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Abstract— The paper describes a new approach to electro-

magnetic analysis of magnetized plasma using finite differ-

ence time domain (FDTD) method. An equivalent lumped

circuit describing an FDTD cell filled with plasma is devel-

oped and applied in the analysis. Such a method is proved

more effective than previously reported methods. The new ap-

proach is verified on a canonical example of known analytical

solution.
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1. Introduction

Finite difference time domain (FDTD) method is one of

the most useful methods in modeling of electromagnetic

problems [1, 2]. Since its original formulation in the six-

ties it has been a subject of thousands of publications. One

of important problems considered by FDTD researchers is

effective analysis of dispersive media. Several approaches

to this problem have been reported [3], but the one which

seems to be most frequently used now is that of Kuntz and

Luebbers [2]. In that approach the frequency dependence

of the material properties is transformed into time domain

through a convolution. It is shown [2] that an effective re-

cursive updating of the convolution terms is possible. The

convolution approach has been also applied to dispersive

anisotropic media like magnetized plasma and magnetized

ferrites [2, 4, 5]. It proved to be more effective than for-

merly published approaches like [6]. Recently the authors

of this paper have developed an alternative approach to the

analysis of magnetized ferrites [7]. A lumped equivalent

circuit for ferrite-loaded FDTD cell has been developed and

it has been applied to electromagnetic modeling algorithm.

It proved simpler and more effective than previously re-

ported algorithms. In this paper we extend application of

that approach to the case of magnetized plasma. An equiv-

alent lumped circuit describing an FDTD cell filled with

plasma is developed and applied to electromagnetic model-

ing. Example of application shows perfect agreement with

analytical solution of a canonical 1D example. The new ap-

proach is shown to be computationally more effective than

formerly reported approaches [4, 5, 6] in the case of 2D

and 3D circuits.

2. Plasma and its RLC models

The magnetized plasma is characterized in frequency do-

main by tensor permittivity which may be written as:

ε =







εxx(ω) jεxy(ω) 0

−jεyx(ω) εyy(ω) 0

0 0 εzz(ω)






, (1)

εxx(ω) = εyy(ω) = 1−
(

ωp
ω )2[1− j νc

ω ]

[1− j νc
ω ]2 − (ωb

ω )2
, (2)

εyx(ω) = εxy(ω) =
(

ωp
ω )2 ωb

ω
[1− j νc

ω ]2 − (ωb
ω )2

, (3)

εzz(ω) = 1+
(ωp)

2

ω(jνc −ω)
, (4)

where ωp is plasma frequency, ωb is cyclotron frequency

(proportional to the static filed H0), and νc is the elec-

tron collision frequency, which describes the losses of the

plasma medium.

Let us start from considering a 2-dimensional case of a TM

wave propagating between two magnetic planes situated at

z = 0 and z = h. Such a wave has two E-field components

(Ex, Ey) and one H-field component (Hz). We can associate

with them magnetic voltage V = aHz and magnetic current

J = −izE. Under such assumptions the Maxwell equations

can be written in form of (5) and(6) dual to the form of TE

wave case considered in [8]:

▽V (x,y, t) = −L
∂J(x,y, t)

∂ t
, (5)

▽J(x,y, t) = −C
∂V (x,y, t)

∂ t
. (6)

Using FD discretization of space with cell size a and as-

suming h = a, these equations can be expressed for lossless

case in a form:

−jωCV m,n = Im+0.5,n
x − Im−0.5,n

x + Im,n+0.5
y − Im,n−0.5

y , (7)

−jωLIm+0.5,n
x = V m+1,n

−V m+1,n , (8)

where V m,n = aHz(x = ma, y = na), Im,n
x = −aEy(x = ma,

y = na), Im,n
y = aEx(x = ma, y = na), C = εa and L = µa.
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Let us note that LC parameters have unusual meaning,

i.e., L is related to electric field and C is related to mag-

netic field. We start from considering the case of isotropic

cold plasma described by isotropic permittivity given by

Eq. (4) (as in [3]). Figure 1 presents an equivalent lumped

Fig. 1. Lumped equivalent circuit for isotropic plasma.

