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Abstract— This paper presents the results of a comparative

study of network routing approaches. Recent advances in

the field suggest that swarm intelligence may offer a robust,

high quality solution. The overall aim of the study was to

develop a framework to facilitate the empirical evaluation of

a swarm intelligence routing approach compared to a con-

ventional static and dynamic routing approach. This paper

presents a framework for the simulation of computer net-

works, collection of performance statistics, generation and

reuse of network topologies and traffic patterns.

Keywords— network routing, swarm intelligence, ant algo-

rithms.

1. Introduction

Computer networks are handling larger amounts of traffic

and experience tells us that they will continue to grow in

size and demand for efficiency. Improvements in network

hardware will offer performance improvements but need to

rely upon intelligently designed policies and protocols to

achieve optimality. Many of the problems that are encoun-

tered in the design of network communication policies have

no easy or completely satisfactory solution. This is because

they are often compromises between conflicting objectives.

The problem that this paper investigates is known as net-

work routing.

2. Routing and ant metaheuristic

Consider a network of devices, either hosts or routers, con-

nected by point-to-point communication links. Any device

may communicate with another by sending an addressed

data packet to a neighbour who will then forward the packet

on, eventually to the intended recipient. The decision of

which outward link to send an incoming packet along is

made by the network layer’s routing algorithm. Routing is

an important aspect of computer networks because it can

greatly influence overall network performance; good rout-

ing can cause greater throughput or lower average delays,

all other conditions being the same [6]. Routing is a diffi-

cult problem because it is a distributed multi-objective op-

timization problem. This has two important implications:

• Because the problem is distributed it is impossible

for any one device to have an accurate picture of the

overall problem state at the time when it must make

decisions affecting the performance of the network.

• A good solution to the problem will be a compro-

mise between conflicting requirements. For example,

throughput is desirable but not to the extent that it

will unfairly penalise some hosts.

Traditional approaches to network routing include

static [13] routing algorithms and various dynamic rout-

ing approaches [4, 8]. Static routing algorithms compute

the least costly paths through the network when the net-

work is first booted using known information about the

communication links used. The algorithm used in our sim-

ulation framework used Djikstra’s shortest path algorithm

calculating the distance using cost weightings for the com-

munication links [13]. The obvious disadvantage of such

an approach is that it is unable to adjust its policy to

minimise the build-up of localised congestion in one area

of the network. Also the network must implement an-

other protocol to handle the failure of a communication

link. The dynamic routing algorithm treated in this paper

is a distance-vector algorithm similar to Routing Informa-

tion Protocol (RIP) [2]. In this approach nodes (hosts or

routers) periodically send a packet to each neighbour no-

tifying them of the minimum number of packets that are

queued along their best route to every other node in the

network. When a node learns of a better route to a node

it rewrites its routing table to begin using the new route.

This gives dynamic routing algorithms the ability to direct

traffic around congested areas to relieve congestion. This

flexibility can backfire resulting in the situation where traf-

fic is diverted between routes in constant oscillations that

increase congestion in the local area. Invulnerability to this

effect is an advantage of static routing algorithms over dy-

namic routing algorithms. Swarm intelligence routing ap-

proaches seem to offer the flexibility of distance-vector al-

gorithms without the drawback of undamped traffic oscil-

lations [6].

3. Ant metaheuristic

Swarm intelligence is a soft computing technique that has

gained considerable attention in the research community

over the last couple of years [1, 5, 6]. It was proposed

for various tasks including the control of robot swarms,

power saving in mobile networks and network routing, for

example [6, 11].

The swarm intelligence approach we use is an ant routing

algorithm. An important characteristic of swarm intelli-

gence is its use of stigmergy. Stigmergy refers to a commu-
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nication method that encodes information about the prob-

lem (and its solutions) on the environment of the prob-

lem. A good example of stigmergy in swarm intelligence is

the ant metaheuristic. This refers to the method by which

ant swarms find best paths. Information is encoded on the

environment in the form of pheromone (scent chemicals)

deposited on the ground as the ants walk over it. In the

case illustrated in Fig. 1 ants continuously pour out of the

nest toward the food. When a fork in the path at A is en-

countered ants choose either path with a probability based

Fig. 1. An example of the shortest path-finding behaviour.

on the concentration of pheromone on that path. Initially

unscented the swarm will divide evenly between the paths.

The ants that took the shortest path will reach the food

first and turn back toward the nest. When they reach the

fork at B the shortest path will be more strongly scented

because more ants will have emerged from it. The scent of

the shortest path will be reinforced until the whole swarm

converges on the shortest path.

