting a value of a shape parameter c. The parameter c
is of great importance for convergence and accuracy of the

obtained solutions. Inappropriate choice of c can reduce

accuracy or cause ill-conditioning of matrices.
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