circuit describing such a medium. Then we switch to the

magnetized plasma case. We consider a plasma material in

which electric field E is related to displacement vector D

by permittivity tensor given by Eqs. (1)–(4). Equation (7)

does not change while Eq. (8) needs to be modified to

the form of:

V m+1,n
−V m,n =

−jωhε0

[

(1+ χ)Im+0.5,n
x − j

wb

w

1− j
νc

ω

χIm+0.5,n
y

]

, (9)

where c can be expressed as:

χ =
w2

p

(

1− j
R1/L1

ω

)

(G1R1 +1)ω2
b −ω2 + jω

(G1

C1
+

R1

L1

)

, (10)

where ω2
b =

1
L1C1

, ω2
p =

1
LC1

, G1 = C1νc and R1 = L1νc.

Fig. 2. Lumped equivalent circuit for anisotropic plasma.

Let us note that term (10) corresponds to parallel LC

circuit resonating at the angular frequency ωb and term

V m+0.5,n
cx = −

jωL
jωL1 +R1

χIm+0.5,n
x describes voltage across

the parallel LC circuit. The current Im+0.5,n
Lx flowing through

the inductance arm is proporctional to this voltage multi-

plied by the admitance of the L1R1 conection. Thus we can

describe our 2D FDTD cell filled with magnetized plasma

by the lumped circuit of Fig. 2 with the source Vx driven

by the current ILy.

3. Algorithm

The sequence of time-domain updating of FDTD equa-

tions for Ex and Ey fields needs to be carefully considered

since in the equations containing the effects of off-diagonal

anisotropy it is assumed that we should know at the same

instant of time Ex to calculate Ey and Ey to calculate Ex.

The problem has been solved by performing the updates in

the following sequence:

1. Ek+1
x update based on Ek

x , Hk+0.5
z and Ek

y components.

2. Ek+1
y update based on Ek

y , Hk+0.5
z and Ek+1

x compo-

nents.

3. Update of Hk+1.5
z components.

4. Ek+2
y update based on Ek+1

y , Hk+1.5
z and Ek+1

x com-

ponents.

5. Ek+2
x update based on Ek+1

x , Hk+1.5
z and Ek+2

y com-

ponents.

Thus the FDTD algorithm based on the equivalent circuit

of Fig. 2 proceeds the following way:

Ek+1
x,m,n,i = Ek

x,m,n,i +
(

Hk+0.5
z,m,n+0.5,i−Hk+0.5

z,m,n−0.5,i−pk+0.5
x,m,n,i

+F1(ek
y,m−1,n+0.5,i + ek

y,m−1,n−0.5,i

+ek
y,m,n−0.5,i + ek

y,m,n+0.5,i)
)

F2 , (11)

ek+1
x,m,n,i = F3ek

x,m,n,i +F4 pk+0.5
x,m,n,i , (12)

pk+1.5
x,m,n,i = F5 pk+0.5

x,m,n,i +(Ek+1
x,m,n,i − ek+1

x,m,n,i)F6 , (13)

Ek+1
y,m,n,i = Ek

y,m,n,i +
(

Hk+0.5
z,m−0.5,n,i −Hk+0.5

z,m+0.5,n,i−0.5

−pk+0.5
y,m,n,i −F1(e

k+1
x,m−0.5,n−1,i

+ek+1
x,m+0.5,n−1,i + ek+1

x,m−0.5,n,i + ek+1
x,m+0.5,n,i)

)

F2 (14)

ek+1
y,m,n,i = F3ek

y,m,n,i +F4 pk+0.5
y,m,n,i , (15)

pk+1.5
y,m,n,i = F5 pk+0.5

y,m,n,i +(Ek+1
y,m,n,i − ek+1

y,m,n,i)F6 . (16)

76



FDTD analysis of magnetized plasma using an equivalent lumped circuit

Where px, py, ex, ey are algorithm varibles corespond-

ing to Vcx,Vcy,Ix,Iy in Fig. 2, respectively, F1 = 0.25L1ωb,

F2 = ∆t
C , F3 =

1−
R1∆t
2L1

1+
R1∆t
2L1

, F4 = ∆t
L1

1

1+
R1∆t
2L1

, F5 =
1−

G1∆t
2C1

1+
G1∆t
2C1

, and

F6 = ∆t
C1

1

1+
G1∆t
2C1

.