3.1. Ant routing

The ant metaheuristic has lead to the creation of ant algo-

rithms such as the AntNet system [6]. Ant routing algo-

rithms generate ants (packets with random addresses) that

traverse the network and collect timestamps as they pass

through each node. The ants are routed by a stochastic

process that is weighted by the goodness of a particular

route [6]. When an ant reaches its destination it generates

a backward ant which follows the same route as the orig-

inal ant back to its source. As the backward ant travels

through each node it updates the stigmergy table, which

holds the goodness values for the different routes. An ex-

ample of a stigmergy table typically produced in our study

is illustrated in Table 1.

The table is consulted when sending an ant to the node

whose address is the column name. The values represent

the probabilities of using the node whose address is the

row name as the next node on the path. The table is taken

from node 0. Note how the sum of probabilities in each

column is 1.

Each node also maintains a data structure that contains,

for each other node in the network, the mean delay to that

node (µ), the variance of observed delays (σ2) and the

number of observations (n) that contributed to µ and σ2.

This data structure is used when calculating the reinforce-

ment to the goodness of a route.

First a raw measure (r) of the goodness of the reported

time (t) is calculated as illustrated by Eq. (1):

r =
t

2µ
, (1)

with out-of-scale (> 1) values of r being saturated to 1.

If the mean is considered unstable (σ2/µ ≥ 0.25) then the

value for r is corrected as follows: for good values of r
(r < 0.5) a value U is added to r, and for bad values of r
(r ≥ 0.5) U is subtracted from r, where:

U = 0.1σ2/µ . (2)

This rule mitigates the costly oscillatory behaviour that

arises in dynamic routing algorithms by reducing the re-

inforcement effect if the mean delay to a node fluctuates.

If the mean is considered stable (σ2/µ < 0.25) then the

value for r is corrected as follows: for good values of r
(r < 0.5) a value S is subtracted from r, and for bad values

of r (r ≥ 0.5) S is added to r, where:

S = 0.12σ2/µ . (3)

This rule amplifies the reinforcement effect for routes with

stable mean delays, effectively increasing the learning rate

when we trust observations and believe that it is safe to do

so.

The corrected r is used to update the stigmergy table using

the following rules.

For the probability (P0) for the neighbour which the time

relates to:

P′
0 = P0 +(1− r)(1−P0) . (4)

For all other neighbour’s probabilities yields:

P′
n = Pn +(1− r)Pn . (5)

The rule for updating the values in the stigmergy table sim-

ply ensures that the value being reinforced is increased in

proportion to the goodness (r). The other values are de-

creased in proportion to r and their own relative magnitudes

while keeping the sum of all the probabilities equal to 1.

Data packets are not routed stochastically, they are always

sent to the neighbour with the greatest goodness value for

the intended destination. When forward ants revisit a node

the circuit that they have travelled in is cleared from their

memory to avoid reinforcing circular routes. To attempt to

provide a faster feedback mechanism backward ants have

priority over all other packets. A common criticism of

this system is that a faster yet feedback mechanism would

be to design forward ants to update the routing tables of

nodes with regard to the section of the trip that they already

completed. To this we respond that an essential feature of

the ant metaheuristic is that the reinforcement from poor

routes must be delayed proportionally.
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Table 1

A stigmergy table from node 0 (taken from simulation output)

Address 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0.99993 3.45 ·10−5 0 0.00475 0.113151 0.22 0 0 0.03413

2 0 7.48 ·10−5 0.61347 0 0.00475 0.113151 0.195 2.74 ·10−5 0.436324 0.03413

3 0 0 0.23308 0.185908 0.00475 0.127658 0.195 0 0 0.8635

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0.13051 0 0.02975 0.113151 0.195 0.99997 0 0.03413

8 0 0 0.02291 0.814092 0.95599 0.532888 0.195 0 0.563676 0.03413

9 0 0 0 0 0 0 0 0 0 0

3.2. Traffic patterns and network topology

The traffic generator generates a random number of packets

less than ten with random sizes below 1000 bytes. Self-

addressed packets will not be generated. Traffic patterns are

saved for reuse during simulations with different routing

approaches. At the beginning of each simulation every

node is preloaded with its traffic pattern after which no

more traffic is added to the nodes.

The network generator included in the framework is a ran-

dom network generator (as opposed to scale-free). In our

study the network generator was typically used to generate

a network of 10 nodes with a probability of any pair of

nodes being connected at 0.35. A graph traversal function

guarantees that only connected graphs proceed to simula-

tion. The generator will not create self-to-self arcs. Topolo-

gies are saved for reuse during simulations with different

routing approaches.

The choice to not use a scale-free network generator was

an important one. For more than 40 years the study of

networks was based on work by Paul Erdös and Alfréd

Rényi. They suggested, in 1959, that networks could be

described by nodes connected by randomly placed links.

While their work revolutionised graph theory it has since

been shown that scale-free networks are much more com-

mon. The physical structure of the Internet and the link

structure of the world wide Web (WWW) have both been

shown exhibit scale-free organisation [7]. The choice of

generation method and implementation of a suitable algo-

rithm is a considerable undertaking as can be seen in the

recent work of Spencer and Sacks, for example [12]. For

this study we have decided to simulate random networks

only.

3.3. Characteristics of random networks

The random networks are those that are formed by the cre-

ation of links between randomly chosen pairs of nodes.

Random networks are also known as exponential networks

because the probability that a node is connected to k other

nodes decreases exponentially as k increases. If the fre-

quency of nodes is plotted against the number of links

a normal distribution is evident as in Fig. 2.

Fig. 2. Poisson distribution of node linkages in random networks.

One interesting point of random networks is that they are

vulnerable to fragmentation by the removal of a number of

randomly chosen nodes leaving the remaining nodes hope-

lessly separated from most of the rest of the network.

3.4. Characteristics of scale-free networks

Scale-free networks consist of clusters of nodes connected

to a central hub that is connected to other hubs like it.

They are characterised by power-law distribution of node

linkages. This means that the probability of a node being

connected to k other nodes is 1/kn. Scale-free networks all

seem to have values of n between two and three. So for

example, a node is four times as likely to have only half

the number of links another node has. Figure 3 illustrates

this behaviour.

In scale-free topologies the vast majority of nodes have

roughly the average number of links, but a few “hubs” have

thousands times the average number of links. When plotted

on a double logarithmic scale the node linkage distribution

is a straight line. This behaviour is illustrated in Fig. 4.

In contrast to random networks, scale-free networks are re-

silient to the removal of randomly chosen nodes to a high

degree. As many as 80 percent of randomly selected nodes

can fail and the remainder will still form a compact con-
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Fig. 3. Power-law distribution of node linkages in scale-free

networks.

nected cluster [3]. However they are very sensitive to the

removal of selected hubs. In fact, scale-free networks are

only more robust to node removal than random networks if

more than 95 percent of the removed nodes are chosen at

random [10].

Fig. 4. Power-law distribution plotted on double logarithmic

scale (scale-free networks).

The peculiar characteristics of scale-free networks are due

to the way they are created. The Internet did not come into

being as a set of randomly connected routers and hosts,

nor do new nodes attach themselves to the network at ran-

dom points. The Internet grew. When new users become

connected there are reasons why they connect at specific

points. The mechanisms which create scale-free networks

are growth and preferential attachment. Growth implies

that the organisations (nodes) that are oldest will have ac-

cumulated more links. Preferential attachment refers to the

fact that the more links a node has the more attractive it

is to be connected to. Other factors accentuate this effect;

for example strategic positioning of service providers and

users clustering around a preferred service.

4. Results

The results in this study are based on five simulation runs.

Each run uses the same traffic patterns and topology for

each of the three routing approaches discussed. In the case

of critical events, the framework outputs event tags to de-

limited text files. These files were then analysed by im-

porting into a spreadsheet. The results of the final analysis

are illustrated in Table 2.

The values provided are mean values across the five sim-

ulations. Static routing offers the best throughput of the

three approaches but dynamic routing offers shorter mean

packet delays. This would suggest that the dynamic routing

Table 2

Summary of results from analysis of simulation output

Metric Routing approach

static dynamic ant

Mean packet delay [ms] 1537.78 1457.00 3878.30

No. packets delivered 36 36 35.8

Time taken [ms] 6006 7362 17 388

Total data transfer [B] 17 537 17 537 17 537

Throughput [B/s] 2.92 2.39 1.03

Total busy time [ms] 31 455.60 34 446.60 61 104.40

Percentage utilisation 52.44 46.94 35.76

algorithm sacrifices raw efficiency for fairness (keeping the

average delay of packets lower). In this case ant routing

shows inferior performance when compared to the other

two. We contend that this is due to a coarse system of

adjusting the learning rate which would be improved with

fine-tuning.

5. Summary and future work

We developed a framework for simulation of a computer

network and implemented static, dynamic and ant routing

algorithms. We collected 15 results sets in total from five

simulations. Upon analysis we find static and distance-

vector routing perform similarly. Our ant routing algorithm

performs sub optimally but demonstrates the principle of

stigmergetic communication successfully.