The algorithm presented here for a 2D can be relatively

easily extended to a 3D case. Table 1 presents comparison

of computer resources needed for our algorithm and for that

of Kunz and Luebbers [2]. Operation count is understood as

Table 1

Comparison of operation count of various methods

Variables Operation count

Algorithm 2D 3D 2D 3D

Vc > 0 Vc = 0 Vc > 0 Vc = 0

Our method 7 10 37 33 56 52

Kunz and Luebbers [2] 7 10 77 96

the number of floating point operations needed per FDTD

cell and per iteration. It can be seen that the algorithm

presented here is significantly more effective.

4. Example

Verification of the accuracy of our algorithm has been con-

ducted on a canonical 1D problem previously considered

in [5]. A Gaussian pulse plane wave is normally incident on

a longitudinally magnetized plasma layer. The pulse trav-

els through 350 FDTD cells of the total length of 15 mm.

The magnetized plasma is placed between cells numbered

200 and 320 and its length is 9 mm. The other cells are

Fig. 3. FDTD reflection coefficient magnitude versus frequency

for a plane wave incident on a plasma slab, continuous line cor-

responds to RCP, dashed line corresponds to LCP, triangles and

squares the analytical results after [5].

filled with air. Both ends of the free space region are ter-

minated by Mur absorbing boundary condition. For these

simulations the following parameters of the plasma were

assumed:

ωp = 2π ·50 ·109 rad
s

,

ωb = 3 ·1011 rad
s

,

νc = 2 ·1010 rad
s

.

The S parameters versus frequency for vertical and horizon-

tal polarization were calculated just in front of and behind

the plasma. These parameters were used to calculate right-

Fig. 4. FDTD reflection coefficient phase versus frequency for

a plane wave incident on a plasma slab, continuous line corre-

sponds to RCP, dashed line corresponds to LCP.

Fig. 5. FDTD transmission coefficient magnitude versus fre-

quency for a plane wave incident on a plasma slab, continuous

line corresponds to RCP, dashed line corresponds to LCP, trian-

gles and squares the analytical results after [5].
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hand and left-hand circularly polarized coefficients accord-

ing to the formulae:

TRCP(ω) = S21x(ω)+ jS21y(ω) , (17)

TLCP(ω) = S21x(ω)− jS21y(ω) , (18)

RRCP(ω) = S11x(ω)+ jS11y(ω) , (19)

RLCP(ω) = S11x(ω)− jS11y(ω) . (20)

Figure 3 shows calculated results of reflection coefficients

for right-hand and left-hand circular polarizations (denoted

RCP and LCP, respectively). Perfect agreement with analyt-

ical results after [5] are obtained. Similarly good agreement

Fig. 6. FDTD transmission coefficient phase versus frequency

for a plane wave incident on a plasma slab, continuous line cor-

responds to RCP (from 40 GHz to 80 GHz data are not pre-

sented due to phase uncertainties when the attenuation drops be-

low –50 dB), dashed line corresponds to LCP.

with [5] has been obtained for the transmission coefficients

(shown in Fig. 5) and for phase relations for both coeffi-

cients (shown in Figs. 4 and 6).

5. Conclusions

In this paper a new approach to FDTD analysis of mag-

netized plasma has been presented. It has been verified

on a canonical example with known analytical solution. It

proved to be more effective than previously reported ap-

proaches. At the same time it has been found robust and

reliable in practical simulations of 2D and 3D cases.
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