The poor performance of the ant algorithm will be investi-

gated further with special consideration given to the learn-

ing rate adjustments. Swarm intelligence may yet not prove

more efficient than traditional network routing algorithms

but its ability to self-organise operating purely on local

information may prove useful in ad hoc networks like the

Bluetooth world, for example [9]. An investigation of other

network topologies, using our simulation framework, such

as scale-free networks would be useful. Also the work can

be taken into new fields. For example, consider a network

controlled by ants using stigmergy to communicate infor-

mation on billing, virus infection, hardware failure, usage

patterns, etc. One can also envision a genetic algorithm

evolving the different ant variants and producing super-ants

tailored to a cable company’s own network [14]. We be-

lieve however, that great caution must be exercised in the

application of fitness criteria to ants. Ants in a techni-

cal sense are computer viruses, it is not hard to imagine

what harm could be done if they spread across networks or

evolved to escape detection.

27



Peter Dempsey and Alfons Schuster

References

[1] “ANON – the swarm development group”, 2004,

http://wiki.swarm.org/

[2] B. Baccala, “Connected: an Internet encyclopedia”, 2004,

http://www.freesoft.org/CIE/Topics/90.htm

[3] A. Barabási and E. Bonabeau, “Scale-free networks,” Sci. Amer.,

vol. 288, no. 5, pp. 50–59, 2003.

[4] R. Bellman, Dynamic Programming. New Jersey: Princeton Univer-

sity Press, 1957.

[5] E. Bonabeau, M. Dorigo, and Z. Theraulaz, Sarm Intelligence: From

Natural to Artificial Systems. New York: Oxford University Press,

1999.

[6] G. Di Caro and M. Dorigo, “AntNet: distributed stigmergetic con-

trol for communications networks”, J. Artif. Intel. Res., vol. 9,

pp. 317–365, 1998.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law rela-

tionships of Internet topology”, in Conf. Appl., Technol., Architect.

Protoc. Comput. Commun. SIGCOMM’99, Cambridge, USA, 1999,

pp. 251–262.

[8] L. Ford jr. and D. Fulkerson, Flows in Networks. Princeton, New

Jersey: Princeton University Press, 1962.

[9] M. Heissenbuettel and T. Braun, “Ants-based routing in large scale

mobile ad hoc networks”. Kommunikation in verteilten Systemen

KiVS’03, Leipzig, Germany, 2003.

[10] S. Park, A. Khrabrov, D. Pennock, S. Lawrence, C. Giles, and

L. Ungar, “Static and dynamic analysis of the Internet’s suscepti-

bility to faults and attacks”, in 22nd Ann. Joint Conf. IEEE Comput.

Commun. Soc. Infocom’03, San Francisco, USA, 2003.

[11] Ch.-Chu. Shen and C. Srisathapornphat, “Ant-based energy conser-

vation for ad hoc networks”, Tech. Rep. no. 2004-09, DEGAS Group,

Dept. of CIS, University of Delaware, 2004.

[12] J. Spencer and L. Sacks, “Modelling IP network topologies by

emulating network development processes”, in Int. Conf. Softw.,

Telecommun. Comput. Netw. Softcom’02, Split, Croatia, 2002.

[13] A. S. Tannenbaum, Computer Networks. 4th ed. New Jersey: Pren-

tice Hall, 2003.

[14] M. Ward, “There’s an ant in my phone ...”, New Sci., vol. 157,

pp. 32–36, 1998.

Peter Dempsey holds a B.Eng.

in software engineering from

the University of Ulster at

Jordanstown in Northern Ire-

land. His research interests are

in telecommunication networks,

swarm intelligence, and artifi-

cial intelligence. He has a year

work experience in industry. He

currently works as a language

instructor in Japan.

e-mail: dempsey-p@ulster.ac.uk

University of Ulster

Shore Road, Newtownabbey, Co. Antrim, BT370QB

Northern Ireland

Alfons Schuster received the

Ph.D. degree in computer sci-

ence from the University of

Ulster in Northern Ireland and

the B.Sc. degree in applied

physics form the University of

Applied Sciences in Munich,

Germany. He has several years

experience working in industry.

His research interests are in ar-

tificial intelligence, robotics and

theories of computing.

e-mail: a.schuster@ulster.ac.uk

Faculty of Engineering

School of Computing and Mathematics

University of Ulster

Shore Road, Newtownabbey, Co. Antrim, BT370QB

Northern Ireland

28


